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High-energy-density physics characteristics

• Definition p > 1 Mbar or e > 1Mbar cm3 g−1

• This is realized in large laboratory machines such as high-power lasers
and pulsed-power machines, stars and nuclear explosions

• When p and e are high, so is the temperature, and the radiation ∝ T 4

becomes a dominant effect

• Large-scale simulations of such experiments have to include radiation
transport and have acceptable engineering accuracy
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Complexity

Realistic complexity leads to >106-zone simulations, and accurate radiation
transport adds an additional factor ≈ 102–104 for unknown intensities per zone.
This means 104–106 cpu-sec per cycle on a 3 GFlop/cpu class machine
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Case 1: The Marshak wave
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• Hot radiation falls on an initially
cold material and heats its surface

• The opacity of cold material is very
large, but that of the hot material is
much less

• The result is a “bleaching” wave
that progresses into the material

• The blow-off of heated material
drives a shock wave, etc., etc.

• Diffusion may be OK, but in some
regimes transport corrections and
time-of-flight are important
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1-D diffusion and related methods

• The gray radiation moment equations in slab geometry look like this—

∂ E

∂t
+

∂ F

∂z
= k(4π B − cE) and

1

3c

∂ F

∂t
+

D

3

∂ f cE

∂z
= −k F

• The P1 model is to omit the red 3 and the blue D and the green f

• Diffusion is to omit the ∂ F/∂t term entirely and the green f ; flux-limited diffusion
includes an appropriate D

• The P1/3 model of Olson, Auer and Hall omits the D and the f but includes the red 3

• The VEF method omits the red 3 and the D but includes a suitable f , perhaps self-
consistently calculated
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There is a range of flux-limiter functions

(Olson, Auer and Hall, JQSRT, 64, 619 [2000])

• The traditional ones are Wilson’s
“max” and “sum” Ds

• The Levermore-Pomraning D
comes from Chapman-Enskog
theory

• The Larsen functions are other
ad hoc interpolations between the
large and small R limits

• Larsen n = 2 is a good
fit to Levermore-Pomraning and
cheaper

• The original “max” and “sum” ver-
sions now seem to be outliers
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Benchmark results for the Su-Olson linear Marshak problem

(Olson, Auer and Hall, JQSRT, 64, 619 [2000])

• This case has a constant opacity
k, but e ∝ T 4, which makes the
problem linear; an analytic solu-
tion exists

• VEF is accurate here, but P-1 and
diffusion have problems at small τ

• Diffusion (not FLD) has a racing-
ahead problem
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Su-Olson results with flux limiters

(Olson, Auer and Hall, JQSRT, 64, 619 [2000])

• At early time the radiation is free-
streaming and any D does OK

• At middle time (ct ≈ mean free
path) the flux limiter makes a dif-
ference and first “sum” is best and
then later “max” and Larsen n = 2
are best
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Olson-Auer-Hall Marshak wave with variable opacity

(Olson, Auer and Hall, JQSRT, 64, 619 [2000])

• The Su-Olson Marshak wave with con-
stant opacity lack the “bleaching” effect of
the real wave

• That is partially rectified by assuming an
opacity ∝ 1/T 3

• This figure shows how the wave propaga-
tion looks with a selection of flux limiters
and Eddington factors

• The right answer (Ray VEF) is the sec-
ond slowest wave, next to “sum”, which is
much too slow

• The consensus of most of the other meth-
ods is too fast, with the one closest to the
truth being Larsen’s n = 2 FL
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Marshak wave summary

• No diffusion-like method is perfect

• The “max” and “sum” flux limiters are the poorest

• The ad hoc Eddington-factor methods are poor

• The Levermore-Pomraning ($ 6= 1) method is poor, but the variation with $ = 1 is
fairly good, on a par with Larsen’s n = 2 method

• P1 and P1/3 are good, but not better than Larsen n = 2 for the variable-opacity case

• The self-consistent VEF method is accurate, as it should be

• Implicit Monte Carlo does a good job on this problem, especially in the difference
formulation; see Granlibakken 2004, paper by Szöke, Brooks, McKinley and Daffin
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Case 2: Star-in-space problem

• This problem is extremely simple: an opaque sphere radiates isotropically into a
surrounding vacuum

• This arises, as the name implies, in extended stellar atmospheres

• It also occurs in ICF hohlraum problems, where the source and receiver are reversed

• “Toto, we’re not in diffusion any more”

• This problem elicits a variety of responses from the algorithms, almost all bad
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What goes wrong?

• Here are the spherical geometry, steady-state, moment equations in vacuum:

d F

dr
+

2

r
F = 0 and

d P

dr
+

3P − E

r
= 0

• The first equation says F ∝ 1/r 2, which is correct

• The problem is the second equation, and in any variation of diffusion P is replaced
by E/3, which implies E = constant, a very bad answer

• Not only that, but all Pn methods give the same result, E = constant, if the sphere
radiates isotropically

• Characteristic ray methods will be exact in this case, if the rays properly sample the
radiating disk
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What about the VEF method(s)?

• With an Eddington factor χ , the 1st moment equation becomes

d P

dr
+

3P − E

r
=

dχ E

dr
+

(3χ − 1)E

r
=

1

q

dqχ E

dr
= 0

• and q is Auer’s sphericality function defined by

ln q =

∫ (

3 −
1

χ

)

dr

r

• So the solution is E ∝ 1/(qχ), and the rabbit in the hat is χ , the Eddington factor
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The exact Eddington factor

• The half-angle subtended by the sphere of radius R at a radius r > R is cos−1 µ,
where µ =

√

1 − R2/r2

• The moments then become cE = 2π I0(1 − µ), F = π I0(1 − µ2) and cP = 2π I0(1 −

µ3)/3

• The Eddington factor is χ = (1 + µ + µ2)/3

• With this χ , q turns out to be q ∝ 1/(1 − µ3), so E ∝ (1 − µ), the right answer
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Streaming solutions with Eddington factor formulae

• There are several prescriptions for χ as a function of f = F/cE : Minerbo’s, Levermore’s, Kershaw’s,
and the exact relation based on χ = (1 + µ + µ2)/3 and f = (1 + µ)/2

• From qχ E = constant and r 2F = constant we infer

q R2

r2
=

2χ(.5) f

χ( f )

taking q = 1 and f = 1/2 at r = R

• A ≡ q R2/r2 obeys the differential equation

d ln A

d ln r
= 1 −

1

χ( f )

• This means that A decreases with r and therefore f/χ( f ) must decrease with f , if f is to be physically
reasonable
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None of the common Eddington factor prescriptions obey
reasonableness
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• The surface of the sphere, r = R,
corresponds to f = 1/2, where
A = 1

• A must decrease as r increases,
which leads to solutions with f de-
creasing from 1/2 for Minerbo’s,
Levermore’s and Kershaw’s func-
tions; the regime f → 1 for large r
can’t be reached

• The one that works is “exact”,
namely χ = (1 − 2 f + 4 f 2)/3

• This function is unphysical in an-
other sense, since it is not mono-
tonic with f , and has a minimum
value = 1/4 at f = 1/4
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The Sn methods are much better
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• In Sn you solve these equations

µi

r2

d(r2Ii)

dr
+

2

rwi

[

αi+1/2Ii+1/2 − αi−1/2Ii−1/2
]

= 0

• The Ii are zone-centered in µ and the Ii+1/2 are edge-
centered; the αs are helper quantities derived from
the quadrature set

• With diamond-difference in angle Ii = (Ii−1/2 +

Ii+1/2)/2

• The figure compares the S2, S4, S6 and S8 results with
the exact answer (red)

• S2 is off by a factor 2, a lot better than P1, and S8 is off
by only 5%; the asymptotic behavior is ∝ 1/r 2 for all
n
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Star-in-space summary

• Some methods give E ∼ constant instead of declining roughly as 1/r 2: any kind of
diffusion, Pn of any order

• The characteristic-ray method (tangent rays) is exact

• Ad hoc Eddington-factor closures behave unphysically for this problem

• The Sn results are good: S2 is up to a factor 2 off, but for larger n the error declines
to a few percent
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Case 3: The radiating shock problem
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• In a strong enough shock wave the radiation from
shocked material preheats the material ahead of the
shock

• This makes the peak temperature higher, but then
there is a sharp cooling spike in which T comes down
to the final value

• The question is, what is the ratio fs of the precursor
temperature Tu to the final downstream temperature?

• This depends on a radiation-strength parameter, Q ≡

2σBu5
s/π R4ρ0

• There is disagreement on whether fs gradually ap-
proaches 1 as Q → ∞, or whether fs = 1 above a
critical Q, or some other behavior
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The flow model

• The idealized model is ideal-gas (γ = 4/3, p = ρRT ), constant gray opacity, steady
flow in slab geometry

• We non-dimensionalize using ρ0, us and R as units; radiation quantities are in units
of ρ0u3

s/2

• The normalized specific volume is η ≡ ρ0/ρ

• The steady flow equations give the non-dimensional temperature and flux

T = η(1 − η) and F = (1 − η)

(

η

η f
− 1

)

• Here η f is the final downstream volume, η f = (γ − 1)/(γ + 1)
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The non-equilibrium diffusion approach
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• In the Eddington approximation the radiation moment
equations are (with B = Q[η(1 − η)]4)

d F

dτ
= 4π(B − J ) and

4π

3

d J

dτ
= −F

• Substituting for F as a function of η and dividing the
equations gives a single ODE for J vs. η

• I match integrations from far upsteam and down-
stream at the shock, where η satisfies the jump con-
dition 1F = 0 and J is continuous

• The results for various Qs are shown in the plot

• There is no shock that is exactly critical ( fs = 1), but
fs turns the corner sharply near Q = 800

• This is consistent with Zel’dovich’s statements
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What about exact transport?

• The VEF radiation moment equations are

d F

dτ
= 4π(B − J ) and

4π

3

d fE J

dτ
= −F

• The Eddington factor fE has to be found self-consistently by solving the transfer
equation

• For this I used two methods: (1) Feautrier solutions using 4-point Gaussian quadra-
ture in each of 5 divisions of each hemisphere; (2) applying the exponential-integral
kernels to the cubic spline interpolant of Planck function vs. τ

• After each RT solution the Eddington factor was re-computed and a relaxation was
applied before the next solution of the steady flow equations

• The combined equations give K ≡ fE J vs. η, and another integration yields τ

• The convergence was found to be good for low and moderate Q, and less good for
large Q
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The VEF results imply that there is a critical shock, and fs → 1

from above as Q → ∞
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The accurate VEF solutions show a modest 14% shift in Q for a given fs , but also pass through
fs = 1 at Q ≈ 880. The VEF fs results for Q > 2000 have a ±0.001 uncertainty due to imperfect
convergence.
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Comparison with Sincell, et al.
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• Sincell, Gehmeyr and Mihalas (Shock Waves,
9, 391 [1999]) studied radiating shocks with the
adaptive Titan code, which also uses the VEF
method

• The data for ambient density, molecular weight
and gas law (γ = 5/3) were specified, and the
velocity of the piston driving the shock took var-
ious values

• The figure shows the pre-shock temperature
Tu = fs T f vs. the final temperature Tf

• The Sincell, et al., results agree fairly well with
the present VEF method

• Both Sincell, et al., and the present study show
fs crossing fs = 1 and then tending asymptoti-
cally toward that relation
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Radiating-shock summary

• The difference between diffusion and transport is significant: the Eddington factor
has strong spatial variation

• There is a qualitative difference between Eddington and VEF results for the shock
precursor temperature —

– For Eddington the precursor temperature rises monotonically as a fraction of the
final temperature as shock strength increases,

– But for VEF the shock becomes critical (fraction 100%) at a certain strength

• Some of the computational aspects of this problem are quite difficult, suggesting that
it could be a good benchmark
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Case 4: The crooked pipe
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• Isotropic radiation is incident from the left, be-
ginning at t = 0, at the opening in a pipe that
has a fat center section containing an obstruct-
ing plug

• The pipe material is assumed to be very
opaque, with a diffusely reflection surface
(albedo = 1)

• The object is to find the time dependence of the
radiation energy density at various places along
the pipe

• It is known that diffusion and transport give
quite different results for this problem

• The precise definition of the problem is in
Graziani, F. and LeBlanc, J., UCRL-MI-143393
(2000)
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Crooked-pipe results with S4, S8 and S16 (Paul Nowak)
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The curves show temperatures at the 5 fiducial locations. The greatest sensitivity is at the first
right-angle bend, where S4 has a hard time getting the radiation arrival right
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Crooked-pipe summary

• I am not going to say any more about this problem

• Nick Gentile has published a description of his Implicit Monte Carlo Diffusion method,
and a hybrid IMD/IMC method, including studies of the crooked-pipe problem, in
Gentile, N. A., J. Comp. Phys., 172, 543–571 (2001)

• In Nick’s following talk he will describe all this

• Paul Nowak has studied this problem with 2-D Sn, and Nick will describe some of
these results also

• The short version is that IMD/IMC and Sn both perform well
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Case 5: Angle, angles, angles

“The three most important things about radiation transport in 2-D and
3-D are angles, angles and angles”

• Most of our Sn transport calculations are not converged in angles, and doubling the
angle set halves the error, which is none too small

• Double angles means double running time, which is already (for S8, 50 groups, 106

zones) &10 cpu-hours per cycle in 3-D

• This provides a major incentive for keeping the geometry simple: 2-D, or 3-D with
only large, well-defined structures
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How many angles are needed?

• In 1-D slab problems a few angles suffice

• In 2-D problems with smooth source distri-
butions or short mean free paths something
like S4 or S8 might be OK

• But it can get much worse

• The picture shows a realization of the angu-
lar distribution of the intensity at a point in an
infinite 3-D medium with a broad-band ran-
dom Gaussian emissivity with |k| ≤ 1.73 and
κρ = 0.035 (I assumed a 1/k power spec-
trum)

• You can see that S8 has no hope of describ-
ing this radiation field
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You can estimate the necessary angle resolution from |k| and κρ
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• We consider a single Fourier mode for
the emissivity in an infinite medium and
construct the spherical harmonic ex-
pansion of the intensity

• The plot is the fraction of the total power
in harmonics above `. The parameter
on the curves is κρ/k

• A rule of thumb is that to see at least
90% of the power you need `s up to at
least k/(κρ) = kλp, where λp is the ra-
diation mean free path

• The `max equivalent to Sn order N is
around `max = N (it varies because the
quadrature set may not be exact for the
maximal number of polynomials)
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Angles summary

• The Sn order is a major cost factor in transport calculations; the time increases with
N (N + 2)

• It is easy to construct a problem that would need N ' 100 for an accurate solution;
the solar chromosphere is of this sort

• So far, the best method of treating such problems is, “Don’t do that”

• The Reed-Hill-Mordant benchmark is one case where S8 is noticeably not good
enough compared with S24
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Backup Slides
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Consistency
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A measure of both fE convergence and ODE and transfer accuracy is whether the radiation
moments from the ODE agree with those from the transfer solution. Here (Q = 316) K is very
good, and F is good except in the downstream region where it is very small and the ODE is very
stiff
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Eddington factor check
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For a given relation of τ to η, there are two quite different ways of solving the radiative transfer:
Feautrier finite difference method, and spline En-function quadrature. The left plot shows the
non-trivial behavior of fE in close-up, and the right plot compares the two methods
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Some aspects of the Sincell, et al., calculations are puzzling
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• The figure shows the profiles (dots)
through a 16 km s−1 shock of the
temperature (upper) and the nega-
tive flux (lower)

• The curves are the relations given
earlier, based on the conservation
laws

• Why the calculated points do not
follow the conservation relations is
mysterious

• The range 1/2 ≤ η ≤ 3/4 lies within
the shock proper, where pseudovis-
cosity might alter the conservation
laws
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Comparison with Drake
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• In a recent preprint Paul Drake re-
views the question of whether or
not fs attains unity at any finite Q

• The fE 6= 1/3 and fE = 1/3
cases differ, but numerical results
are provided for fE = 1/3, as
shown in the figure

• Why Drake’s results and the
present results differ so much is
not understood at present
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Angle sets in Sn

• There is nothing comparable to
Gaussian quadrature for integra-
tions over the unit sphere; that
leaves some scope for invention of
angle quadrature sets

• Carlson and Lathrop invented the
sets most frequently used; the
Level-Symmetric set for order N =

8 is shown in the picture

• In general, the rays form a triangle
picture in each octant, and there
are N/2 rows in the triangle

• That makes N (N +2)/8 angles per
octant or N (N+2) in the full sphere
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The Reed-Hill-Mordant Sn benchmark

This is an X-Y geometry problem with a glowing translucent square rod that has a cold opaque
rod down the middle of it. The left figure shows S8 calculations by Mordant (1981) with a 20 × 20
mesh, the right with 10 × 10
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The Dykema, et al., calculations of the Reed-Hill-Mordant problem
show the effect of more zones and S24

Both calculations are S24; the left has a distorted 20 × 20 mesh, the right has 60 × 60. The
difference in angular resolution for S8 vs. S24 is 26◦ vs. 9◦
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