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Overview 

 
This is part of a series of reports verifying the accuracy of the relatively new MERCURY 
[1] Monte Carlo particle transport code by comparing its results to those of the older 
TART [2] Monte Carlo particle transport code. In the future we hope to extend these 
comparisons to include deterministic (Sn) codes [3]. Here we verify the accuracy of the 
free atom thermal scattering model [4] by using it over a very large temperature range.  
 
We would like to be able to use these Monte Carlo codes for astrophysical applications, 
where the temperature of the medium can be extremely high compared to the 
temperatures we normally encounter in our terrestrial applications [5]. The temperature is 
so high that is it often defined in eV rather than Kelvin. For a correspondence between 
the two scale 293.6 Kelvin (room temperature) corresponds to 0.0253 eV ~ 1/40 eV. So 
that 1 eV temperature is about 12,000 Kelvin, and 1 keV temperature is about 12 million 
Kelvin. 
 
Here we use a relatively small system measured in cm, but by using Rρ  scaling [6] our 
results are equally applicable to systems measured in Km or thousands of Km or any size 
that we need for astrophysical applications. The emphasis here is not on modeling any 
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given real system, but rather in verifying the accuracy of the free atom model to represent 
theoretical results over a large temperature range.  
 
Objectives 
 
There are two primary objectives of this report, 
 

1) Verify agreement between MERCURY and TART results, both using continuous 
energy cross sections. In particular we want to verify the free atom scattering 
treatment in MERCURY as used over an extended temperature range; by 
comparison to many other codes for TART this has already been verified over 
many years [4, 7]. 

 
2) Demonstrate that this agreement depends on using continuous energy cross 

sections. To demonstrate this we also present TART using the Multi-Band method 
[8, 9], which accounts for resonance self-shielding, and Multi-Group method, 
without self-shielding [9].   

 
Conclusions 
 
Our conclusions are, 
 

1) MERCURY and TART, both using the same continuous energy cross sections 
and physical models, are in excellent agreement. In particular the shift of the 
thermal Maxwellian produced by MERCURY is in excellent agreement with that 
produced by TART. 

 
2) We still expect large differences for codes using approximate methods, such as 

multi-group. In particular for a deterministic code, e.g., Sn, even one using 616 
groups, but not accounting for self-shielding, can expect large differences from 
the MERCURY and TART continuous energy results shown here – CAVEAT 
EMPTOR!!!  
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Definition of the Problem 
 
This report is related to earlier reports comparing code results for a theoretical cylindrical 
uranium pin centered in a surrounding square of water, modeled as infinitely long along 
the axis of the cylinder and infinitely repeating in the other two dimensions, i.e., an 
infinite lattice of pin-cells, similar to a water moderated, uranium fueled thermal reactor 
[4]. 
 
In the hope that we can obtain solutions from more computer codes, particularly 
deterministic (Sn) codes [3], here we have simplified the geometry even further, to be 
only one dimensional, spherically symmetric. For this study we have two concentric 
spheres, 
 
 The inner sphere  7.62 cm in radius 
The outer sphere 15.24 cm in radius 
  
The inner sphere contains uranium: 75% U235, 25% U238 (atom ratios) at an overall 
density of 18.8 grams/cc. 
 
The outer sphere contains water: 2 atoms of H1 to 1 atom of O16 at an overall density of 
1 grams/cc. 
 
The outer limit of the outer sphere is a non-return, leakage boundary. This geometry is 
the same for all temperatures; this is not realistic, but this is a completely theoretical 
problem, designed only to allow us to compare neutron transport code results. 
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The dimensions and the composition were selected to make the room temperature (293.6 
Kelvin) problem close to critical. Here we compare both integral parameters and 
differential spectra related to criticality. Specifically, 
 
K-eff = Production/[Absorption + Leakage] 
  
In this equation production, absorption and leakage is each a single quantity integrated 
over the entire problem in space, energy and direction. For example, we can think of the 
production as first integrated over space and direction, and then written explicitly 
defining the integral over neutron energy, see Appendix C for details, 
 
Production = ∫ ΦΣ+Σ+Σ dEEEnnEnnEfE )()...](3,3)(2,2)()([ν  
 
K-eff only depends on ratios of these quantities, therefore we normalize our results to one 
neutron produced, so that the other quantities are neutrons absorbed and leakage per 
neutron produced. 
 
We first present the integral results: the single integral terms that appear in the definition 
of K-eff. We next present differential results: the energy dependent spectra that 
contribute to the integral results; here we present the flux, production, absorption and 
leakage spectra. It is important to understand that producing the same simple 
integral parameters, such as K-eff is necessary, but not sufficient to verify that codes 
actually agree in detail. By presenting detailed differential results we more strongly 
verify the agreement between our codes.   
 
Both MERCURY and TART use continuous energy cross sections and the same physical 
models for these calculations. Both use the same TART 2005 nuclear data [10], which is 
based on ENDF/B-VI evaluations. To simplify comparisons all differential results use the 
TART 616 tally bins, which is 50 equally spaced bins per energy decade between 10-11 

MeV and 20 MeV, i.e., equal lethargy intervals. 
 
We are interested in results from other codes, particularly deterministic codes (Sn), and 
presumably these codes will use multi-group cross sections. Therefore in addition to the 
MERCURY and TART results using continuous energy cross sections, we also present 
TART results using the TART 616 group structure, using both multi-group and multi-
band methods. 
 
By here comparing TART continuous, multi-band and multi-group results we can predict 
how well a deterministic code using multi-group cross sections can perform. Indeed 
given that deterministic codes use additional approximations, it is safe to say that we 
should expect the agreement between deterministic codes and our continuous energy 
Monte Carlo codes not to be any better than the results presented here comparing 
TART continuous energy and multi-group results.      
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Interpretation of Figures 
 
In this report we make extensive use of figures to compare results; here is a brief 
introduction to the format of these figures and how to interpret them. In each figure the 
upper 2/3 present the data being compared, and the lower 1/3 presents the ratio of all data 
to the first set of data, e.g., on the first plot the Ratio is the Mercury result divided by the 
TART result. Below we show two examples to illustrate why both data and ratio are 
needed.  
 
In the first example the data agree so closely that it is difficult to tell there is more than 
one set of results shown, i.e., they agree to within the width of the line used to draw them. 
Based strictly on looking at the data they appear to exactly agree.  
 
However, when we look at the ratio it looks like there are major differences between the 
two sets of data. Actually there are no major differences. Note the scale of the ratio is 
from 0.99 to 1.01, in other words from 1% lower to 1% higher, with most of the 
differences being noise fluctuating near the +/- 0.1% level. For Monte Carlo code results 
we expect small random statistical differences such as this. In our calculations each code 
used 108 source neutrons for each run. Spread over 616 groups we expect random 
differences near the 0.1% level, so that what we see here is acceptable, and does not 
indicate any significant difference between the results. Here the TART and 
MERCURY results are in excellent agreement. 
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In the next example we use three TART results using various models. The data again 
agree so closely that it is difficult to tell there is more than one set of results shown, i.e., 
they agree to within the width of the line used to draw them. Based strictly on looking at 
the data they appear to exactly agree.  
 
However, when we look at the ratio we now see real major differences between the three 
sets of data. Again, note the scale of the ratio which is now from about 0.96 to 1.01, in 
other words from 4% lower to 1% higher. Unlike the above first example where we only 
saw noise near the +/- 0.1% level, we now see real differences with the multi-group 
results differing from the continuous energy results over major portions of the energy 
range. This does indicate significant differences between the results. Here the multi-
group results significantly differ from the continuous energy results. It is more 
difficult to see from the figure below that the multi-band results are in excellent 
agreement with the continuous energy results. The difference between multi-band and 
multi-group results are because the multi-band method accounts for self-shielding and the 
multi-group used here does not [9]. 
 
The bottom line in interpreting these figures is that you should consider both the data and 
the ratio to look for agreement – or disagreement, 
 

1) We consider random noise near the +/- 0.1 % level to be acceptable. 
 

2) Larger differences, particularly where the difference lies above or below unity 
over an extend energy range, indicates unacceptable differences. 
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The Effects of Temperature 
 
Temperature has a number of important effects on any neutron transport problems. Here 
we will only attempt to model some of these effects, namely those that we consider 
nuclear. For example, we will not model thermal expansion, i.e., the system is assumed to 
have exactly the same dimensions, density, etc., at all temperatures. All Doppler 
broadened cross section used in this study were produced using the standard SIGMA1 
method [9, 11, 12]. 
 
What we will attempt to model are three important effects: two effects on laboratory 
frame of reference cross sections, and one on the neutron spectrum. The effects are, 
 

1) Doppler broadening of resonances: below is a comparison of 0.0253eV and 1 eV 
uranium cross sections showing the Doppler broadening of the resonances with 
increasing temperature; resonances become smoother and wider. 

 
Uranium Resonance cross sections Doppler broadening 

 
2) The often overlooked effect that temperature has on low energy elastic cross 

sections: below we see the effect that Doppler broadening has on the low energy 
hydrogen elastic cross section, causing the cross section at thermal energy to be 
50% higher than its “cold” value of 20 barns. 

 
Hydrogen Elastic cross section Doppler broadening 
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3) The most important effect is the shift in the thermal spectrum with energy. Even 

from the integral results we will see the dramatic effect that this has on 
parameters, such as the neutron removal time that varies by 3 orders of magnitude 
over the temperature range we consider: at 0.0253 eV temperature (room) the 
neutron removal time is about 23.8 ondsecµ , whereas at 1000 eV temperature it 
is only about 0.30 ondsecµ . What this means is that everything is happening a 
thousands times faster. 

 
Below we show the neutron scalar flux integrated over the entire system at the 
five temperatures used in this study. Basically the fast fission neutrons slow down 
and approach thermal equilibrium at an energy defined by the local temperature. 
Naturally a neutron that reaches thermal equilibrium due to a 1 keV temperature 
is moving much faster than one that thermalizes at room temperature. The 
temperature range here is from roughly 1/40 eV to 1000 eV, a factor of 40,000 
times different in neutron energy, or 200 times different in neutron speed. Since 
the neutrons move 200 times faster, no wonder everything is happening so much 
faster.  
     

 
Flux Spectra vs. Temperature 
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Uranium Total Cross Section (75% U235, 25% U238) 
 
Below we show the uranium total cross sections at the five (5) temperatures used in this 
report [13]. In each figure we show the cross sections at two successive temperatures, to 
illustrate the change in cross section with temperature. Between 0.0253 eV (room) and 1 
eV there is an enormous smoothing of the cross section in the resonance energy range 
(about 1 eV to 10 keV). At progressively higher temperatures the cross section is 
smoother, and by 1 keV temperature the resonance region has disappeared and all we see 
is a broad bump across the resonance energy range. Note that above about 10 keV there is 
virtually no change in the cross section for temperatures between 0.0253 eV and 1 keV, 
so we expect little effect on higher energy neutrons.  
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Water Total Cross Section 
 

Below we show the water total cross sections at the five (5) temperatures used in this 
report [13]. A single figure shows the cross sections at all five temperatures. Basically 
what we see is Doppler broadening of the initially constant elastic scatter cross section. 
Doppler broadening “smoothes” the reaction rate vσ , so that as this becomes “smoother” 
the low energy cross sections increase as 1/v. This is an important effect in that the 
Doppler broadened hydrogen cross section at the energy corresponding to the 
temperature is roughly 50% larger than the “cold” (0 Kelvin) cross section, i.e., 30 barns 
rather than 20 barns [this is true at all temperatures; at 1 eV temperature the cross 
sections is 30 barns at 1 eV incident neutron energy and at 1 keV temperature the cross 
section is 30 barns at 1 keV incident neutron energy]. The net effect as far as scattering is 
concerned is to make it appear that there is 50% more hydrogen present. Note that above 
about 10 keV there is virtually no change in the cross section for temperatures between 
0.0253 eV and 1 keV, so we expect little effect on higher energy neutrons. 
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What do we Expect for Results? 
 
Geometrically this is a very simple problem and we can qualitatively predict what we 
expect the answers to be. Below the upper figure shows the volume integrated flux in the 
uranium and water, and the lower figure shows the surface integrated current from 
uranium to water, water to uranium, and water to vacuum (the outside). The flux in the 
water is what we expect: the high energy fission emission, 1/E slowing down and 
Maxwellian at successively lower energies. The flux in the uranium differs from this 
because of the strong absorption during slowing down. The current spectra show the 
current from uranium to water driving the system and being dominant above about 30 
keV. Below this point slowing down in the water avoids absorption in the uranium, and 
allows the neutrons to survive down to lower energies where we can see the strong 
current from water back into the uranium, closing the cycle by causing fission in the 
uranium. From the current plot we can also see that at low energies not only is there a 
strong current flowing from water to uranium, but also a strong leakage current escaping 
from the system, i.e., this system is very leaky with about 40% of produced neutrons 
leaking.

 
Flux Spectra 

 
Current Spectra 
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Besides the flux and current we can also look at the components that define K-eff, 
namely the spectra for production, absorption and leakage. Below we show these spectra 
in differential and integral form. The differential data are each normalized per neutron 
produced. The integral data are each normalized to unity when integrated over all energy. 
 
Unlike a thermal reactor where production dominates only at high and low energy, here 
the high U235 (75%) content makes production dominate over most of the energy range. 
The notable exceptions being near strongly absorbing resonances in the eV range and at 
very low energy, where absorption in water becomes dominant. 
 
The above flux and current results and the below differential results make it appear that 
the spectra is dominated by a large thermal Maxwellian. However, from the below 
integral results we can see that most of the “action” (production, absorption and leakage) 
is actually happening at higher energies. For example, from the below integral plot we 
can see that the median fission energy (where the production integral crosses 0.5) is about 
400 keV. This can be compared to a well thermalized reactor where most of the “action” 
is at thermal energies and the median fission energy is near (3/2)KT ~ 0.038 eV.  
  

 
Differential Spectra 

 
Integral Spectra 
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Continuous Energy v. Multi-Group 
 
 MERCURY and TART can perform calculations using continuous energy cross sections 
or multi-group cross sections. The standard TART multi-group structure uses 616 energy 
groups, which is defined by 50 groups per energy decade between 10-11 MeV to 20 MeV, 
i.e., equal lethargy intervals. You might think that 616 is a lot of groups and using 
continuous energy cross sections is overkill. This is not at all true. For these calculations 
the U238 cross sections use over 67,000 tabulated energy points. The 616 group TART 
structure does not come anywhere near accurately representing the energy dependence of 
the continuous energy cross sections. To illustrate this fact the figures below compare the 
continuous [13] and 616 group U238 cross sections [14]. The upper plot compares the 1 
eV to 10 keV energy range; these 4 decades of energy corresponds to 200 of the 616 
groups. The lower plot compares the 1 to 2 keV energy range; this energy range 
corresponds to about 16 groups. We can see the enormous difference between the 
continuous energy and multi-group cross sections; not small differences – ENORMOUS 
differences. Based on these differences unless the multi-group method accounts for self-
shielding we should not be surprised to find large differences between continuous energy 
and 616 group results.   
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Integral Results 
 
How accurate do we expect the results to be? In earlier studies comparing results from a 
variety of neutron transport codes each using whatever neutron data it felt to be 
appropriate, we found a spread in even the simple integral parameters, such as K-eff, in 
excess of 1 % [4]. In earlier comparisons of MERCURY and TART we found that by 
having both codes use the same neutron data, namely TART’s data, the differences in K-
eff could be reduced to less than 0.1% [7], indicating that most of the differences between 
codes is due to differences in nuclear data. In this study both codes are again using the 
same TART data and same physics models, so we expect results to be at the same 0.1 % 
or better level. 
 
In the following tables we should distinguish between qualities that are directly 
calculated and those that are derived from other quantities. For example, production, 
absorption, leakage, and removal lifetime are directly calculated (all then normalized per 
neutron produced), whereas K-eff and the system time constant (α ) are derived as 
follows; see the Appendices for details, 
 
K-eff = Production/Removal = Production/[Absorption + Leakage]  
 
For K-eff all of the quantities defining the ratio are positive and no differences are 
involved, so we expect the derived quantity, K-eff, to be as accurate as the individual 
quantities.  
 

α       = [Production Rate] – [Removal Rate] = [
moval

oduction
Re

Pr  - 1]*[Removal Rate] 

 
          = [K-eff – 1]/Tr           Tr = Removal Time = 1/[Removal Rate] 
 
For α  we have the difference [K-eff – 1], so we expect less accuracy, particularly when 
ever K-eff is close to unity.  
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The tables below show what we expect, namely excellent agreement between 
MERCURY and TART, with differences in the directly calculated quantities and K-eff 
only in the fourth digit, i.e., less than 0.1%. However, because in all cases K-eff is close 
to unity, differences in α are larger. In summary, in all cases we see excellent agreement 
between MERCURY and TART integral results. Therefore from the viewpoint of 
integral parameters these results verify the temperature dependent free atom 
scattering model used in MERCURY. 

 
TART Continuous Energy Results 

Temperature 
(eV) 

Absorption Leakage K-eff Removal Time 
( secµ ) 

Alpha 
(1/usec) 

0.0253 eV 0.58272 0.41418 1.00311 23.767 1.3081d-4 
1 eV 0.51703 0.45835 1.02528 6.3769 3.9638d-3 

10 eV 0.53127 0.48648 0.98255 2.3003 -7.5832d-3 
100 eV 0.50891 0.47603 1.01523 0.82747 1.8481d-2 
1000 eV 0.49368 0.46137 1.04707 0.29953 1.5714d-1 

 
MERCURY Continuous Energy Results 

Red indicates difference from TART Continuous Energy results 
Temperature 

(eV) 
Absorption Leakage K-eff Removal Time 

( secµ ) 
Alpha 

(1/usec) 
0.0253 eV 0.58265 0.41451 1.00285 23.752 1.2016d-4 

1 eV 0.51701 0.45826 1.02536 6.3763 3.9776d-3 
10 eV 0.53124 0.48655 0.98253 2.2982 -7.6029d-3 

100 eV 0.50888 0.47610 1.01524 0.82710 1.8424d-2 
1000 eV 0.49364 0.46145 1.04701 0.29937 1.5704d-1 
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Why Agreement in K-eff is not enough 
 
In an earlier study we found good agreement between the K-eff values produced by 
TART and MCNP [4], but based on comparing spectra we can see that this is not good 
enough to guarantee that both codes are using the best physics. Below we show a detailed 
comparison of the neutron production spectra for the 1/2” radius pin cell as calculated by 
TART and MCNP. In the left figure we see excellent agreement over most of the energy 
range, except for at very low energy. The right figure shows a detail of the thermal 
energy range across what we expect to be a Maxwellisan-like thermal spectrum. From 
this figure we can see that TART is modelling the thermal scattering law as it is defined 
in ENDF/B-VI as continuous in secondary energy, whereas MCNP is modelling it as a 
series of discrete secondary energies for hydrogen bound in water, that does not look 
anything like the expected Maxwellian-like spectrum. The only reason that the MCNP 
spectrum does not drop even lower between the discrete energies, is because of free atom 
scattering in oxygen and to a lesser degree uranium.  
 
The MCNP spectra shown below is not due to a code error; the code designers say this is 
what they intend, i.e., they admit that they are not using the continuous ENDF/B-VI 
thermal scattering law data, but rather a discrete approximation to it, and they admit that 
this approximation yields completely unphysical energy dependent spectra results, as 
shown below. Obviously we cannot use these unrealistic MCNP results for verification. 
MCNP results for ALL ENDF/B-VI thermal scattering law data show the same 
unrealistic ”spikes”, and are now available on-line at, 
http://www.llnl.gov/cullen1/therm2.htm 
  

 
 
The bottom line is that today when we require highly accurate results, it is not good 
enough to merely insure that codes produce the same integral parameters; that is 
necessary, but not sufficient. Today we can, and should, go the extra step to insure that 
code differential results also agree. Therefore below we show comparisons of 
MERCURY and TART differential results.    
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Differential Comparisons 
 
Below we show comparisons of MERCURY and TART results at the five (5) 
temperatures included in this study [13]. At each temperature we show four figures, each 
figure comparing one type of spectra: flux, production, absorption, or leakage.  
 
Interpretation of these figures does not require much comment. It is sufficient to point out 
that in ALL cases the scale of ratio (lower 1/3 of each plot) is 0.99 to 1.01, a narrow +/- 
1% band about unity. Based on the data (upper 2/3 of each plot) the results agree to 
within the thickness of the lines, and the ratio (lower 1/3 of each plot) show acceptable 
noise near the 0.1% level. In summary, in all cases we see excellent agreement between 
MERCURY and TART differential results. Therefore from the viewpoint of 
differential spectra these results verify the temperature dependent free atom 
scattering model used in MERCURY. 
 
In terms of verifying the free atom scattering model used by MERCURY, what this 
model predicts is a neutron density (not flux) in a Maxwellian shape, 
 
N(E)dE ~ E   Exp[-E/KT]dE 
 
The flux is merely the neutron density times its speed, so we expect, 
 

dEE)(Φ  = v  N(E)dE ~ E  N(E)dE 
  

dEE)(Φ  = E Exp[-E/KT]dE 
 
In ALL cases this is exactly the energy dependent shape of the flux produced by 
MERCURY and TART. The production, absorption, and leakage can then be predicted, 
for example, the absorption is: Absorption = )(EaΣ  dEE)(Φ  
 
However, a word of caution: ALL of the spectra shown below are integrated over the 
entire system, i.e., both uranium and water spheres. The flux shown is dominated by the 
large volume and flux in the water, whereas above the thermal energy range the 
production and absorption spectra are defined solely upon what is happening in the 
uranium, e.g., there is no production in the water, and only very low energy absorption in 
the water. So that the spectra should be more clearly written to indicate spatial 
dependence, R: Absorption = ),( REaΣ  dERE ),(Φ  
 
Because of this spatial dependence do not expect to see a clear correspondence between 
the system integrated flux and the production, absorption, and leakage spectra shown 
below. 
 
With the above as background, below we present the MERCURY to TART comparison 
results without further comment. 
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MERCURY vs. TART: Thermal (0.0253 eV) Temperature 
 

 
Flux Spectra 

 

 
Production Spectra
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Absorption Spectra 

 

 
Leakage Spectra 
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MERCURY vs. TART: 1 eV Temperature 
 

 
Flux Spectra 

 

 
Production Spectra
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Absorption Spectra 

 

 
Leakage Spectra 
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MERCURY vs. TART: 10 eV Temperature 
 

 
Flux Spectra 

 

 
Production Spectra
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Absorption Spectra 

 

 
Leakage Spectra
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MERCURY vs. TART: 100 eV Temperature 

 
Flux Spectra 

 

 
Production Spectra
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Absorption Spectra 

 

 
Leakage Spectra 



 

      - 27 -       

MERCURY vs. TART: 1000 eV Temperature 
 

 
Flux Spectra 

 

 
Production Spectra
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Absorption Spectra 

 

 
Leakage 
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Comparison of Methods: Integral Results 
 
The above results verify excellent agreement between MERCURY and TART both using 
exactly the same continuous energy neutron cross sections and methods. But it is 
important for the reader to understand that this agreement depends crucially on using 
continuous energy cross sections. In particular do not expect a deterministic code (Sn) 
[3] using multi-group cross sections to produce the same results as shown above for 
MERCURY and TART using continuous energy cross sections.    
 
In order to prove this point below we present TART results using several different cross 
section models: 1) the multi-band method [8,9], that includes the effect of spatial and 
directional self-shielding, 2) the multi-group method [9], that as used here does not 
include the effect of self-shielding; see appendix B for details of self-shielding. In all of 
these cases the calculations used the TART 616 group structure. 
 
We can summarize the integral results by stating that the multi-band results are in just as 
good agreement with the TART continuous energy results as are the MERCURY 
continuous energy results, i.e., the multi-band method is accurately re-producing the 
important self-shielding effects. In contrast the multi-group results show differences more 
than an order of magnitude bigger. Note in particular that for the room temperature case 
(0.0253 eV) the multi-group results predict that this system is slightly sub-critical, 
whereas all of the other results predict it is super-critical; here the difference in K-eff, is 
near 0.3%, about three times what we consider to be an acceptable difference. 
 
But it is important to note that with increasing temperature the agreement between 
continuous energy and multi-group results improve, as the cross sections become 
smoother and self-shielding becomes less important.       
 

TART Multi-Band Results 
Red indicates difference from TART Continuous Energy results 

Temperature 
(eV) 

Absorption Leakage K-eff Removal Time 
( secµ ) 

Alpha 
(1/usec) 

0.0253 eV 0.58267 0.41463 1.00271 23.757 1.1409d-4 
1 eV 0.51700 0.45827 1.02535 6.3750 3.9772d-3 

10 eV 0.53122 0.48650 0.98258 2.2980 -7.5790d-3 
100 eV 0.50886 0.47611 1.01526 0.82708 1.8455d-2 
1000 eV 0.49364 0.46144 1.04704 0.29932 1.5715d-1 

 
TART Multi-Group Results 

Red indicates difference from TART Continuous Energy results 
Temperature 

(eV) 
Absorption Leakage K-eff Removal Time 

( secµ ) 
Alpha 

(1/usec) 
0.0253 eV 0.58477 0.41580 0.99944 23.734 -2.3686d-5 

1 eV 0.51764 0.45862 1.02438 6.3788 3.8222d-3 
10 eV 0.53149 0.48646 0.98237 2.2993 -7.6662d-3 

100 eV 0.50889 0.47581 1.01553 0.82735 1.8773d-2 
1000 eV 0.49365 0.46127 1.04720 0.29945 1.5763d-1 
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Comparison of Methods: Differential Results 
 
As stated above, these days it is not sufficient to only reproduce integral parameters such 
as K-eff, we should also compare differential results. When we do this we can better 
understand the difficulty that the multi-group method has reproducing continuous energy 
results. The plots below show a comparison of the spectra for the three methods. Note the 
problems that the multi-group method has in the resolved resonance region of uranium. In 
our continuous energy MERCURY to TART comparisons we found excellent agreement 
between differential results, with little more than noise fluctuating about the +/- 0.1% 
level. Here we see substantial differences that differ over considerable energy ranges. We 
now see LARGE differences, particularly for the absorption spectra: for the room 
temperature (0.0253 eV) case we see absorption ratios that are up to 20% too high and 
30% too low. We can see from the above integral results that these effects do not cancel 
out, and the overall effect is for the multi-group method to over-predict the absorption, 
leading to the prediction that this system is sub-critical. 
 
As temperature increases and the cross sections become smoother and the agreement 
improves. By 100 eV temperature the agreement through the resonance region is very 
good. 
 
A separate point to note is that at all temperatures we see differences at high energy, 
particularly in the leakage. This indicates that the 50 groups per decade that we are using 
here is not adequate to accurately represent the high energy oxygen cross sections in the 
water. The so called oxygen resonances shown in the below figure are at such high 
energies that temperature has little effect on them, so that this problem is seen in our 
results at all temperatures. 

 
Below are the TART differential results using three different methods. By comparing 
these results to the above TART vs. MERCURY comparisons you can see the difficulty 
that the multi-group method is having. 
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Comparison of Methods : Thermal (0.0253 eV) Temperature 
 

 
Flux Spectra 

 
Production Spectra 
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Absorption Spectra 

 
Leakage Spectra 
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Comparison of Methods : 1 eV Temperature 

 
Flux Spectra 

 
Production Spectra 
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Absorption Spectra 

 
Leakage Spectra 
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Comparison of Methods : 10 eV Temperature 

 
Flux Spectra 

 
Production Spectra 
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Absorption Spectra 

 
Leakage Spectra 
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Comparison of Methods : 100 eV Temperature 

 
Flux Spectra 

 
Production Spectra 
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Absorption Spectra 

 
Leakage Spectra 
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Comparison of Methods : 1000 eV Temperature 

 
Flux Spectra 

 
Production Spectra 
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Absorption Spectra 

 
Leakage Spectra 
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Conclusions 
 
Our conclusions are, 
 

1) MERCURY and TART, both using continuous energy cross sections and physical 
models, are in excellent agreement. In particular the shift of the thermal 
Maxwellian produced by MERCURY is in excellent agreement with that 
produced by TART. 

 
2) We still expect large differences for codes using approximate methods, such as 

multi-group. In particular for a deterministic code, e.g., Sn, even one using 616 
groups, but not accounting for self-shielding, can expect large differences from 
the MERCURY and TART continuous energy results shown here – CAVEAT 
EMPTOR!!!  
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Appendix A: Physics Models still be to implemented in MERCURY 
 
For the comparison between MERCURY and TART both used exactly the same physics. 
In order to do this some physics currently available in TART, but not in MERCURY, had 
to be turned off in TART, this includes, 

1) Unresolved resonance self-shielding 
2) Delayed neutron spectra 

 
This is work that still has to be done on MERCURY. In order to illustrate the importance 
of these features below we present TART results for, 

1) BEST – with all physics turned on 
2) SAME – with the same physics currently available in MERCURY. 

 
The effect on the integral parameters is small, e.g., K-eff changes by roughly 0.1%, even 
though the effect on differential results is larger. The unresolved resonance regions are in 
the energy ranges, 

1) U235: 2.35 keV to 25 keV 
2) U238: 10 keV to 149 keV 

 
The below figures show an abrupt “jump” in production and absorption in the SAME 
results relative to the BEST results at the start of the U235 unresolved resonance region 
at 2.25 keV. This is because the BEST results include unresolved region self-shielding 
which reduces both production and absorption compared to the SAME results. These 
results demonstrate that, 

1) These are important features that must be added to MERCURY 
2) Clearly shows that K-eff is not enough to verify true code-to-code agreement; 

here the BEST and SAME K-eff agree to within roughly 0.1%, and yet there are 
still important differences in the differential results.  
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Appendix B: A Discussion of Self-Shielding 
 
Since the neutron flux at any energy E is merely the total distance traveled per unit time 
by all neutrons of energy E, it is not surprising that increasing the cross section, which 
decreases the average distance that neutrons travel between collisions, leads to a decrease 
in the neutron flux. This phenomenon is referred to as self-shielding, since in terms of 
resonances it is the increase in cross section itself which depresses, or shields the 
resonance, from the flux.  
 
An illustration of self-shielding for a single isolated resonance is shown in the figure 
below. In the absence of resonances the slowing down flux tends to be 1/E in shape. 
When a resonance is present it suppresses the flux (i.e., self-shields it) through the 
resonance. Below the resonance in energy, for a scattering resonance the flux will return 
to its 1/E shape and magnitude, whereas for an absorbing resonance the flux will return to 
its 1/E shape, but with a lower magnitude due to absorption through the resonance. 
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By considering certain limiting cases, it is easy to see the effect that self-shielding has on 
the neutron flux. First consider a source in a totally absorbing, infinite medium. In this 
case the Boltzmann equation reduces to, 
 

)(*)( EEt ΦΣ   = )(ES  
 
Obviously we can immediately solve for the energy dependent flux and we find that it 
varies inversely to the total cross section, 
 

)(EΦ  = 
)(
)(

Et
ES

Σ
 

 
Next consider a monoenergetic source in a totally scattering, infinite medium. In this 
case the Boltzmann equation at energies below source energy reduces to, 
 

)(*)( EEt ΦΣ  = 
α−1

1
∫ ΦΣ

α/

'
')'(*)'(

E

E E
dEEEt  

 
We can immediately solve this equation to find, 
 

)(EΦ  = 
EEt

C
*)(Σ

 ; where C is a constant that depends on the source strength.  

 
So that in this case we also find that the flux varies inversely as the total cross section. 
Since the two extremes of total absorption and total scatter both lead to the same 
simple relationship between flux and total cross section, it is tempting to consider the 
possibility that this relationship always exists between flux and cross section. 
Unfortunately, such is not the case and the effects of self-shielding are much more 
complicated than this. 
 
The simple results shown above are because these two extremes both were for infinite 
media. In any real problem in a finite media we find that the self-shielding can be 
dependent not only on energy, but also position, and even direction. This makes modeling 
self-shielding very difficult.  
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In order to see the position dependent effect below let’s look at the plot of the flux in the 
uranium and water. Here we can see an enormous difference between the flux in the two 
spatial regions of uranium and water, obviously in magnitude, but also look at the energy 
dependence of the flux in the uranium due to the resonances in uranium. The flux 
differences in the two spatial regions clearly demonstrate the spatial effects of self-
shielding. 
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We can also see the effect of direction by below looking at the plot of the current. Note 
that the Current U to H2O and Current H2O to U are both defined at exactly the same 
spatial location; namely the interface between the inner and outer spheres. The only 
difference is that each is integrated over a different range of directions. At exactly the 
same spatial point the current directed from the water into the uranium show no self-
shielding, whereas the current directed from the uranium to the water shows strong self-
shielding, e.g., note the dips in the current near uranium resonances. The current 
differences in the two direction ranges clearly demonstrate the directional effects of 
self-shielding. 
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Why do we have to model self-shielding? For our applications using continuous energy 
cross sections we do not have to model it, but for multi-group applications we do. For 
multi-group applications before we perform our calculations we must first define our 
multi-group cross section constants. The multi-group cross section is defined as, 
 

>Σ< r   = 
∫

∫
Φ

ΦΣ

dEE

dEEEr

)(

)(*)(
 

 
Where )(ErΣ is the known cross section for some reaction r, and )(EΦ is our “guess” as 
to the appropriate flux, or weight, to use. I say “guess” because before running our multi-
group calculations we do not know what the flux is; if we knew what it really is we 
would have our answer and we wouldn’t be running neutron transport calculations. 
 
This is how multi-group cross sections are defined, but the situation is much more 
complicated than indicated by this equation. In general the cross section and flux will be 
a function of energy (as shown by the above equation), but also by space (both can vary 
from one location to another), and in the case of the flux, also by direction. 
 
The most widely used “guess” is the Bondarenko approximation [15], where the flux is 
assumed to be a product of two factors: 1) an energy spectrum, and 2) a total cross 
section dependent term, 
 

)(EΦ  = 
)(
)(

Et
ES

Σ
    

 
Here the energy dependent spectrum is fairly smooth: fission spectrum at high energy, 
1/E slowing down spectrum, and Maxwellian-like thermal spectrum. It is further assumed 
that the total cross section for any material can be defined for each constituent of the 
material by dividing it into the energy dependent total cross section for each constituent 
plus a constant (energy independent) term to represent all of the other constituents of the 
material, 
 

)(EΦ  = 
0)(

)(
Σ+Σ Et

ES     

 
Historically this was a very important assumption, because it allowed application 
independent cross section libraries to be created [14, 16]. For example, we could define 
multi-group cross sections for U238 without worrying about what it might actually be 
mixed with in any application; what it is mixed with presumably could be accounted for 
by properly defining the constant 0Σ to approximate all other constituents.  
 
Primarily what this assumes is that the resonance structure in each isotope is independent 
of the resonance structure in all other isotopes; this actually works quite well. For 
example, for our uranium, 75% U235 and 25% U238, one would define the U235 cross 
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sections assuming some value of 0Σ  to represent the effect of U238, and we would 
define the U238 cross sections assuming some other value of 0Σ  to represent the effect 
of U235.  
 
Today about the “best” that multi-group codes can do is define Bondarenko self-shielded 
cross sections, integrated over space, direction, and energy using, 
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; using various 0Σ from small to large 

If we consider the difference between unshielded [no )(/1 EtΣ  weighting] and shielded 
cross sections [ )(/1 EtΣ  weighting], it is obvious that the )(/1 EtΣ  weighting places less 
weight where the cross section is high, so that generally the shielded cross sections tend 
to be smaller than the unshielded cross sections.  
 
How important is self-shielding? It is easy to prove that the total cross section 
monotonically increases as 0Σ  varies from 0 (totally self-shielded) to infinity (infinitely 
dilute, or unshielded). What we can easily compare is the totally self-shielded (pure 
material, 0Σ  = 0) values to the unshielded values (infinitely dilute, 0Σ  = ∞ ). Below we 
show the U238 616 group cross sections, unshielded and shielded. Here we need merely 
look at the ratio to see that in the resonance region below 10 keV there are ENORMOUS 
differences. We are not talking about differences of a few per-cent; here we see ratios of 
a factor of 100. This means that when the unshielded cross section is 100 barns, the 
totally shielded cross section could be less than 1 barn. So to answer the question: yes, 
self-shielding can be VERY important.  
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You might think that based on the differences shown above it would be impossible to 
accurately define multi-group cross sections. Fortunately we find that “Nature is User 
Friendly”, in the sense that if we focus on what’s important, which is reactions, not flux, 
we can see that what Bondarenko’s self-shielding model predicts is that the total reaction 
rate stays about constant regardless of variations in the cross section, 
 

)()( EEt ΦΣ  = )(ES  
 
This says that any error we introduce in defining multi-group cross sections will be 
compensated by a change in the flux to produce about the same total reaction rate. In 
other words self-shielding may introduce large errors in the flux, but as far as the 
physically observable reaction rates that we are really interested in we will see much 
smaller differences. For example, when we calculate K-eff we are only interested in 
production, absorption and leakage, not simply the flux, so that multi-group estimates of 
simple integral parameters, such as K-eff, may be much better then one might expect 
based on the approximations used in this model.    
 
Can we avoid problems of self-shielding by using many groups? This is not really 
practical. Above we gave an example of U238 cross sections which uses over 67,000 
tabulated energy points to represent the energy dependent cross section, and we showed 
how poor the agreement is between 616 group averages and the continuous energy cross 
sections. It is unlikely that we will run 67,000 group deterministic (Sn) calculations, and 
using many fewer groups does not eliminate the problem of self-shielding. Remember 
that these 67,000 energy points are only for the U238; U235 needs a different set of 
28,000 energy points, and so on for additional isotopes in any given problem. 
 
The problem of self-shielding is due to the enormous changes in cross sections over very 
small energy intervals, e.g., see the above figures showing uranium cross sections. The 
problem cannot be eliminated by further sub-dividing the energy range into more groups, 
until the wide of the groups becomes small compared to the width of the resonances, 
which is not practical. 
 
As we can see the obvious problem with multi-group calculations is that we MUST 
assume some flux, or weighting, spectrum in order to define our multi-group cross 
sections before we start our multi-group calculations. Less obvious is what weighting 
spectrum to use; should it be based on the scalar flux, or scalar current, or something else. 
With the multi-group method we can only define one cross section in each group, so we 
are forced to decide between these various possibilities.   
 
The multi-band method [8,9] recognizes the problem that the multi-group method has 
and instead of further sub-dividing the energy range in the Riemann sense, it further sub-
divides the total cross section range in the Lebesque sense, thereby directly reducing the 
range of the total cross section, which is the source of the self-shielding. Unlike the 
multi-group method which defines averages integrated over space and direction, the 
multi-band method can approximate the effect of  self-shielding as a continuous function 
of space and direction. With the multi-band method in each group we have more than one 
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cross section, and we can define these to simultaneous conserve scalar flux and current. 
That’s why the agreement seen in the comparisons of continuous energy and multi-band 
is so good. For details concerning the multi-band method, see [9].   
 
Finally let’s look in detail at the spatially dependent flux in our uranium/water system. 
For this purpose we further sub-divided the two spheres into smaller spheres, each of the 
same volume. The inner uranium sphere is divided into five (5) equal volumes, and these 
equal volumes are extended out into the water to define five (5) more zones of equal zone 
of water, and a final zone extending to the outer radius of the outer sphere in used. With 
equal volumes the uranium zones are not very thick, in terms of radius; see the below list. 
For example, near the uranium/water interface the first zone inside the uranium (zone #5) 
is only 0.55 cm thick.  
 
Material Zone Outer Radius (cm) 
uranium     1  4.456 
uranium     2  5.614 
uranium     3  6.426 
uranium     4  7.073 
uranium     5  7.620 
water       6  8.097 
water       7  8.524 
water       8  8.912 
water       9  9.269 
water      10  9.600 
water      11 15.240 
 
Below the spatially dependent flux is shown for the inner ten (10) zones. The top five 
curves show the flux in the water, and these are all very similar, i.e., the flux has little 
spatial dependence. However, as soon as we cross the boundary into the uranium we see 
the flux being almost exponentially attenuated into the highly absorbing uranium. Near 
thermal energies the flux in the outer most uranium zone #5 is almost 2 orders of 
magnitude (a factor of 100) lower then the flux in the inner most water zone #6; 
remember that this is a zone only 0.55 cm thick and it already differs by this much from 
the adjacent water zone.. Beyond zone #5, deeper into the uranium there is essentially no 
flux. What this means is that in the thermal range all of the uranium burn-up occurs very 
close to the surface of the uranium.   
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If we look in detail at the flux in the resonance region (the below figure), again we see 
almost exponential attenuation into the highly absorbing uranium. In this case we can 
clearly see the effect of the stronger resonances, e.g., note the depression of the flux by a 
factor of 1 million or more near 6 and 9 eV. However, in this case unlike the thermal 
region where virtually no flux penetrates deep into the uranium, here we see that between 
resonances the flux is only depressed by factors of 10 to 100. I say only 10 to 100, but 
strong spatially dependent effects over narrow energy ranges such as these are difficult to 
model with deterministic codes.  
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Just a reminder, that multi-group cross sections are defined by, 
 

>Σ< r   = 
∫
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To expect accurate results we must model )(EΦ  as accurately as possible, however in 
reality )(EΦ  is also a function of space and direction. In principle to model our 
uranium/water system we can see from the above plot of the spatially dependent flux, 

)(EΦ , we should use different fluxes in many thin layers of uranium. From the above 
figures I hope the reader can appreciate how difficult it would be to accurately model this 
system using multi-group calculations. Within the uniform uranium inner sphere the flux 
is very strongly spatially dependent self-shielded. Near the uranium/water interface there 
is little self-shielding, but deeper into the uranium the flux is quickly heavily self-
shielded. Within the scope of Bondarenko self-shielding [15] it is assumed that within 
any given material, such as our uranium sphere, one value of 0Σ  can be used to define 
the “average” cross sections to use throughout the material. Hopefully the above results 
demonstrate how difficult this would be. In contrast the multi-band method can reproduce 
this spatially and directionally dependent self-shielding of the flux.    
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Appendix C: the Definition of K-eff 
 
For time independent codes there is a very simple textbook definition that can be used to 
define K-eff. It is the ratio of the number of neutrons produced by fission in one 
generation to the number produced in the preceding generation; these codes do not 
consider anything else. For time dependent codes or codes that define K-eff in terms of a 
balance between neutrons produced and removed this is more complicated, because 
fission is not the only process that can produce neutrons; there is also (n,2n), (n,3n), etc., 
and how codes handle these lead to different definitions of K-eff. Below I’ll explain the 
differences. 
 
Starting from the time dependent, linear Boltzmann equation in general geometry, 
 

v
1

t
N
∂
∂  + N∇Ω*  + Nt *Σ  = ∫∫ Ω+Σ+Σ+Σ+Σ>< ''......)3,32,2( dENdnnnnscatterfν  

 
Where ),,,( tErN Ω  is the neutron flux, ),,,(* tErnv Ω , v  is the neutron speed, tΣ  is the 
macroscopic total cross section, >< v  is the average number of neutrons emitted per 
fission, fΣ , scatterΣ , nn 2,Σ , nn 3,Σ , etc., are the macroscopic cross sections for each 
type of event. For simplicity I will use neutron density ),,,( tErn Ω  in the following, 
 
Integrate over all space, energy, and direction 
 

t
n
∂
∂ + [ nvL ** ] + [ nvt **Σ ] = ]*.....)3,32,2[( nvnnnnscatterf +Σ+Σ+Σ+Σ><ν  

 
Collecting terms together we find a simple equation defining the time dependent behavior 
of the system, 
 

 
t
n
∂
∂  = n*α  

 
α  = ].....)3,32,2[( vnnnnscatterf +Σ+Σ+Σ+Σ><ν  - ]*[ vL  - ]*[ vtΣ  
 
     = [Production rate] – [Removal Rate]:      Removal = Leakage +  Absorption 
 
The time constant )(α  is a physical observable and as such has a unique value that we 
can determine. The non-uniqueless of K-eff and related terms is because exactly the same 
terms appear in this definition of α  as positive and negative terms that we can 
completely cancel (scatter), or as simply related terms that we can partially cancel (n,2n). 
 
I will divide the total cross section by events according to how many neutrons result from 
each type of event: none – capture, (n,p), (n,a), etc., one – scatter, (n,np), (n,na), etc.,  
more than one – fission, (n,2n), (n,3n), etc.. All of those events that result in one neutron 
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do not directly effect the neutron balance of the system (they effect it indirectly through 
the leakage), and appear in exactly the same form in this definition as positive and 
negative terms, so that we can cancel them. Upon cancelling scatter, (n,np), (n,na), etc., 
  
α  = ].....)3,32,2[( vnnnnf +Σ+Σ+Σ><ν  - ]*[ vL  - ]*...)3,2,0,[( vnnnnfn +Σ+Σ+Σ+Σ  
 
Up to this point all or least most of the codes use the same definitions, and this is the 
definition that TART uses, i.e., any event that introduces additional neutrons into the 
system is considered production, and any event that produces neutrons also removes 
neutrons, etc., (n,2n) removes one neutron and produces two neutrons, 
 
Production rate = ].....)3,32,2[( vnnnnf +Σ+Σ+Σ><ν  
Removal Rate =  Leakage + Absorption = ]*[ vL  + ]*...)3,2,0,[( vnnnnfn +Σ+Σ+Σ+Σ  
 
Other codes change this to agree with the 1940’s – ’50 textbook definition of K-eff where 
production is only due to fission. This requires them to subtract ..3,32,2 +Σ+Σ nnnn  
from the production and removal resulting in the definitions, 
 
Production rate = ])[( vfΣ><ν  
Removal Rate =   ]*[ vL  + ]*...)4,33,22,0,[( vnnnnnnfn −Σ−Σ−Σ−Σ+Σ  
 
Note, that we still have exactly the same definition of the physically observable time 
constant )(α , and for an exactly critical system K-eff remains unity using either of these 
definitions. Regardless of how they define production and removal, the codes define, 

α       = [Production Rate] – [Removal Rate] = [
moval

oduction
Re

Pr  - 1]*[Removal Rate] 

 
          = [K-eff – 1]/Tr           Tr = Removal Time = 1/[Removal Rate] 
 
K-eff = Production/Removal = Production/[Absorption + Leakage]  
 
Here we can see that even though the time constant )(α  has a unque definition, K-eff and 
the removal time, do not, since all codes do not define production and removal the same 
way. With the TART definition any event that produces more than one neutron ends a 
generation, and adds to the removal, ...3,2, +Σ+Σ+Σ nnnnf  and also adds to the 
production .....3,32,2 +Σ+Σ+Σ>< nnnnfν . Codes that do not consider that 

),3,(),2,( nnnn  etc., end a generation, add nothing to production for these events and 
subtract from the removal, ...4,33,22, +Σ+Σ+Σ nnnnnn . Let me repeat this: these events 
are treated as NEGATIVE removal, which physically makes no sense at all. This is 
just an old outdated convention, a mathematical trick that has somehow survived in a 
surprising number of today’s neutron transport codes.   
 
In order to illustrate how silly this older definition is in practice, below I present a portion 
of a TART output file, which defines K-eff, removal and production using TART more 
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generally definition and the old definition where only fission is assumed to produce 
neutrons. Compare the upper portion of this table, using TART’s definitions, to the lower 
portion. The lower portion treats (n,2n) and (n,3n) as NEGATIVE removal; this reduces 
removal from 1.0 to 0.9955, almost 0.5%. It also reduces the production from 0.96877 to 
0.96430, again almost 0.5%, showing that in this case (n,2n) produces almost 0.5% of the 
neutrons in this system. These differences are not at all insignificant, and yet many codes 
continue to define production based on the 1940’s and ’50 textbook definition that 
neutron production can only occur due to fission. 
 
Again, for systems that are exactly critical K-eff is exactly the same using either 
definition. However, for systems that are not exactly critical we do see differences in K-
eff. For example, in the below table the two different definitions result in 0.9687 versus 
0.9686, a difference of 0.0001 or 0.01%; in this case quite small. 
 
But consider an accelerator driven system where say beryllium is used to multiple the 
accelerator source of fast neutrons. What is the multiplication or production of neutrons 
for this system? According to the old definition where only fission can produce neutrons, 
there is no production or multiplication – there is only NEGATIVE absorption, which is 
complete nonsense.   
 
The bottom line is that if we are interested in the actual population of neutrons 
within any system, there is no question that reactions other than fission, such as 
(n,2n), produce significant number of neutrons that define the actual neutron 
population, and as such TART includes them as neutron production. The 
alternative is to treat (n,2n), etc., as NEGATIVE absorption, which is a cute 
mathematical trick to obtain a neutron balance, but which makes no physical sense.     
----------------------------------------------------------------- 
  Analog Removal and Production vs. Reaction C Number 
 ----------------------------------------------------------------- 
 C Number Reaction   Removal      Production   Events 
 ----------------------------------------------------------------- 
       10 Elastic    0.00000D+00  0.00000D+00  1.61647D+00 
       11 (n,n')     0.00000D+00  0.00000D+00  5.24185D-01 
       12 (n,2n)     2.23189D-03  4.46379D-03  2.23189D-03 
       13 (n,3n)     2.86083D-06  8.58250D-06  2.86083D-06 
       15 Fission    3.70329D-01  9.64303D-01  3.70329D-01 
       46 (n,g)      4.47903D-02  0.00000D+00  4.47903D-02 
          Leakage    5.82647D-01  0.00000D+00 
 ----------------------------------------------------------------- 
          Totals     1.00000D+00  9.68775D-01  2.55801D+00 
          K-eff                   9.68775D-01 
 ----------------------------------------------------------------- 
  Alternate Definition of K-eff using ONLY Fission Production 
 ----------------------------------------------------------------- 
 C Number Reaction   Removal      Production 
 ----------------------------------------------------------------- 
       12 (n,2n)    -2.23189D-03  0.00000D+00 
       13 (n,3n)    -5.72167D-06  0.00000D+00 
       15 Fission    3.70329D-01  9.64303D-01 
       46 (n,g)      4.47903D-02  0.00000D+00 
          Leakage    5.82647D-01  0.00000D+00 
 ----------------------------------------------------------------- 
          Totals     9.95528D-01  9.64303D-01 
          K-eff                   9.68635D-01 




