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Abstract

We present a new method for particle interactions in polymer models of DNA. The
DNA is represented by a bead-rod polymer model and is fully-coupled to the fluid.
The main objective in this work is to implement short-range forces to properly
model polymer-polymer and polymer-surface interactions, specifically, rod-rod and
rod-surface uncrossing. Our new method is based on a rigid constraint algorithm
whereby rods elastically bounce off one another to prevent crossing, similar to our
previous algorithm used to model polymer-surface interactions. We compare this
model to a classical (smooth) potential which acts as a repulsive force between
rods, and rods and surfaces.

1 Introduction

Microfluidic devices are increasingly important in biodefense and biomedical
applications including pathogen detection, continuous monitoring, and drug
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delivery. Numerical algorithms that can model flows of complex biological flu-
ids within these devices are needed for further development and optimization.
For example, a technique for “sticking” is necessary to model the capture of
DNA in an extraction chamber from whence a polymerase chain reaction can
begin. This phenomenon requires modeling of short-range interactions between
large molecules and a (smooth) structural surface. In addition, biological fluids
are usually polymeric, a solvent consisting of multiple, large particles which
undergo self-interactions as well as interactions with other particles. The poly-
mer model and these short-range interactions must be physically appropriate
for there to be fidelity in the simulation of transport. Furthermore, the prob-
lem is complicated due to the time scale of the short-range interactions being
much smaller than that of the bulk fluid, necessitating multiscale schemes.

In previous work we developed a model that coupled bead-rod polymers to an
incompressible viscous solvent [9]. We took care to conservatively couple the
polymer and solvent forces – both viscous and stochastic – in order that the
fluid “feel” the effect of the polymer. It is in this sense of obeying Newton’s
third law of motion that we consider the dynamics to be “tightly coupled”.
(The purpose of the full-coupling is to be able to simulate the effects of a large
number of polymers and to compare this hybrid approach with a viscoelastic
continuum model as in [7].) Additionally, the polymer nodes may experience
elastic collisions with domain boundaries. With this numerical algorithm, we
have been able to simulate polymer-boundary interactions which occur in DNA
size-separation and extraction devices as well as obtain preliminary results for
more complicated 2D and 3D device geometries [8]. The model also captures
many essential features observed in DNA visualization experiments [3]. In
particular, the molecule tends to extend in regions of large shear flow, and
contract in its absence.

However, to model the (probable) fate of individual molecules in microflu-
idic systems or biological flows, it is desirable to incorporate more physically-
realistic behavior. For polymer models of DNA, of immediate concern is the
non-crossing constraint: a polymer section cannot pass through another poly-
mer section. In our previous freely-jointed bead-rod model, as with many
other current implementations (e.g., [6]), crossing of rod sections is allowed.
We treated polymer-surface interactions as purely elastic collisions, and we
do not treat polymer-polymer interactions. In particular, there is no rod-rod
non-crossing constraint. The resulting behavior has a strong theoretical foun-
dation (e.g., [4]) and is therefore important for algorithm validation, but does
not respect the correct non-crossing physical behavior of real molecules.

Furthermore, macromolecules like DNA are charged, and chemically active.
They interact through screened Coulombic interactions and migrate in re-
sponse to imposed electric fields. In addition, microfluidic separators have been
designed based on the increase of residence time with molecule length in packed
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bed and pillared array geometries, or through chemically-mediated residence
time enhancement achieved by binding selective proteins to channel surfaces.
These physical effects are characterized by intra-polymer, inter-polymer, and
polymer-surface interaction potentials which may be long-ranged.

In this paper we will explore the rod-crossing problem using rigid constraints.
We will also implement a soft penalty method where Coulombic interactions
using a short-range Debye-Hückel potential are incorporated into a classic
repulsive potential. A preliminary version of this work can be found in [1].

2 Algorithmic Approach

Two methods for preventing rod-rod crossings in bead-rod polymer models are
presented here. The first is a new hard constraint mechanism for elastically
bouncing rigid rods off of each other. This approach to rod-rod uncrossing
is currently used to prevent rod-surface crossing in microfluidic post array
channels [9]. The second is a repulsive potential as in [2] to model short-range
rod-rod and rod-surface interactions for comparison to the hard constraint
system.

2.1 Rod-rod Uncrossability Constraint

The rod-rod uncrossability constraint works by detecting rod-rod collisions
and treating them as elastic collisions between infinitely thin rods. It is similar
to the bead-surface uncrossability constraint already implemented in [9]. For
simplicity in exposition the algorithm in 2D is outlined below as an extension
to the existing algorithm in [9]. Steps 1, 2, and 4 are described in more detail in
[9]. The ideas for steps 3a-3d have been taken from [5]. In that work bonds are
considered as elastic bands between bonded particles. When any two of these
elastic bands make contact, an entanglement point is created which prevents
them from crossing. We call this a hard constraint algorithm as it is an end
member of a classical smooth potential that requires no parameter tuning.

The polymer is represented by a series of beads connected by rigid rods. The
bead positions and velocities are given by x and v respectively. Rod i is defined
as the line segment from bead i to bead i+ 1, or from xi to xi+1.

For each time step, beginning with xn and vn:

1. Calculate the unconstrained motion to obtain x∗ and v∗.
2. Calculate the motion subject to the rod length constraint to obtain x†

and v†.
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3. Calculate the motion subject to the rod-rod uncrossability constraint to
obtain x‡ and v‡. The details of this step are as follows:

Calculate v∆t, the bead velocities over the current time step

v∆t = (x† − xn)/∆t

so that the time-linear trajectory of each bead over the current time step
is

x = xn + v∆tt t ∈ (0,∆t) (1)

Repeatedly loop through all rod pairs until no more collisions are de-
tected. For each pair of rods i and j:
3a. Calculate the triple product Vij at times 0 and ∆t where

Vij = (xi − xj) · ((xi+1 − xi)× (xj+1 − xj)) (2)

The value of Vij will be zero if the infinite lines containing the rods
intersect or are parallel. Therefore, if the value of Vij changes sign over
the time step, a possible rod-rod crossing has occurred. Otherwise,
proceed to step 3k.

3b. Calculate τ , the time of crossing. Substituting the time-linear trajec-
tories of (1) into (2) gives a third-order polynomial in t for Vij. The
smallest root of this polynomial in the range (0,∆t) will be τ .

To simplify the calculation, let

α = xi − xj = α0 +α1t

β = xi+1 − xi = β0 + β1t

γ = xj+1 − xj = γ0 + γ1t

where

α0 = xn
i − x

n
j

α1 = v∆t
i − v∆t

j

β0 = xn
i+1 − x

n
i

β1 = v∆t
i+1 − v

∆t
i

γ0 = xn
j+1 − x

n
j

γ1 = v∆t
j+1 − v

∆t
j

The coefficients of the polynomial Vij = a3t
3 + a2t

2 + a1t+ a0 are
then given by

a0 = α0 · (β0 × γ0)

a1 = α0 · (β1 × γ0) +α1 · (β0 × γ0) +α0 · (β0 × γ1)

a2 = α1 · (β1 × γ0) +α0 · (β1 × γ1) +α1 · (β0 × γ1)

a3 = α1 · (β1 × γ1)
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3c. Calculate xτ , the bead positions at time τ .

xτ = xn + v∆tτ

3d. Calculate χ, the point of intersection at time τ , by solving the fol-
lowing set of equations:

χ = xτ
i + λi(x

τ
i+1 − x

τ
i ) = xτ

j + λj(x
τ
j+1 − x

τ
j )

where λi and λj define the point of intersection between the lines
containing rods i and j respectively. If (0 ≤ λi ≤ 1) and (0 ≤ λj ≤ 1)
then the point of intersection lies on both rods and a rod-rod crossing
has occurred. Otherwise, proceed to step 3k.

3e. Calculate n, the unit vector normal to the plane formed by the two
rods at time τ

n =
(xτ

i+1 − x
τ
i )× (xτ

j+1 − x
τ
j )

|(xτ
i+1 − x

τ
i )× (xτ

j+1 − x
τ
j )|

3f. Calculate v∆t
rel , the relative velocity of the intersection point over the

current time step

v∆t
rel =(v∆t

j − v∆t
i ) + λj(v

∆t
j+1 − v

∆t
j )− λi(v

∆t
i+1 − v

∆t
i )

3g. Calculate vcol, bead velocities after collision

vcoli = v∆t
i + 2(1− λi)(n · v

∆t
rel)n

vcoli+1 = v∆t
i+1 + 2λi(n · v

∆t
rel)n

vcolj = v∆t
j − 2(1− λj)(n · v

∆t
rel)n

vcolj+1 = v∆t
j+1 − 2λj(n · v

∆t
rel)n

3h. Update positions for beads i, i+ 1, j, and j + 1

x‡ = xτ + (∆t− τ)vcol

3i. Calculate v†rel, the relative velocity of the intersection point using
velocities at the end of time step

v
†
rel=(v†j − v

†
i ) + λj(v

†
j+1 − v

†
j)− λi(v

†
i+1 − v

†
i )

3j. Update bead velocities at the end of the time step

v
‡
i = v

†
i + 2(1− λi)(n · v

†
rel)n

v
‡
i+1 = v

†
i+1 + 2λi(n · v

†
rel)n

v
‡
j = v

†
j − 2(1− λj)(n · v

†
rel)n

v
‡
j+1 = v

†
j+1 − 2λj(n · v

†
rel)n
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3k. If no collision occurs, then for beads i, i+ 1, j, and j + 1

v‡ = v†

x‡ = x†

4. Calculate the motion subject to the bead-surface uncrossability constraint
to obtain xn+1 and vn+1.

This 2D algorithm can be extended to 3D by considering bead-rod collisions
where the bead is treated as a rod perpendicular to the 2D plane with its
position on the 2D plane.

2.2 Repulsive Potential

The algorithm for a repulsive potential interaction between rods is taken from
the work of Kumar and Larson [2]. The shortest vector between two rods is
calculated, and a repulsive force is applied to both rods along that vector.
While Kumar and Larson explored the use of an exponential potential and a
Lennard-Jones potential, this work uses a short-ranged Debye-Hückel potential

UDH = A
e−κr

r
.

For polymer-surface interactions, the same algorithm was applied using the
shortest vector between a rod and the level set boundary defining a surface. It
should be noted that while the mathematically correct introduction of these
forces is directly into the Langevin equation, we initially introduced these
forces after the rod length constraint to avoid complexities in the Ito-Taylor
expansion of [9].

3 Results and Discussion

We simulated a variety of polymer lengths and combinations of rigid constraint
and soft potential interactions. The polymer-surface interactions are based on
the level set boundary; the flow geometry is based on the embedded boundary.
For low grid resolution the difference between the embedded boundary and
the level set boundary representations of a physical surface is visually obvious.
For higher resolution the difference between the embedded boundary and the
level set boundary is not visually obvious. Considering polymer-surface inter-
actions, the repulsive potential is more stable, but the rigid constraint allows
the polymer to get closer to the pillar resulting in slower motion due to lower
fluid velocities near the boundary. In general, as the number of beads in the
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Fig. 1. Time sequence of a bead-rod polymer with varying particle masses in 3D.
Polymer is initially stretched out but moves to a tangled state caused by transport
of heavier particles up front in background flow.

polymer increased, the particle time step control had to be decreased in order
to maintain convergence in the constant rod length constraint routine. This
may be due to the beads being in a greater range of fluid velocities resulting
in more stretching along the rods. For 100-bead polymers, a value of 1.0 was
adequate; for 200-bead polymers, 0.1.

In order to demonstrate the hard constraint algorithm in 3D we present re-
sults for the particle algorithm alone, decoupled from the time-dependent fluid
algorithm. Figure 1 is a time sequence of a bead-rod polymer in 3D with vary-
ing particle (bead) masses being transported by a uniform background flow.
Initially the polymer is in a relaxed, stretched out state. The heavier particles
at the head cause the non-trivial behavior as the polymer begins to tangle in
time.

Figure 2 is a time sequence of single polymer transport in a 2D microscale
flow with a cylindrical pillar obstruction that demonstrates intra-polymer and
polymer-structure interactions using the smooth potential. Time-dependent
fluid coupling is included. In the first frame the polymer is randomly placed
to be nearly entangled before flowing into the cylinder. Frame 2 shows a short-
range interaction of the polymer with the cylinder surface while also undergo-
ing inter-polymer interactions. The polymer accelerates around the pillar in
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Fig. 2. Time sequence of 200-bead polymer flowing past a cylinder in 2D demon-
strating intra-polymer and polymer-structure interactions using smooth potential.
(a) Nearly entangled polymer. (b) Short-range polymer-surface interaction. (c) Ac-
celeration around pillar due to Brownian perturbation and hydrodynamic drag. (d)
More acceleration of the tail and slowing of the head in stagnation region in wake
of pillar. (e) Accelerated tail catching up with stagnated head. (f) Re-entanglement
in wake with multiple intra-polymer interactions.

the third and fourth frames due to Brownian perturbation keeping it off the
surface and nudging it out into the boundary layer where it is pulled by hy-
drodynamic drag. As the polymer approaches the near-stagnation wake region
behind the pillar the head of the polymer begins to slow down allowing the
tail to catch up in the fifth and then sixth frames. Re-entanglement occurs in
the wake where numerous intra-polymer interactions occur.

4 Conclusion

We have demonstrated a new method based on a rigid constraint system to
prevent rod-crossing in bead-rod polymer models in 3D. The rigid constraint
algorithm is the simplest model that captures the essential properties of rod-
uncrossing. We use the same elastic collision model for rod-uncrossing as in
polymer-surface interactions. The model has a physical basis in early molecular
dynamics simulations where hard spheres represent condensed matter. On the
other hand, the soft potential model involves arbitrary parameter tuning to
determine the structure of the potential at from short to long range. The short
range structure of the soft potential is also more restrictive on the particle time
step than the hard constraint. The hard constraint is indeed an end member
of the soft potential, eliminating the choice of parameters.

The new hard constraint algorithm does compare well qualitatively with the
classical repulsive potential. It is difficult to see the differences during entan-
glement without establishing statistics from many simulations, which we did
not perform here. Near surfaces, however, it is clear that the hard constraint
allows the polymer to travel more closely to the surface where the fluid ve-
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locity is nearly zero. The smooth potential is currently computationally less
expensive than the rigid constraint. Potentials need only be evaluated once per
rod pair, whereas the rigid constraint must loop over and over until all col-
lisions have been treated. Furthermore, the rod-rod uncrossability constraint
loops through all rod-rod pairs treating collisions as they are found. This does
not always lead to correct results. The algorithm still needs to be modified
so that it searches all rod-rod pairs for the first occurring collision, treats it,
then searches all rod-rod pairs for the next occurring collision, treats it, etc.,
being careful to maintain the proper v∆t and vcol. Combining the rod-rod
and rod-surface uncrossability constraints into the same algorithm would be a
more correct approach. There may also be exceptional cases not accounted for
by the rod-rod uncrossability constraint (e.g., parallel rods). We introduced
the forces resulting from potential interactions after the rod length constraint
as a first attempt to avoid complexities in the Ito-Taylor expansion as in [9].
These forces should be introduced directly into the Langevin equation.

With the addition of these new force interactions, as expected, new high-
frequency modes are introduced which limit stability and accuracy, neces-
sitating adaptive time stepping strategies. Already we have seen this as a
side-effect of the Rouse bead-spring polymer model. To address that problem
we have considered decoupling the polymer and the fluid solvent time steps;
this allows the relatively inexpensive polymer model to march forward with
small time steps, resolving the high-frequency modes, while the very expensive
fluid calculation marches forward with the greatest stable time step. Inclusion
of long-range Coulombic interactions may increase the cost of polymer dy-
namics sufficiently that decoupling the time step is not a desirable strategy.
Or, perhaps a partitioning of the Coulombic terms, as in the Ewald method,
into short-range parts (resolved at the particle time scale) and long-range
parts (resolved at the fluid time scale) can strike a good performance-accuracy
trade-off.
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