
UCRL-CONF-224144

Architectural Visualization of
C/C++ Source Code for Program
Comprehension

T. Panas, T. G. W. Epperly, D. Quinlan, A.
Saebjornsen, R. Vuduc

September 1, 2006

29th International Conference on Software Engineering
Minneapolis, MN, United States
May 20, 2007 through May 26, 2007

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Architectural Visualization of C/C++ Source Code for Program Comprehension

Thomas Panas Tom Epperly Dan Quinlan Andreas Sæbjørnsen Richard Vuduc

Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory

{panas2|tepperly2|dquinlan|richie}@llnl.gov andsebjo@student.matnat.uio.no

Abstract

Structural and behavioral visualization of large-scale
legacy systems to aid program comprehension is still a ma-
jor challenge. The challenge is even greater when applica-
tions are implemented in flexible and expressive languages
such as C and C++. In this paper, we consider visualiza-
tion of static and dynamic aspects of large-scale scientific
C/C++ applications. For our investigation, we reuse and
integrate specialized analysis and visualization tools. Fur-
thermore, we present a novel layout algorithm that permits
a compressive architectural view of a large-scale software
system. Our layout is unique in that it allows traditional
program visualizations, i.e., graph structures, to be seen in
relation to the application’s file structure.

1 Introduction

Reverse engineering aids software systems comprehension
by supporting developers, designers, maintainers, or man-
agers in understanding the purpose, the structure, and the
dynamics of such systems. For large-scale systems, pro-
gram visualization is indispensable for program understand-
ing. However, visualizing program structure and behavior
requires the ability to read and meaningfully analyze pro-
gram source code.

In this paper, we describe our efforts to visualize large-
scale scientific C/C++ applications on an architectural level.
By “architectural level,” we mean an abstraction of a pro-
gram model, in contrast to a detailed program represen-
tation such as an abstract syntax tree (AST). The goal of
our current work is to create comprehensive program visu-
alizations, following our findings on visualizing Java source
code [11]. We have therefore developed a layout algorithm
featuring i) layout predictability, meaning that different lay-
out runs produce similar visualizations, thereby allowing

the quick recognition of familiar visual structures, and ii)
focus+context, a technique to illustrate visual detail with-
out losing the visual context.

To retrieve, analyze, and visualize C/C++ source code, we
have re-used, combined, and enhanced the following re-
verse engineering tools (see Section 6): ROSE [18], a
C/C++ source retriever; ROSEVA, a program analyzer;
Vizz3D [11, 14], a program visualization engine; and Viz-
zAnalyzer [13, 23], a framework for reverse engineering
tool integration. We use the VizzAnalyzer to combine
the strengths of the separately developed ROSE, ROSEVA,
and Vizz3D. For language interoperability between C/C++
(ROSE and ROSEVA) and Java (Vizz3D and VizzAna-
lyzer), we use Babel [1].

In Sections 2–3, we discuss the modelling assumptions and
basic philosophy of our architectural visualization. Sec-
tion 4 discusses our layout algorithm, describing our merge
of a force directed layout algorithm with hierarchical infor-
mation, and our representation of file information together
with a programs graph representation. The application of
our algorithm to current C/C++ projects and our findings
are discussed in Section 5. In Section 6 we elaborate on
the tools being re-used and merged. Finally, Section 7 con-
cludes this paper.

2 The Program Model

Different types of entities and relations may be used to char-
acterize a software system. For our architectural visualiza-
tion we therefore use a general graph structure to capture
the models. In this section, we discuss the model properties
needed to view the architecture of a software system.

The graph representing the software system consists of i)
nodes modelling entities, ii) edges modelling binary rela-
tions, iii) predefined “label” and “type” properties for the
graph, nodes, and edges, and iv) arbitrary properties of the
whole graph, its nodes and edges [11].

Depending on the software comprehension goal, different
models of the software are appropriate. Since these goals
may be quite diverse, the data needed for each model are
also diverse. Our program model allows us to compactly
represent a wide variety of aspects of a program,e.g., call
relationships between functions or files, inheritance rela-
tionships, or contains relationships such as functions be-
longing to a file or class.

2.1 Nodes and Edges

Our model contains the following nodes:

Free Function Definitionnode is a function definition in C
or a non-member function in C++.

Member Function Definitionnode is a C++ class member
function definition.

Class Definitionnode is a C++ class definition, including
its variable and member function declarations (i.e., forward
declarations) and function definitions (i.e., inline functions).

Header Filenode captures the C/C++ concept of a header
file that contains common type and function declarations
needed by multiple source files. In particular, a header
file may contain multiple class declarations and definitions,
forward declarations, function declarations and definitions,
and variable declarations.

Source Filenode captures the C/C++ concept of a source
file that typically implements member function declara-
tions, but may also contain free function definitions.

Packagenode represents the directory path of a header or
source file. Header and source files are typically grouped in
a way that is reflected by their package structure.

Our model contains the following edges:

File Call edge encodes the calls between source files. This
information is a result of aggregating calls between func-
tions.

Header File Contains Classconnects a header file and the
class definitions it contains.

Header File Contains Definitionconnects a header file with
its source files.

Source File Contains Functionconnects a source file with
its free and member functions.

Class Call edge indicates the calls between class defini-
tions. This information is a result of aggregating calls be-
tween member functions.

Class Hierarchyedge represents the inheritance relation-
ship between classes.

Class Contains Functionconnects classes with their mem-
ber functions.

Function Callrepresents the calls between functions.

Package Containsencodes the package and file hierarchy
in a software system. A package node contains header and
source files, and other packages (i.e., subdirectories).

2.2 Generic Properties

Usually, a program model as described above is not di-
rectly useful for program comprehension. In general, fur-
ther analyses are required in order to convey weaknesses
and strengths directly. For our architectural visualization,
we compute additional properties from the programs’ AST
and attach them to the nodes of our model. Our analyses
collect a variety of such generic properties, including:

Global Variables. We traverse the AST to check for i) pub-
lic declared variables and ii) global variables outside the
scope of classes. Global variables are a bad programming
style and should not appear in object-oriented code.

Lines of Code (LOC). We measure the number of lines of
code of each free and member function.

Cyclomatic Complexity (CC). We compute the complexity
of each function. CC indicates how much effort is required
to maintain a function. We implemented CC according to Li
and Henry [10], where functions are weighted according to
McCabe’s Cyclomatic Complexity Metric. Our implemen-
tation counts the possible execution branches in a function
for the following branching statements: if, for, while, do-
while, and (switch-)case.

Unsafe Function Calls. Due to some aspects of C++ (e.g.,
unchecked array access, raw pointers), programming errors
can lead to low-level buffer overflows, page faults, and seg-
mentation faults. In this analysis, we detect calls to “unsafe”
functions, such as sprintf, scanf, strcpy.

Arithmetic Complexity. For each function, this analysis
counts the number of arithmetic operations on float, int,
float pointer, and int pointer types. Thus, functions and
classes with large arithmetic operation counts can be de-
tected. This property is important in scientific code, since
such functions should be the most robust and reliable pieces
of the software.

Run-Time. This property is attached to functions to reveal
information about its actual behavior during execution. Our
purpose is to detect functions with high execution times to
be more thoroughly inspected.

2

2.3 Relationship Properties

Relationship properties are analysis results attached to
nodes and edges, just like generic properties. However,
generic properties express information about a single node
(or edge), whereas relationship properties contain informa-
tion about how nodes relate or interact with each other. Re-
lationship properties we have implemented include:

Class Membership. This analysis annotates member func-
tions with a property about the class it belongs to and the
source file it is implemented in. It discovers fragmented
member functions,i.e., member functions declared in the
same class but defined in different files. The result may in-
dicate bad coding styles or discover refactoring efforts that
were applied to split large source files.

Strongly Connected Components (SCC). We detect cyclic
dependencies between functions, classes or files. In general,
nodes in a cyclic dependency may be merged to reduce call
dependencies, and hence to reduce the structural complexity
of the system.

Clustering. We detect nodes with similar generic properties.
For instance, the user may wish to see all nodes with similar
arithmetic and cyclomatic complexity. Our implementation
is based on the k-means [5] algorithm.

Note that our program model does not distinguish between
generic and relationship properties. Properties are merely a
result of program analyses. The mapping between analysis
results (properties) and the visualization (properties) is part
of the VizzAnalyzer [13] framework (see Section 6). The
mapping between program analysis information and infor-
mation visualization is described elsewhere [11].

3 The Visualization

In a program visualization, the final image should be easy
to comprehend. Program comprehension, however, is an
individual interactive process of building a mental model
of the program to be understood. It is therefore difficult or
even impossible to define this process or the visualization
necessary to support rapid comprehension.

Many reverse engineering approaches aim to support of
improved program comprehension [20, 21, 3], including
bottom-up, top-down, and integrated program comprehen-
sion approaches. To support all of these approaches and
hence the individual construction of a mental model, the vi-
sualization tool must aid the user with adequate navigation
and interaction capabilities. Therefore, we require our visu-
alization tool to possess these features:

Zoom, Rotate and Pan. These features are traditional tech-
niques. Zooming can take two forms.Geometric zooming
simply provides a blow up of the graph content, whilese-
mantic zoomingmeans that the information content changes
and more details are shown when approaching a particular
area of the graph [6].

Select and Filter. These features allow the user to interac-
tively select and hide (single or groups of) nodes and edges
from the current view, or filter nodes and edges by type.
Users can thereby reduce the amount of information repre-
sented at once (cognitive load) and also focus visually on
specific problems.

Single View. Presenting a single visual representation is
likely to be better than presenting two visualizations of the
same program [16, 17]. A single representation uses less
screen space, avoids problems of switching from one repre-
sentation to the other and of finding the right place in each
one. We therefore aim for a single view visualization.

Changeable Metaphor. Metaphors are families of visual
objects fitting together. Metaphors, when depicting real
worlds and establishing social interaction [4], especially
in virtual reality [22], become very important. Therefore,
the choice of metaphor is essential to improving the usabil-
ity of a system. Our tool should allow the user to change
metaphors flexibly and easily.

Flexible Representation of Analysis Results. A visualiza-
tion tool must be able to convey i) generic analysis results,
and ii) relationship analysis results. Analyses may result
in tremendous amounts of information that must be repre-
sented. Our tool should be capable to compress that infor-
mation and, if necessary, show all results together with the
structural program representation.

The most essential part of a program visualization tool,
however, is the layout algorithm applied. We seek a lay-
out algorithm with the following qualities:

Focus+Contextis a technique allowing a user to focus on a
visual detail without losing the visual context. Zooming on
a focus, for instance, causes the loss of contextual informa-
tion and can become a considerable usability obstacle [6].
To simulate focus+context effects, a distortion may be im-
plemented into a layout algorithm itself. User interaction
with the view or the layout algorithm parameters may trig-
ger a distortion at a certain view position at run-time.

Predictabilitymeans that two different runs of a layout al-
gorithm, involving the same graphs, should not lead to rad-
ically different visual representations. This property is also
referred to as “preserving the mental map” of the user [12].
Spring embedders are usually not predictable layout algo-
rithms. While hierarchical algorithms improve the situation,
they do not scale very well,cf. Figure 1.

3

(a) (b)

Figure 1. Program Visualization (a) SpringEmbedder Layout (b) Hierarchical Layout.

4 SpringCity Visualization

For the visualization of our C/C++ scientific applications,
we have chosen the Vizz3D framework, a highly config-
urable, open-source information visualization engine that
was originally developed for the VizzAnalyzer framework
(see Section 6).

Vizz3D supports by default i) zoom, rotate and pan - all
based on OpenGL, ii) select and filter, iii) a single view,
iv) changeable metaphors and v) user defined layout algo-
rithms.

To reduce a user’s cognitive load, Vizz3D has a variety of
operations, such as geometric zoom, and aggregation and
filtering of nodes based on the selected nodes. In addition,
users may at run-time filter all nodes and edges of certain
types. For instance, just by interactively selecting only cer-
tain edges of the program model to be visualized, we can
represent a function-call graph, a class-call graph, a file-
call graph, a class-inheritance graph, a file-contains graph,
a class-contains graph,etc., individually or all at once.

With a single-view visualization, we must preserve the
users’ mental model when interacting with a source code vi-
sualization. Therefore, we have applied two essential tech-
niques: a proper metaphor and layout.

4.1 The Metaphor

Many graphic designs lack an intuitive interpretation,
requiring that a user be trained to understand them.
Metaphors found in nature or in the real world avoid this
problem by providing a graphic design that the user already

understands. When illustrating a reverse engineered archi-
tecture, it is important for the understanding of a program
that the final picture is adjusted for the individual [8, 19].
Therefore, we have chosen the city metaphor [9, 15] to in-
crease individual program understandability.

We map program model entities to visual entities as fol-
lows: Buildings represent functions. The type of building
(texture) depends on the LOC of each function. To im-
prove visual contrast, we distinguish four different textures
as shown in Figure 2 a). Free functions have a slightly
lighter texture tone than member functions.Pillars repre-
sent class definitions as shown in Figure 2 b).Water Tow-
ers (spheres), being held by pillars, represent header files.
Cities (plates) indicate source files.Landscapescarrying
cities and water towers represent packages; see Figure 5.

In Vizz3D, metaphors either by using binding functions to
change how program model information maps to visual in-
formation [11], or directly within the layout algorithm.

4.2 The Layout

The Vizz3D framework permits easy extension of layout al-
gorithms. We have used this facility to develop a new layout
algorithm that we refer to asSpringCity.

Our layout algorithm combines a spring embedder algo-
rithm with a hierarchical visualization. Initially, because
force-directed layout algorithms can in general be rather
slow, we calculate the forces for coarse-grained nodes first,
i.e., for header files, source files, and packages. Figure 3
a) shows the layout of 46 files (including the packages).
The edges represent Package Contains relationships. En-
tities belonging to the same package, representing compo-

4

(a) (b)

Figure 2. Program Visualization (a) C Program (b) C++ Program.

nents by design, are laid out close together. The size of the
source files reflects the number of functions defined within
them. Invisible in the image are the call edges between files
that are also used for the force directed layout. Figure 3 b)
shows the same graph, except that functions (buildings) are
made visible. Buildings are laid out compactly next to each
other,i.e., they are not part of the force directed layout.

We modified the spring embedding layout algorithm by
Huang and Eades [7]. Our alteration is based on the C++
types of nodes and edges described in Section 2. The layout
itself is performed within 2D space.

The second step is to apply the landscapes (package struc-
ture) for the cities (files),cf. Figure 3 c) and Figure 3 d). The
height of the landscape (y-axis) is represented by the depth
of the package path. Therefore, cities or files in a deeper
directory structure are represented on a higher hierarchical
level. As a result of the spring embedder, packages contain-
ing sub-packages are laid out closely. As sub-packages are
on a higher hierarchical level, sub-packages produce “visual
mountains”. This approach can be compared with 3D tree-
maps [2] where usually directory structures are represented
to the user in a hierarchical way.

As an optional third step, the user may layout the entire vi-
sualization at a finer granularity. In particular, after the first
two algorithm have been performed, we allow the applica-
tion of a force based layout algorithm on all pre-calculated
function definitions. This approach spreads the layout space
out,cf. Figure 5. However, this visualization results in over-
lapping nodes, since the forces are chosen to be small in or-
der to keep a compact view of the entire source. Figure 4
a), for instance, represents the center city of Figure 5. Al-
though one might think that all functions are represented

from this city, Figure 4 b) shows that they are not. Indeed,
Figure 4 b) shows our application of focus+context imple-
mented within the layout algorithm. The layout is recalcu-
lated for the nodes that are close to the camera and hence
focus+context is user interactive.

Note that Figure 3 represents the same program as Figure 1.
One can argue which image is easier to understand. How-
ever, we favor Figure 3 because it uses a familiar metaphor,
and hence remembering certain structures within different
layout runs of the same program is simpler. The hierarchi-
cal visualization of packages, in our opinion, is a major aid
to rediscover certain elements of the visualized program.

4.3 Representation of Analysis Results

Our visualization also supports the flexible representation
of analysis results, for both generic and relationship results.
Since we support only one view, we prefer to display all
analysis results within that view. Information overflow is an
immediate concern. To overcome this problem, we display
generic program analyses with 2Dsemiotics[16] within our
3D scene, a common convention in game development.

To visualize the generic properties of our program model,
we illustrate 2D icons on top of each building and above
each city (to indicate buildings with a certain property ex-
ist in this city). Our icons are,cf. Figure 2: Wheel Icon
indicates that global variables are being accessed from a
function (building). Globe Iconindicates that global vari-
ables are being accessed within a source or header file.Lock
Icon shows that unsafe function calls are being used within
a function (or source file).Sad Smiley Iconindicates cyclo-

5

(a) (b)

(c) (d)

Figure 3. SpringCity Layout Algorithm: (a) layout algorithm between files in progress (b) displaying
in addition all functions and member functions (c) displaying the package structure of the files (d)
displaying the file call graph.

matic complexity exceeds some threshold. This icon is rep-
resented above cities (source files) and in addition as a tex-
ture on houses (functions). The threshold can be adjusted at
run-time with the layout dialog.Math Iconindicates arith-
metic complexity of a function above a threshold.

Some generic properties are better represented as visual
properties such as height, width, depth, texture, color,
among others. Many variations are possible and Vizz3D
allows for a rapid re-mapping of visual properties through
the specification of mappings defined in XML.

We map the remaining generic properties as follows:Height
of buildings represents the LOC of a function.Width and
Depth of buildings indicates the amount of time spent in
each function. The wider a building is, the more frequent a

function is called at run-time.

So far, we have not used the visual property color. Color
is a very strong visual property, which we reserve for indi-
cating relationship properties. Hence, only one relationship
property can be shown at a time. We discuss analysis and
visualization of relationship properties in Section 5.

5 Experimental Results

We visualized several scientific C/C++ codes developed
at the Lawrence Livermore National Laboratory. In the
following, we discuss the visualization and interpretation
of relationship analysis results for these codes using our

6

(a) (b)

Figure 4. Illustrating Focus+Context (a) Simple Layout (b) Layout with Focus+Context.

SpringCity layout algorithm and metaphor.

5.1 Class Membership

This analysis discovers fragmented member functions,cf.
Section 2.3. Our aim is to investigate how developers use
header and source files when developing code. Indicators
of poor class membership are:

Spread Member Functions. Member functions are spread
throughout various source files. A good coding style would
define all member functions in the same source file. C++
does not enforce this rule. It may even make sense to break
this rule,e.g., when refactoring is necessary. Nevertheless,
visualizing spread member functions allows a reverse en-
gineer to understand design decisions and detect bad cod-
ing styles. Spread Member Function detection helps also
to improve the componentization of software systems. Fig-
ure 5 shows an example of this analysis. TheClass Mem-
bershiprelationship property assigns the same color to each
member function of a class. In the lower right part of Fig-
ure 5, the package “/wpp3D/” contains four source files and
one header file (sphere). The header file contains one pil-
lar (class) that contains a couple of member functions. All
member functions of that class are colored red (red roof).
We see one member function is defined in a different source
file. Most likely, this function has been refactored out.

Multiple Class Declarations. In C++, multiple classes may
be declared within one header file. Visually, this is indicated
by multiple pillars below a water tower. In future work, we
will study the advantages or disadvantages of this coding
style for the componentization of source code.

5.2 Strongly Connected Components

Cyclic dependencies between files are shown in Figure 6.
The dependencies are colored in green (blue is default). In-
terestingly, all but one source files are in the same package,
suggesting the outlier may be in the wrong package. This
suspicion is even stronger when the file call edges of the
outlying source file are observed. The image reveals, how-
ever, no cyclic dependencies between functions (buildings).

5.3 Clustering

We also clustered functions according to different proper-
ties, such as arithmetic complexity, cyclomatic complexity,
and LOC. Functions with similar properties,i.e., in the same
cluster, were colored the same1 Clustering suggests ways
to re-engineer a system that could lead to a better compo-
nentized structure.

6 Tool Setup

We built our visualization system by combining the tools
shown in Figure 7. We use ROSE [18] as the C++ front-
end. ROSEVA extends the ROSE API for use within the
VizzAnalyzer framework [13, 23]. ROSEVA has two main
interfaces, one for the parsing of C/C++ code (source re-
trieval and AST construction) and one for high level anal-
yses. Since ROSE and ROSEVA are developed in C/C++

1We chose only four clusters, and so did not run out of colors.

7

Figure 5. Class Membership Visualization.

Figure 7. Architectural Setup

and VizzAnalyzer in Java, we use Babel [1] to connect these
worlds. Finally, we use Vizz3D [11] to visualize the results.

6.1 ROSE

ROSE is an open infrastructure for building compiler-based
source-to-source analysis and transformation tools. For
C and C++, ROSE fully supports all language features,
preserves all source information for use in analysis, and
permits arbitrarily complex source-level translation via its
rewrite system. Although research in the ROSE project em-
phasizes performance optimization, ROSE contains many
of the components common to any compiler infrastructure,

and thus supports the development of general source-based
analysis and transformation tools.

6.2 ROSEVA

ROSEVA has been designed as a library using the ROSE
API. ROSEVA has two interfaces that VizzAnalyzer ac-
cesses via Babel:retrieval andanalysis. The retrieval takes
the files to be parsed by ROSE as input and constructs in-
ternally a AST representation of the C/C++ source files. On
user interaction, selected graphs are returned to the VizzAn-
alyzer2. These results can be visualized directly or further
inspected with additional analyses.

Therefore, ROSEVA provides a second interface allowing
VizzAnalyzer to access a variety of analyses on any graph
produced by the frontend. Analyses results, such as CC or
LOC, are fed back directly as properties to the VizzAna-
lyzer. These properties are used by the VizzAnalyzer to
flexibly visualize any kind of program information.

2One such graph is the program model described in Section 2.

8

Figure 6. Strongly Connected Components Visualization.

6.3 Babel

Babel is a tool for mixing C, C++, Fortran77, Fortran90,
Python, and Java in a single application. Babel is the foun-
dation for a multi-language scientific component frame-
work. Babel addresses the language interoperability prob-
lem using Interface Definition Language (IDL) techniques.
In particular, Babel uses a Scientific Interface Definition
Language (SIDL) that addresses the unique needs of paral-
lel scientific computing. SIDL supports complex numbers
and dynamic multi-dimensional arrays as well as parallel
communication directives that are required for parallel dis-
tributed components.

6.4 VizzAnalyzer

The VizzAnalyzer framework is our composition system for
reverse engineering, supporting the rapid composition of in-
dividual software reverse engineering tools by reusing arbi-
trary reverse engineering components. VizzAnalyzer dis-
tinguished two domains: Program retrieval and analysis are
part of thesoftware analysis domainand program visual-
ization is part of theinformation visualization domain[13].

Each domain operates on its own program model. For in-
stance, a model for software analysis may contain informa-
tion about a program’s clusters, metrics, cycles,etc., while
a model for information visualization contains information
about the visualization of a program, such as the position or
color of entities. VizzAnalyzer allows the merging of tools
from both domains.

6.5 Vizz3D

Vizz3D is a 3D information visualization system. It
presents system structure and quality information to a user
in a comprehensible way and leverages the understanding
of that system. Vizz3D is highly flexible and allows users
to define and re-assign layout algorithms and metaphors at
run-time. Hence, visualizations can be online-configured.
This enables also an interactive and iterative software anal-
ysis, where appropriate views are created on demand.

7 Conclusion

In this paper, we present our efforts to visualize large-
scale scientific C/C++ applications. We have developed the

9

SpringCity layout algorithm for the Vizz3D visualization
framework supporting the interactive visualization of differ-
ent levels of details within one view, layout predictability,
and compressive visualization of analysis results. For archi-
tectural representation, we have chosen the city metaphor,
allowing us to visualize program information together with
its file structure information.

We believe that our visualization approach allows software
developers, designers, maintainers and managers to get a
rapid and comprehensive overview of a C/C++ software
system. Certain weaknesses of a software may be discov-
ered right away, such as unsafe function calls or complex
implementations, other weaknesses must be explored inter-
actively,e.g., good componentization and file affiliation.

We are extending ROSE to support a whole-program rep-
resentation, to better support visualization of truly large-
scale C/C++ applications. ROSE itself can compile sev-
eral million line applications on a file-by-file basis. How-
ever, Vizz3D requires a complete AST representation of an
entire software system to create its program model. We
are enhancing ROSE to support a memory efficient whole-
program AST representation. This is our current limitation
to visualize software systems with more than approximately
1.000.000 AST nodes or 50 source files (not counting the
header files) or 10.000 LOC.

References

[1] Babel. Available at:http://www.llnl.gov/casc/
components/babel.html , July 2006.

[2] T. Bladh, D. Carr, and J. Scholl. Extending tree-maps to
three dimensions: a comparative study. In M. Masoodian,
S. Jones, and B. Rogers, editors,6th Asia-Pacific Confer-
ence on Computer-Human Interaction (APCHI 2004), New
Zealand, June 2004.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann Publishers,
2003.

[4] C. R. dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud,
and J. Paris. Metaphor-aware 3d navigation. InIEEE Sym-
posium on Information Visualization, pages 155–65. Los
Alamitos, CA, USA, IEEE Comput. Soc., 2000.

[5] B. S. Everitt, S. Landau, and M. Leese.Cluster Analysis.
Arnold, 2001.

[6] I. Herman, G. Melançon, and M. S. Marshall. Graph vi-
sualization and navigation in information visualization: A
survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, /2000.

[7] M. L. Huang and P. Eades. A fully animated interactive sys-
tem for clustering and navigating huge graphs. In6th Int.
Symposium on Graph Drawing, pages 374–383. Springer
LNCS 1547, 1998.

[8] J.F.Hopkins and P.A.Fishwick. The Rube Framework for
Personalized 3D Software Visualization. InSoftware Vi-
sualization. International Seminar. Revised Papers (Lec-
ture Notes in Computer Science Vol.2269). Springer Verlag,
pages 368-380. Berlin, Germany, 2002.

[9] C. Knight and M. C. Munro. Virtual but visible software. In
IV00, pages 198–205, 2000.

[10] W. Li and S. Henry. Maintenance Metrics for the Object
Oriented Paradigm. InIEEE Proceedings of the 1st Interna-
tional Software Metrics Symposium, May 1993.

[11] W. Löwe and T. Panas. Rapid Construction of Software
Comprehension Tools.International Journal of Software
Engineering and Knowledge Engineering, December 2005.

[12] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Tree visuali-
sation and navigation clues for information visualisation.J.
of Visual Languages and Computing, 6:183–210, 1995.

[13] T. Panas. A Framework for Reverse Engineering. PhD
thesis, Department of Computer Science, Växjö University,
Sweden, December 2005.

[14] T. Panas. Vizz3D. Available at:http://vizz3d.
sourceforge.net , July 2006.

[15] T. Panas, R. Berrigan, and J. C. Grundy. A 3d metaphor for
software production visualization. InIV03, London, UK,
June 2003. IEEE.

[16] G. Parker, G. Franck, and C. Ware. Visualization of large
nested graphs in 3d: Navigation and interaction.Journal of
Visual Languages and Computing, 9(3):299–317, 1998.

[17] M. Petre, A. Blackwell, and T. Green. Cognitive questions
in software visualization.Software Visualization: Program-
ming as a Multimedia Experience, pages 453–480, January
1998.

[18] D. Quinlan, S. Ur, and R. Vuduc. An extensible open-source
compiler infrastructure for testing. InProc. IBM Haifa Ver-
ification Conference, volume LNCS 3875, pages 116–133,
Haifa, Israel, November 2005.

[19] S.North. Procession: Using Intelligent 3D Information Visu-
alization to Support Client Understanding during Construc-
tion Projects. InProceedings of Spie - the International So-
ciety for Optical Engineering, vol. 3960, p. 356-64. USA,
2000.

[20] M.-A. D. Storey, F. D. Fracchia, and H. A. Mueller. Cogni-
tive design elements to support the construction of a mental
model during software visualization. InWPC ’97: Proceed-
ings of the 5th International Workshop on Program Compre-
hension (WPC ’97), page 17, Washington, DC, USA, 1997.
IEEE Computer Society.

[21] S. Tilley. A Reverse Engineering Environment Framework.
Technical report, cmu/sei-98-tr-005, Software Engineering
Institute–Carnegie Mellon University, Pittsburg, PA 15213,
April 1998.

[22] K. Vaananen and J. Schmidt. User interfaces for hyperme-
dia: how to find good metaphors? InCHI ’94 conference
companion on Human factors in computing systems, pages
263–264. ACM Press, 1994.

[23] VizzAnalyzer. Available at:http://www.arisa.se/ ,
2006.

10

