
UCRL-CONF-226816

Single Particle Fluorescence and Mass
Spectrometry in Various Environments as
Observed by Biological Aerosol Mass
Spectrometry (BAMS)

K. Coffee, P. Steele, M. Frank, E. Gard

December 14, 2006

2006 International Aerosol Conference
St Paul, MN, United States
September 10, 2006 through September 15, 2006



This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 

Updated October 14, 2003 



Single Particle Fluorescence and Mass Spectrometry 
in Various Environments as Observed by 

Biological Aerosol Mass Spectrometry (BAMS)
Keith Coffee

Chemistry and Material Science Directorate
Lawrence Livermore National Laboratory

2006 International Aerosol Conference (AAAR)
St. Paul, Minnesota September 2006

This work was performed under the auspices of the U. S. Department of Energy by the University of 
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.



Bioaerosol Mass Spectrometry-Motivation
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Develop a single-particle technique to detect and identify 
bioaerosols of national security and public health concern in real 
time (seconds).

Bioaerosol Mass Spectrometry - Goals

•Single organism detection (e.g. 10-12 g material in Bacillus spore)

•Discrimination from background and hoax materials (“white powders”).

•Broad range of agents (Viruses, Toxins, Vegetative cells, Spores). 

–Capability to also identify backgrounds. 

–No false positives or false negatives. Ideally: At genus or species level. 

•Consume only electricity – no reagents.

•Automated, real-time data analysis.



BAMS System Schematic

Particle Fluorescence
(LIF 266 or 355 nm excit.)

Particle Sizing
(Aerodynamic Velocity)
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Particle Analysis
Real-time analysis. 
Remote control capability.
Prescreening for “biological” particles.  

Modular design.
No consumables. 
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B. atrophaeus spore size distribution
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Mass spectrum of single B. atrophaeus (B. globigii) spore
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Aerosols Under Study
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Bacillus Spore Spectra

B. atrophaeus (B. globigii) spores can be identified at the species level. 
Spores can easily be differentiated from vegetative cells, viruses, toxins. 

D. Fergenson, et al., Anal. Chem, vol. 76, 373-377 (2004)
S. Russell, et al., Anal. Chem. (2005), A. Srivastava, et al., Anal. Chem. (2005)

DPA & Amino acid residues Salts

Average of ~1000 individual mass spectra
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The DHS aerosol test bed at SFO
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Laser Induced Fluorescence (SFO)
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Fluorescence vs. Time

•Region 1 has a clear Diurnal cycle & 
episoidal behavior.
Indicating local sources

•Region 3 does not
Indicating non-local or background 
particle types

•Region 2 is intermediate in appearance

•The fraction of particles in region 1 
varies widely and rapidly

Plots show particle counts in 5 minute time bins.
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•Christmas

•Absence of region 1 counts

•Spike in region 3 counts

•Dec. 30 – Jan. 3

•Fiber lodged in tracking system 
reducing efficiency of instrument

•Easily fix upon access to test bed
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The Specificity of Mass Spec.
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“Matches” for spores based on MS (327 total)

Plots show particle counts in 1 minute time bins.

•At no point in ~7 weeks were more than 2 particles identified in one minute 
as spores or as vegetative cells on the basis of their mass spectra

•The threshold to sound a BAMS alarm is never set below three agent particle 
identifications in a minute

•Zero false alarms would have been sounded!



Mojave Ca.
(May 19th to June 14th)

1. Signature Development
A. Desert Environment

i. Mineral dust
ii. Desert vegetation

2. Signature Stability
A. Comparison w/ previous data
B. Comparison w/ sampled sources

3. System Ruggedness
A. Long duration operation
B. High dust environment
C. Heat

Mojave Desert
4 locations in 12 days

•3.35 Million particles analyzed by LIF
•1.36 Million particles analyzed by MS
•Actively sampled particles ~ 90% of the time.



The DUST BOWL Desert Community
(05/24 to 05/26)
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Non-Local Particle Type (05/24 to 05/26)
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Local Vehicle Particle Type (05/24 to 05/26)
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355nm LIF 266nm LIF

B
A

M
S

 P
ar

tic
le

 C
ou

nt
s 

/ M
in

0

180
0

1200

Organic (Nitrate & Phosphate Type)



Laser Induced Fluorescence Data (05/18 to 05/26)

A rich variety of LIF responses for both 355 and 266 nm stages

355nm Fluorescence 266nm Fluorescence



The 4-Corner Location (05/28 to 05/31)
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Bacterial Particles Observed

d

Io
n 

Si
gn

al

-150 -100 -50 0 50 100 150

0

100

200 39    
-79   

41    70    
23    

-42   86    44    -26   60    

Mass-to-Charge Ratio

Io
n 

Si
gn

al

a

-150 -100 -50 0 50 100 150

0

50

100

150
39    

-167  
-146  

-42   -90   
-26   -166  -122  23    74    

Mass-to-Charge Ratio

b

Veg. Cells

Bg Spores

Bg Spores

Veg. Cells

•Zero false alarms would have been sounded!



•Analytically orthogonal techniques coupled into a single system
•Particle Size
•Particle Fluorescence (UV & Visible)
•Particle Composition (mass spectrometry)
•Full mass spectral analysis of up to 1,000,000 particles per day.

•Fluorescence preselection.
•Prescreens for particles of interest.
•Eliminates greater than 90% of ambient background particles.
•Fluorescence correlates with chemical composition.
•Fluorescent particles in the “threat region” are from many different chemical types.
•Most “threat region” particles are not bacterial nor biological.

•Long-term, reliable, unattended operation demonstrated at SFO (12 weeks) 
•Quick cleaning once each week.
•Zero false alarms in 12 weeks indicates very low false positive rate.

•Practicality & Survivability demonstrated in the Mojave Desert
• > 110° F temperatures
•Sever dust loads from vehicles and storms.

•Near future efforts will be directed at expanding the signatures and reducing size, weight 
and power consumption.

Summary



BAMS II           (just came on-line)

BAMS 2.0 = 0.72 m3 BAMS 1.3 = 1.6m3
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