
UCRL-TR-224230

Combining Equations of State in
Kull

M. Ulitsky, G. Zimmerman, P. Renard

September 7, 2006



Legal Notices

Copyright 2003 Regents of the University of California
This work was produced at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under
contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of
the University of California (University) for the operation of UC LLNL. The rights of the Federal Government are
reserved under Contract 48 subject to the restrictions agreed upon by the DOE and University as allowed under DOE
Acquisition Letter 97-1.

DISCLAIMER

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor the University of California nor any of their employees, makes any warranty, express or
implied, or assumes any liability or responsibility for theaccuracy, completeness, or usefulness of any information,ap-
paratus, product, or process disclosed, or represents thatits use would not infringe privately-owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Govern-
ment or the University of California. The views and opinionsof authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

1



UCRL-TR-?

Combining Equations of State in Kull

Mark Ulitsky, George Zimmerman, Paul Renard
Lawrence Livermore National Laboratory



 



Contents

1 Introduction 3

2 Quantities of Interest 5

3 Application 7

4 Analytic Zeff 8

5 Thermodynamic Consistency 10

6 Test Case 12

2



1 Introduction

For ICF applications, the temperatures are hot enough that materials can transition to an atomic state
or plasma. If we are simulating an ICF capsule, then either thru ALE, physical diffusion, transmutation by
nuclear reactions, a mix model, or numerical diffusion (if we are running an Eulerian code), we will generate
zones that contain multiple materials. It may be desired to treat certain mixtures of materials or mixed zones
as atomic mixtures rather than as chunk mixtures. For example, suppose we have a deuterated material that
is initially separated from a tritiated material. As these quantities come into contact at the atomic level, high
energy neutrons will be generated from theD + T reaction. However, if we had a chunk of deuterium and
a chunk of tritium in the same computational zone, then theD + T reaction would not take place.

In dealing with atomic mixtures, two topics that immediately come to mind are mixed equations of state
and mixed opacities. This report will only focus on the equation of state (EOS) aspect and its implementation
in the Kull code. Imagine we have a zone that contains an atomic mixture of plastic and steel. If we know
the density, temperature, and isotopics of this mixture, then a natural question is how will we compute the
pressure and specific internal energy of the mixture as well as the derivatives of these quantities with respect
to density and temperature. Let’s consider the case where wehave tabular thermodynamic data for plastic
and steel (as a function of density and temperature), and ourgoal is to determine how to use these tables to
compute the thermodynamic quantities of interest.

The first step is to decide a priori which isotopes should be associated with which table (we will let table
1 refer to the plastic table and table2 refer to the steel table). This step is necessary so that we can compute
mass fractions for each table. Let’s assume that the plasticconsists of isotopes of hydrogen and carbon,
while the steel consists of iron, manganese, and zinc. We canthen use a simple Z-range (here, Z refers to the
atomic number of the element in question) to decide which isotopes go where. For example, table1 could
have a Z-range of(0, 10.5) so that it captures all of the hydrogen and carbon isotopes and table2 could have
a range of(10.5, 50.5) to capture all of its higher Z elements. Since we have access to the mixture density,
number fractions and number density, we can readily convertthe number fractions to mass fractions (yi),
where they are defined asy1 ≡ Mplastic/(Mplastic + Msteel) andy2 ≡ Msteel/(Mplastic + Msteel).

The second step is to bring the atomic mixture into equilibrium through a Newton-Raphson iteration
scheme and solve for the sub-densities,ρi, defined asρ1 ≡ Mplastic/Vplastic andρ2 ≡ Msteel/Vsteel. In
many instances it will be more useful to work with specific volume, vi, which is simply the reciprocal
of the density, and we will use whichever qunantity will makea particular derivation more transparent. An
important constraint in the Newton-Raphson procedure is that the mixture density remains unchanged by the
iteration procedure. Therefore, for an N material example,we would have the specific volumes satisfying:

v =
1

ρ
=

N
∑

i=1

yivi . (1)

By equilibration, we mean that we iterate on the sub-densities until

f = f1(ρ1, T ) = f2(ρ2, T ) = . . . = fN (ρN , T ) , (2)

wheref is the quantity we want to equilibrate. Here the subscript under thef refers to the particular
table that is used to perform the thermodynamic lookup (for notational simplicity, we will usually omit this
subscript in future equations). Also, for mathematical well-posedness,f(ρi, T ) should be monotonic inρi

to obtain unique solutions.
In Kull, there are four different equilibrate options. We can letf be the total pressure, chemical potential,

analytic electron density, or tabular electron density. The electron density,ne, is directly related to a quantity
known as the effective charge orZeff by the simple relationne = Zeff ∗ρ/A, whereA is the average atomic
weight. We can computeZeff using an analytic formula based on Thomas-Fermi theory or wecan query
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the EOS table to return a value forZeff . Hence, the two equilibrium options for electron density really refer
to how one computesZeff .

4



2 Quantities of Interest

Once we have iterated the sub-densities to convergence in the Newton-Raphson solver (subject to the
mixture density constraint), we can compute mixture properties using the following formulae:

P =
N
∑

i=1

yi
∂vi

∂v
Pi(ρi, T ) (3)

e =
N
∑

i=1

yiei(ρi, T ) (4)

∂P

∂T
=

N
∑

i=1

yi
∂vi

∂v

∂Pi(ρi, T )

∂T
+

N
∑

i=1

yi
∂vi

∂v

∂vi

∂T

∂Pi(ρi, T )

∂vi
(5)

∂e

∂T
=

N
∑

i=1

yi
∂ei(ρi, T )

∂T
+

N
∑

i=1

yi
∂vi

∂T

∂ei(ρi, T )

∂vi
(6)

∂P

∂v
=

N
∑

i=1

yi

(

∂vi

∂v

)2 ∂Pi(ρi, T )

∂vi
(7)

∂e

∂v
=

N
∑

i=1

yi
∂vi

∂v

∂ei(ρi, T )

∂vi
, (8)

whereP is the mixture pressure ande is the mixture specific internal energy (energy/mass). Eqs.3 and
4 constitute the physics, while eqs. 5–8 follow purely from the functional dependence ofP ande on the
independent variables. Also, since the thermodynamic tables useρi as an independent variable, rather than
vi, the following formulas can be substituted above:

∂Xi

∂vi
=

∂Xi

∂(1/ρi)
= −v2

i

∂Xi

∂ρi
(9)

∂X

∂v
=

∂X

∂(1/ρ)
= −v2

∂X

∂ρ
. (10)

Let us consider for a moment how we would derive equations for∂P/∂T and∂P/∂v. The derivations
for ∂e/∂T and∂e/∂v will follow by analogy. SincePi is a function ofρi (or vi) andT , we have

∆Pi =
∂Pi

∂T
∆T +

∂Pi

∂vi
∆vi (11)

Using the definition of pressure given by eq. 3, we see that if we multiply eq. 11 byyi∂vi/∂v and sum over
all tables, the result is

∆P = ∆T
N
∑

i=1

yi
∂vi

∂v

∂Pi

∂T
+

N
∑

i=1

yi
∂vi

∂v

∂Pi

∂vi
∆vi . (12)

Dividing this last equation by∆T and taking the limit as the different∆’s → 0 gives eq. 5. Note that we
can’t simply drop the second term on the right hand side of 5. That is, even though∂P/∂T is taken at
constantv, the constituent specific volumes can still have changes with respect to temperature. On the other
hand,∂P/∂v is taken at constant temperature. Thus, when we divide eq. 12by ∆v, we can set∆T = 0.
Taking the limit as the remaining∆’s → 0 gives the desired expression for∂P/∂v.

The final result we need is to develop expressions for∂vi/∂v and ∂vi/∂T . We begin by assuming
fj = fj(vj , T ). What follows is

∆fj =
∂fj

∂T
∆T +

∂fj

∂vj
∆vj . (13)
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Since
∑N

j=1 yjvj = v, we also have that

∆v =
N
∑

j=1

yj∆vj . (14)

Solving eq. 13 for∆vj and inserting this into eq. 14 gives:

∆v =
N
∑

j=1

yj∆fj
∂fj

∂vj

− ∆T
N
∑

j=1

yj
∂fj

∂T
∂fj

∂vj

. (15)

As we are iterating until all thef ’s are equal, we can pull the∆fj out of the summation, call it∆f , and then
re-express this using eq. 13 where we letj → i. The result of these manipulations is:

∆v =

(

∂fi

∂T
∆T +

∂fi

∂vi
∆vi

) N
∑

j=1

yj
∂fj

∂vj

− ∆T
N
∑

j=1

yj
∂fj

∂T
∂fj

∂vj

. (16)

Now divide eq. 16 by∆v (assuming temperature is constant) and solve for∂vi/∂v. Then divide eq. 16 by
∆T and solve for∂vi/∂T . The desired quantities are:

∂vi

∂v

)

T
≡

∂vi

∂v
=

(

∂fi

∂vi

)

−1

∑N
j=1 yj

(

∂fj

∂vj

)

−1
(17)

∂vi

∂T

)

v
≡

∂vi

∂T
=

∂vi

∂v

N
∑

j=1

yj
∂fj

∂T

(

∂fj

∂vj

)

−1

−
∂fi

∂T

(

∂fi

∂vi

)

−1

. (18)

As a sanity check, we observe from the previous two equationsthat

N
∑

i=1

yi
∂vi

∂v

)

T
=

∂v

∂v

)

T
= 1 , (19)

as well as
N
∑

i=1

yi
∂vi

∂T

)

v
=

∂v

∂T

)

v
= 0 . (20)

The reason we can takeyi inside the differential is that the isotopics are fixed during the Newton-Raphson
procedure. Hence, the masses of the different isotopes (andtherefore theyi’s) are constant.
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3 Application

The above discussion has shown at a high level how to bring an atomic mixture with a known mixture
density, temperature, and isotopics into thermodynamic equilibrium and how to compute mixture thermo-
dynamic quantities of interest. For example, using eqs. 5–8we can construct derived quantities like sound
speed, bulk modulus, etc. . We will not delve into the minutiae of how the Newton-Raphson procedure con-
ducts its iterations, however, the choice of quantities to iterate on warrants some discussion. The EOS tables
are constructed using density and temperature as independent variables and so the straightforward approach
is to do forward lookups off using the current values for the sub-densities (ρi’s) and the known temperature.
Then we develop a way of adjusting the changes in the sub-densities to arrive at better guesses for the next
iteration. An alternative procedure is to iterate on the single quantityf by performing reverse or inverse
lookups. By reverse lookups, we mean that we interrogate thetable forρi(f, T ) instead of the forward
lookup procedure which givesf(ρi, T ). The advantage with the reverse lookups is that we are only iterating
on a single quantity,f , which is adjusted until the mixture density constraint is satisfied. The disadvantage
is that iteration is necessary to provide the reverse lookupfrom the table. Also, forward and reverse lookups
are not necessarily compatible or consistent. Therefore, we have decided in the current implementation to
iterate on more quantities by using forward lookups, even though when more than two tables are involved,
it may be more difficult to reach a converged equilibrium state.

It is often desired to compute the temperature from the mixture internal energy and density. For sim-
plicity, let’s assume that we have modified the internal energy, but the density has remained fixed. The
procedure we use for the atomic mixture is to adjust the temperature and do forward lookups of energy until
we satisfy the constraint that:

e(ρ, T ) =
N
∑

i=1

yiei(ρi, T ) . (21)

In the Lagrange hydro, we have the more complicated circumstance where both the material density and
internal energy are being updated in the3rd order Runge-Kutta time integration scheme. The sub-densities
that are used in the above constraint, however, will sum to the old mixture density and not the new density.
Also, we can’t simply re-equilibrate the mixture with the modified density to find the new sub-densities,
since the needed temperature is unknown. Fortunately, there are a few ways out of this chicken and egg
dilemma. The most computationally expensive way (and probably the most accurate as well) is to do a
double iteration on the sub-densities and temperature, such that after we are equilibrated, we also satisfy the
density and energy constraints. A simpler procedure would be to only iterate on temperature, but to use a
modified sub-density for the table lookups that is consistent with the current mixture density. Thus, we will
use the following energy constraint:

e(ρ, T ) =
N
∑

i=1

yiei(1/v
∗

i , T ) . (22)

There are two obvious choices for thev∗i , with the first one given by the simple scaling

v∗i = vi

(

vnew

v

)

= vi +
vi

v
(vnew − v) . (23)

The second approach is to make a Taylor-series in specific volume. The result is

v∗i = vi +
∂vi

∂v
(vnew − v) . (24)
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Note that from eq. 17 and eqs. 9–10, we have the result that

∂vi

∂v
=

(

∂fi

∂vi

)

−1

∑N
j=1 yj

(

∂fj

∂vj

)

−1
=

v2

i

(

∂fi

∂ρi

)

−1

∑N
j=1 yjv

2
j

(

∂fj

∂ρj

)

−1
. (25)

Also, since∂fi/∂ρi ≥ 0, we know that0 ≤ ∂vi/∂v ≤ 1. This means that all thev∗i ’s will increase or
decrease, depending on the sign ofvnew−v. The advantage of the first approach is that the sub-densities will
never go negative. The disadvantage to this approach is thatit is essentially approximating the derivative
∂vi/∂v by vi/v, which is only zeroeth order accuarate. The Taylor series approximation is first order
accurate, but has the potential of driving the sub-densities negative (particularly in the case ofvnew >> v).

4 Analytic Zeff

It was noted earlier that there are2 ways of computingZeff when we want to use the electron density
equilibrate option. One way is to simply do a forward table lookup ofZeff based onρi andT . The table
also provides values for∂Zeff/∂ρ and∂Zeff/∂T . The alternative is to use an analytic data fit forZeff

developed by Dick More based on Thomas-Fermi theory. The inputs for the analytic formula areT (KeV ),
ρi (g/cm3), < z >i, and< ẑ >i. Here,< z >i, and< ẑ >i are given by

< z >i =
∑

j

χjZj

< ẑ >i = exp

[

2

3

< z ln z >i

< z >i

]

< z ln z >i =
∑

j

χjZj lnZj ,

where it is understood in the above formulas thatχj are number fractions and thej in the summation refers
to all isotopes that are associated with theith table.

We start the formula forZeff by defining a scaled temperatureT and a dimensionless temperatureT̂ as:

T = αT

T̂ =
T

1 + T
,

whereα = 1000/< ẑ >2. We then defineaY , a function of scaled temperature andbY andcY , two functions
of dimensionless temperature by the following:

aY = a1T
a2 + a3T

a4

bY = − exp
[

b0 + b1T̂ + b2T̂
7
]

cY = c1T̂ + c2 ,

where

a1 = .003323467

a2 = .97183224

a3 = 9.26148e − 05

a4 = 3.1016524
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b0 = −1.762999

b1 = 1.4317567

b2 = 0.31546338

c1 = −.36666667

c2 = .98333333 .

We then define two functionsp1 andp2 by:

p1 = aY
cY ZR

bY cY ρbY cY (26)

p2 = ZR
cY ρbY cY (27)

ZR =
< z >

A< ẑ >2/3
.

Finally, the relation forZeff takes the form:

Zeff = < z >Ẑeff

Ẑeff =
x

1 + x +
√

1 + 2x

x = 2γ2

1(p1 + p2)
2γ2/cY (28)

γ1 = 2.6752506

γ2 = 0.33120023 .

Now that we have a closed expression forZeff , we need to take analytic derivatives ofZeff with respect
to density and temperature. To this end, we express the density derivative using the chain rule as:

∂Zeff

∂ρ
=

∂Zeff

∂Ẑeff

∂Ẑeff

∂x

∂x

∂ρ
. (29)

Using simple calculus, we obtain:

∂Ẑeff

∂x
= x

d

dx
(1 + x +

√
1 + 2x)

−1
+ (1 + x +

√
1 + 2x)−1

=
Ẑeff

x

[

1 − Ẑeff

(

1 +
1

√
1 + 2x

)]

,

∂x

∂ρ
=

4γ2
1
γ2

cY
(p1 + p2)

2γ2/cY −1

(

∂p1

∂ρ
+

∂p2

∂ρ

)

=
2γ2x(bY p1 + p2)

(p1 + p2)ρ
,

∂Zeff

∂Ẑeff

= < z > .

Therefore we obtain the relatively straightforward resultthat

∂Zeff

∂ρ
=

2γ2Zeff (bY p1 + p2)

(p1 + p2)ρ

[

1 − Ẑeff

(

1 +
1

√
1 + 2x

)]

. (30)

Proceeding in a similar fashion, we can derive the followingresult for the derivative ofZeff with respect
to temperature.

∂Zeff

∂T
=

∂Zeff

∂Ẑeff

∂Ẑeff

∂x

∂x

∂T
. (31)
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If we take the natural log of eq. 28 (the definition forx) and then differentiate both sides with respect to
temperature, we obtain:

∂x

∂T
=

2γ2x

cY

[

∂p1/∂T + ∂p2/∂T

p1 + p2

−
ln(p1 + p2)

cY

∂cY

∂T

]

. (32)

Equation 31 now assumes the form of:

∂Zeff

∂T
=

2γ2Zeff

cY

[

1 − Ẑeff

(

1 +
1

√
1 + 2x

)] [

∂p1/∂T + ∂p2/∂T

p1 + p2

−
ln(p1 + p2)

cY

∂cY

∂T

]

. (33)

To find∂p1/∂T and∂p2/∂T , we use the same trick as before. That is, we take the natural log of eqs. 26–27
and differentiate both sides with respect to temperature. The result is:

∂p1

∂T
= p1

{

cY

[

1

aY

∂aY

∂T
+

∂bY

∂T
ln ZR

]

+
∂cY

∂T
[ln aY + bY ln ZR]

}

∂p2

∂T
= p2

∂cY

∂T
ln ZR

ZR ≡ ρZR .

Now we simply need derivatives ofaY , bY , andcY with respect to temperature to finish the derivation.

∂aY

∂T
=

α

T

(

a1a2T
a2 + a3a4T

a4

)

∂bY

∂T
=

∂bY

∂T̂

∂T̂

∂T

∂T

∂T

∂cY

∂T
=

∂cY

∂T̂

∂T̂

∂T

∂T

∂T
∂bY

∂T̂
= bY (b1 + 7b2T̂

6)

∂cY

∂T̂
= c1

∂T̂

∂T

∂T

∂T
= α

T̂ (1 − T̂ )

T
.

Finally, recall that it is really the electron density that is put into equilibrium and not the effective charge.
Therefore, from the perspective of the Newton-Raphson procedure, what we really need are the derivatives
of electron density with respect to density and temperature. Due to the simple relation betweenne andZeff ,
the desired derivatives are:

∂ne

∂ρ
=

ρ

A

∂Zeff

∂ρ
+

Zeff

A

∂ne

∂T
=

ρ

A

∂Zeff

∂T
.

5 Thermodynamic Consistency

It was mentioned previously that the relations for expressing the mixture pressure and energy in terms
of its constituents come from physics, while their derivatives are purely the result of mathematics. An
interesting consequence of a more fundamental approach is that we can check the validity of the relations
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for the mixture energy and pressure by working witha, the specific Helmholtz free energy ands, the specific
entropy.

For example, the mixture free energy can be expressed as:

a = e − Ts . (34)

Now we assume a specific form for the constituent free energies,ai, and how they are related to the mixture
free energy.

ai = ei − Tsi (35)

a =
N
∑

i=1

yiai =
N
∑

i=1

yi(ei − Tsi) . (36)

The first law of thermodynamics can be expressed as

de = T ds − P dv . (37)

Taking the differential of eq. 34 and making use of the first law relation gives:

da = −s dT − P dv , (38)

which implies that

− s ≡
(

∂a

∂T

)

v

−P ≡
(

∂a

∂v

)

T
.

Differentiating eq. 36 with respect to temperature gives:

− s =
N
∑

i=1

yi

[(

∂ei

∂T
− T

∂si

∂T

)

− si +

(

∂ei

∂vi
− T

∂si

∂vi

)

∂vi

∂T

]

. (39)

To simplify this equation for the entropy, let’s express thefirst law for a particular component in the mixture:

dei = T dsi − Pi dvi . (40)

Dividing eq. 40 bydT (at constantvi) gives the result
(

∂ei

∂T
− T

∂si

∂T

)

= 0 . (41)

Similarly, if we divide eq. 40 bydvi (at constant temperature) we arrive at
(

∂ei

∂vi
− T

∂si

∂vi

)

= −Pi . (42)

Inserting these last two results into eq. 39 gives:

s =
N
∑

i=1

yi

[

si + Pi
∂vi

∂T

]

. (43)
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Now that we have relations fora ands in terms of their constituents, we can use eq. 34 to solve fore. The
result is:

e =
N
∑

i=1

yi

[

ei + TPi
∂vi

∂T

]

. (44)

Thus, the specific internal energy isnot simply a sum of its parts. As John Castor points out in his memo
on Mixing Free-Energy Based EOS Models, this is probably not a good thing. However, for the case of total
pressure equilibration, all of thePi are equal. This means that the pressure can be pulled out of the above
summation and that this term is identically zero, from eq. 20. So for the case of total pressure mixing, we
do recover the result that the mixture energy is a simple sum of its parts. Note that by using the fundamental
definition for pressure we can show that:

P ≡ −
(

∂a

∂v

)

T
=

N
∑

i=1

yi
∂vi

∂v
Pi , (45)

which is identical to eq. 3. Thus, a rigorous derivation of the mixture pressureand energy shows that we
have a discrepency in the energy definition for the case of equilibrating a quantity other than totoal pressure.
We will focus our future work on assessing what consequencesthere are to omitting this extra term in the
mixture energy definition for the cases of electron density and chemical potential equilibration.

6 Test Case

For the case of an atomic mixture of two ideal gases that are equilibrated under the total pressure option,
there exists an analytic solution for the sub-densities andthe mixture pressure. Thus we can run a simple test
case at a variety of densities and temperatures to verify that the Newton-Raphson method converges to the
analytic solution. Let the ideal gas mixture have the following number fractions for its isotopics:nD = .25,
nT = .25, nN14 = .25 , nO16 = .25. We will also let the subscript1 refer to the light gas (the part of the
mixture made up of the hydrogen isotopes) and the subscript2 refer to the heavier isotopes. Converting the
number fractions into mass fractions givesy1 = .144 andy2 = .856. Note that for this example, we are
using analytic equations of state to represent the two gases, rather than tabular ones. At equilibrium, we will
have:

P = P1 = P2 =
ρ1RuT

A1

=
ρ2RuT

A2

, (46)

whereRu is the universal gas constant andAi are the average molecular weights of the two sub-gases. Using
the mixture density constraint gives2 equations in2 unknowns forρ1 andρ2. The solution is:

ρ1 = ρ

(

y1 + y2

A1

A2

)

ρ2 = ρ

(

y2 + y1

A2

A1

)

.

Figure1 shows the mixture pressure (computed analytically and computed after the Newton-Raphson proce-
dure using the summation formula for the mixture pressure given earlier in the text) as a function of density
for a fixed temperature of1 KeV. Figure2 shows pressure vs. temperature at a fixed mixture density of
.001g/cm3. In both figures, we see that there is excellent agreement (toapproximately 9 decimal places)
between the analytically computed pressure and the pressure computed using eq. 3.
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Figure 1: Pressure vs Density atT = 1KeV .
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Figure 2: Pressure vs Temperature atρ = .001g/cm3.

14




