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                                                          Abstract 
 
Crystals of slightly soluble materials should be subject of relatively weak 
attachment/detachment fluctuations on their faces so that steps on that faces have low 
kink density.  These steps are parallel to the most close packed lattice rows and form 
polygons on a crystal surface.  The process responsible for implementation of the 
classical Gibbs-Thomson law (GTL) for the polygonal step (in two dimensions, 2D) is 
kink exchange between the step corners.  For the 3D crystallites, this mechanism includes 
step exchange.  If these mechanisms do not operate because of slow fluctuations the GTL 
is not applicable.  Physics of these processes and conditions for the GTL applicability are 
discussed on a simple qualitative level. 
 
 
 
 
 
 
In our last publications, partly summarized in [1] and presented in more detail at 
ROCAM 2006 we discussed behavior of steps with low kink density.   Such steps 
demonstrate that the premise on intensive step fluctuations traditionally accepted after an 
example estimate in the classical work of Burton Cabrera and Frank (BCF) [2] may not 
be valid [3,4,5].  Also, low kink density can make the Gibbs-Thomson law (GTL) not 
applicable to correct crystallization driving force for the small objects. This textbook law 
quantifies the capillarity induced increase of equilibrium solution concentration or the 
vapor pressure above a small crystallite or an island of a new lattice layer.   When the 
GTL correction is violated, predictions of the BCF theory on the spiral growth rate and 
spiral morphology should be generalized correspondingly.  
In this note we reiterate basic physics of why and under what conditions the GTL is or is 
not applicable. 
 
1.  Steps with high and low kink density.  
 
At any temperature T>0, atoms, molecules or ions of which a crystal is built may detach 
from the step, i.e. from the end of the incomplete lattice layer on the crystal surface.  
Also, at T>0, these species are present in solution or vapor in dynamic phase equilibrium 
with the crystal so that they attach to the step.  This exchange results in uncompleted 



lattice rows on the step.  Each row is terminated by two “kinks” of the opposite sign on 
the step.  Presence of these kinks means that the step is not a straight line: the step 
meanders over the crystal face.  This meandering is the step fluctuation.  The intensively 
fluctuating (“rough”) steps are illustrated by Fig. 1[6]. Six steps on the (111) face of the 
FCC ferritin crystal are visible on this AFM image.  Ferritin is a big (M = 450,000 Da) 
iron storage protein which molecules are spheres ~13nm in diameter seen in the image.  
Average distance between kinks in Fig. 1 is ~ 4 molecular diameters.  Fig 2 demonstrates 
the opposite case of weak fluctuations of steps on the lysozyme crystal (lysozyme is also 
a protein, M=14,300 Da).  In Fig. 2, the average distance between kinks is ~ 500nm, i.e. ~ 
100 lattice spacing. Macroscopically, the steps with low kink density (the “smooth” 
steps) are straight and are oriented along the most densely packed crystallographic 
directions in the lattice.   
 
Closed loop of a smooth step takes a polygonal shape.  The rough step is rounded so that 
a closed loop is about circular because in this case the step free energy or the growth rate 
is nearly isotropic.  
 
A step is smooth or rough depending of how much energy costs its meandering, i.e. the 
entropy increase because of the kink creation.  The measure is the kink energy, ε (in the 
thermal units kT, i.e. ε/kT).  At or close to the phase equilibrium, the number of kinks per 
unit length along the step (the kink density), is ~ (2/a)exp[-ε/kT]  [2].  The larger the ε/kT 
the lower the kink density. The kink energy ε is the energy of the step riser per molecule 
and is often comparable with a half of the excess intermolecular bond energy directly 
related to solubility.  Therefore approximate empirical relationships between solubility 
and the surface energy, see e.g. [7, 8],  suggest higher kink energy for the salts of lower 
solubility.  One of them [7] presents the surface energy per molecular site in kT units as  
ε/kT  ≈ -0.272 lnCe (mol/m3) + 2.82.  The free surface energies used to establish these 
relationships were obtained from experiments on nucleation of salts in aqueous solutions.  
Thus these energies are averaged over various crystal faces and may be underestimated 
because of possible heterogeneous nucleation.  Difference between potential and the free 
energy was also not taken into account.  This may cause additional underestimate in the 
surface/kink energy. 
 
Sparingly soluble salts, including biominerals like Ca or Mg carbonates, e.g. calcite 
CaCO3, or phosphates have low solubilities and therefore high kink energy.  The steps on 
their faces are indeed typically straight. Semiconductors in contact with vapor at 
sufficiently low temperatures provide other examples.  
 
Kink density that is at least several times lower the maximum ~2/a means than the step 
rate must be essentially limited not only by the rate at which a kink propagates along the 
step but also by the kink generation rate. This statement is directly confirmed by the 
AFM observation of steps on brushite [1].  Namely, as soon as two straight steps come 
across one another creating reentrant corner, one of the steps is accelerated until the 
reentrant corner exists. The reason is that the reentrant corner already has a kink 
configuration (Fig 3). As long as the corner exists, it serves as a continuous kink source.   
The source power is proportional to the rate at which single ions attach to that corner and 



a new lattice row splits from the corner to propagate along the step.  The observed step 
acceleration suggests that the splitting rate exceeds the rate at which the kinks are 
generated by one dimensional (1D) nucleation.  It is not clear, however, what limits the 
splitting source power and prevents rounding of the reentrant corner.  Another evidence 
of the limiting role of the kink generation on the step rate is nonlinear dependence of the 
step rate on calcite on supersaturation [9] 
 
Polygonal shape of the step loops or spirals also suggests that fluctuations are not fast 
enough to provide kink density approaching its maximum ~ 2/a.  Indeed, all steps parallel 
to the non close packed lattice orientations possessing numerous kinks for geometrical 
structural reasons move essentially faster than the smooth steps along the close packed 
directions.  As a result, all the kink-rich step orientations wedge out.  
 
 
 
 
2.  Gibbs-Thomson law in liquids vs crystals. 
 
Fig.4 is a visual aid to think on how the GTL is implemented in a liquid and in a crystal.  
Imagine a small liquid droplet or a crystallite immersed in its vapor or solution.  We 
assume this gaseous or liquid solution to be saturated with respect to the bulk (infinite) 
liquid or crystal.  The chemical potential of the species under consideration in either of 
these solutions is µ∞.  Let us assume that the droplet or the crystallite size L is small, ~10-
100 times larger capillarity length ωα/kT (typically, ~1nm).  Here ω and α are specific 
molecular volume and free surface energy, respectively.  Then, according to the GTL, 
both the droplet and the crystallite must dissolve (evaporate) since the chemical potential 
of the species in it is larger by ωα/L than in the surrounding medium (cf. Fig.4). 
However, the dissolution process must be different in the droplet and the crystallite for 
the following reasons.   
 

When a particle leaves the droplet the hole in the liquid is filled quickly via molecular 
rearrangement. In macroscopic terms, the same leveling of a dip on the droplet surface 
and the corresponding shrink of the droplet diameter L occurs at the speed of sound 
(~km/s) equilibrating difference in the capillarity pressure under different portion of the 
perturbed liquid surface. Local variation in the droplet shape is also corrected (though 
slower) by capillarity waves (at the rate >~ (2πα/ρL) 1/2 ~ 20m/s for L=1µm, 
α=80dyn/cm2).  In simple words, any the information on detachment (and attachment) of 
species spreads over the droplet about immediately.  In other words, each molecule or ion 
“knows” the droplet size at any moment of time.  Consequently, chemical potential 
(detachment work) of each particle depends on the droplet size L at that time. 
 
In a solid, there is no capillarity pressure α/L similar to that in a liquid since there is no 
easy particle rearrangement (besides surface relaxation and reconstruction).   The surface 
energy in solids is different from the surface tension [10-13].  The latter is described by 
surface stress tensor,  fij.  This tensor comes from such a variation of the Gibbs free 



surface energy that is associated only with its mechanical strain (say, by unilateral 
stretching or compression) while the amount of species in the solid is kept constant.  The 
fij are the derivatives of surface energy α with respect to the strain (deformation) tensor 
components.  The fij are different from α and may have not only negative but also 
positive components [13]. The described elastic variation is fundamentally different from 
the variation during which the solid surface is being changed due to adding or detaching 
particles to the solid.  This is the latter rather the former (elastic) variation mode that 
leads to the condition of the phase equilibrium and provides the Gibbs-Thomson term 
ωα/L  to the equality of chemical potentials between the phases.  The surface induced 
stress in a solid is ~ f/L .  It adds the energy ~ ω(f/L)2/2G to the chemical potential of that 
solid where G is the shear modulus.  The latter energy is of the second order in the 
effective pressure f/L.  It is therefore much smaller than the Gibbs-Thomson term and 
may be typically ignored in the phase equilibrium conditions [14]. 
 
 
We are now prepared to consider evaporation of the cubic crystallite in Fig. 4.  
Detachment of a corner particle requires the same work µ∞  ≈3ε as detachment of the 
particle from the kink on an infinite crystal – because intermolecular interactions are of 
the short range nature, much shorter than the crystallite size.  Therefore the detached 
particle “does not know” the size of the crystallite.  (On the contrary, in a liquid droplet, 
the capillarity pressure and waves “lets each particle know” what the droplet size is).  
Detachment of a next particle from the crystallite along its upper right edge in the Fig 4 
also requires the same work 3ε to be spent.  Thus the Gibbs energy of crystallite-and- 
surrounding system does not change again since the chemical potential of the surrounding 
equals the potential of an infinite crystal.  However, when the detachment process comes 
to the last particle in the edge row, only two bonds are needed to be ruptured for the 
detachment requiring the work of only 2ε.  Here is where the crystallite size becomes 
effective.  Disassembling the whole crystallite, one can easily come to the gain ωα/L in 
the free energy as required by the GTL assuming α = ε/ (surface area per contact between 
two particles).  This disassembling procedure follows the Kaishev’s method of the 
average detachment work (see, e.g. [14]).  The simplified analysis here ignores vibration 
and other contributions to the chemical potential except for the intermolecular bonds, ε. 
The disassembling demonstrates, however, that the GTL for crystals is valid only on 
average, while for liquids it is applicable for each detached particle.   
 
3. Applicability of GTL for spiral growth.  
 
The BCF theory considers steps with high kink density. Such a step becomes a rounded 
spiral as it propagates around the immobile point D of a screw dislocation outcrop to the 
face. For the heavily kinked step to be immobile at D, it must acquire at that point the 
curvature of the circular 2D critical nucleus.  Then, according to the GTL, the step is 
indeed at equilibrium with the surrounding solution at the point D. The rest of the step 
winds up to form a rounded steady state rotating spiral.  The distance between the turns is 
proportional the nucleus size.  
 



Similar situation holds, if the step is less kinked so that it is, on average, straight if 
parallel to the close packed orientations in the lattice (Sec.1).  Nevertheless, the distance 
between kinks is assumed to be still essentially shorter that the edge lengths L1, L2 of the 
polygonal 2D critical nucleus.  The latter is drawn in Fig. 5 as a rectangle near the 
dislocation outcrop D. In this case of the moderate kink density the first step segment 
adjacent to D is not supposed to propagate (crossed arrow in Fig.5) until it reaches the 
length L2 (or L1 for another orientation). This segment DA is elongating due to 
propagation of the next adjacent step segment (the arrow pointing left and down).  As a 
result, the segment DA reaches the critical length L2, starts to propagate and builds a new 
turn of the polygonal spiral.  This is the well known process explained by the BCF 
theory.  Subsequent stages of a polygonal spiral development on lysozyme crystal face 
are shown in Fig. 6.  We shall see, however, that this spiral development suggests kinetic 
rather the thermodynamic approach described above.   
 
Finally, let us consider a nearly kink free step segment.  The kinks appear in pairs either 
by the “positive” 1D nucleation of a new molecular row at the step or by “negative” 
nucleation when a molecule or a piece of the last existing step row dissolves (Fig 3). The 
kink free state is possible if: 1. the kink nucleation rate (kink pairs/cm.s) is low; 2. the 
time when the step segment exists is short.  The first segment adjacent to dislocation D 
develops because the next segment AA’ propagates (Fig.7). Therefore a sufficiently short 
segment should be always kink free.  That kink free segment is the longer the lower is the 
nucleation rate.  In a supersaturated solution, only the positive nuclei are able to develop 
and, sooner or later, the positive nucleation prevails over local dissolution and the 
segment DA starts to propagate.  The question is if the critical length when this 
propagation starts equals the edge of the 2D nuclei, i.e. if the GTL applies, or this critical 
length is other than the thermodynamic critical size ( L1 or L2  in Fig.5).   
We answer this question for the step with very low equilibrium kink density when 
exp(ε/kT )<<1.  Then in a supersaturated solution the local dissolution may be ignored.  
For the reasons discussed in Sec 2 the positive 1D nucleation rate (as well as the local 
dissolution rate) do not depend on the segment length and thus can not lead to the GTL 
unless another mechanism operates.  The positive nucleation should move the DA 
segment forward at the rate depending only on this nucleation rate no matter what the 
GTL requires.  Let the DA have moved to the position CB.  The question is if CB will 
retreat if it is shorter than the critical size (L2 in Fig. 5) - to decrease the system Gibbs 
free energy.  This retreat is supposed to happen following the GTL if the relative 
supersaturation S – 1 ≡ C/Ce = Δµ∞/kT < ωα/kTL.  Here C and Ce are the actual and 
equilibrium solution concentrations, respectively. 
 
The only mechanism that can implement the GTL is the kink exchange between the 
corners C and B. Namely, single species in the corners occupy the kink positions and 
may be detached splitting from the corners the kinks of the opposite signs and shifted 
towards the center of CB.  After a first kink is formed at the sharp corner, the second, 
third, etc kink should appear – the corner becomes rounded.  This rounding develops to 
increase the step entropy: each of the kinks split from the corner acquires the freedom to 
select its position between two neighbors (overlapping the intervals allowed for each kink 
is forbidden since high energy price of 2ε should be paid for resulting overhang).  That 



freedom means that there exists entropic repulsion between kinks.  Random attachments 
and detachments of species to/from a kink at the frequencies w+ and w- force these kinks 
to diffuse along CB.  Evidently, the kink diffusivity D = a2(w+ + w-)/2.  Diffusing along 
CB, the kinks of the opposite sign may meet one another and annihilate reducing the 
system energy by 2ε.  Sequence of such annihilations assures the retreat of the segment 
CB, and decreases the system potential.    
   
However, supersaturation hinders this annihilation.  Indeed, the supersaturation  S >1 
means that the attachment frequency of the species at the kink, w+ ,exceeds the 
detachment frequency w-, so that the average kink rate v = a(w+ - w-) > 0.   Therefore the 
kinks split from the corners are “pushed” against the entropic pressure, back to the 
corners.  The balance is achieved when the kinks remain within the distance D/v near 
each corner.  If the segment length L is shorter than 2D/v the kink exchange between the 
corners is efficient and the GTL is implemented.  However, at L>> 2D/v = a(w+ + w-
)/(w+ - w-) = a(S+1)/2(S-1) the kinks generated by the opposite corners C and B may meet 
very rare so that annihilation is practically excluded and the GTL can not be 
implemented.  Here we used the well known relationship w+/w- = exp(Δµ/kT).  Thus for 
the steps with low kink density the GTL may operate only for the segments L < ~2a/(S-
1).  At L/a = 100, i.e. at L< 50nm for a =5Å, the GTL should operate only if 
supersaturation S – 1 < 2a/L =0.02 = 2%.   
 
On the steps with a noticeable kink density, wandering kinks meet and annihilate at 
distances of the order of the average interkink distance rather the full segment length.  In 
this case, communication between the corners and thus implementation of the GTL 
occurs via chain of consecutive kink meetings along the step segment.  This is the case of 
intermediate kink density, Fig.5.  For the same reason, there is no problem with the GTL 
on the rough steps and surfaces.  
 
When the GTL is not effective, the typical length replacing the thermodynamic critical 
length L1,2 is the kinetically determined average distance between kinks ~ (v/J)1/2 where J 
is the positive kink nucleation rate.  
 
Experimental facts on steps with low kink density are presented in [1,9,15-19].   In 
particular, the following facts suggest  that the GTL may not operate:  

1. On lysozyme, similar to other protein crystals, kinks may be directly visualized by 
atomic force microscopy (AFM) and may be directly counted (Fig 2).  The critical 
segment length, L*, above which the step segment adjacent to the screw 
dislocation or to the stacking fault outcrop start to propagate normal to itself may 
be also directly measured by AFM.  The so found L*’s turn out to be longer than 
or comparable to the interkink distance.   Thus, indeed, there may be no kinks on 
the first step segment until it reaches the length sufficient for the kink generation. 

2. On the (101) face of monoclinic lysozyme, the steps propagating in the opposite 
directions are parallel one another (Fig. 6) so that the 2D nucleus should be a 
rhombus.  Therefore if the GTL operates the critical lengths L* for the step 
segment looking in the opposite directions must be equal to one another.   
Experimentally, the L*’s differ up to twice. This violation of symmetry is 



explainable in kinetic terms: molecular structures of the step risers looking to the 
opposite directions are different.  Different should be also the step free energies 
and kink generation rates.  This is the generation rate that is supposed to control 
L*.  Indeed, according to the Wulf’s theorem, the center from which the step 
energies plotted to find the equilibrium shape does not, generally speaking, 
coincide with the geometrical center of the resulting shape (the nucleus).  The 
latter case it shown in Fig 5.  The rhombic shape of the expected nucleus 
mentioned above forces the L* for the steps looking in the opposite directions to 
be equally long, opposite to the experimental finding.  

3. The measured L* experience variations up to  ±40% around its average while the 
experimental error is <15%.  Such behavior is consistent with the kinetic process: 
the L* is controlled by the length and time sufficient for kink generation, and 
should vary significantly since the kink nucleation is a random event and not too 
many kinks are needed to start the first segment propagation.  As it was 
mentioned above, one should expect L*~ (2v/J)1/2. 

4. Assuming that the measured L* still equals the edge of the 2D critical nucleus one 
may estimate the step riser free energy α.  For monoclinic lysozyme, the so found 
α  varies ~ 2-3 times, absolute value being from 4 to 30 erg/cm2.  For 
orthorhombic lysozyme, that estimate results in ~70erg/cm2.  The step riser 
energy following from the supersaturation dependence of the tetragonal lysozyme 
face growth rate by 2D nucleation is only ~ 1erg/cm2, close to other proteins (in 
terms of ε).  On calcite, the measured energy α well obeys linear dependence of 
the L* on reciprocal supersaturation following from the BCF theory.  However, 
the α turns out to be ~400erg/cm2 vs ~100erg/cm2 from nucleation data.  

 
Difference in behavior between the steps with the high and low kink density stems from 
the well known concept that thermodynamic laws are implemented by trail and error 
events, i.e. by fluctuations.  The steps with low kink density fluctuate slowly and thus 
require more time to implement the GTL.  The longer the segment the more time is 
needed, the closer to equilibrium should be the system to obey thermodynamic rather 
than kinetic laws. 
 
4.  Small three dimensional crystallites.  
 
As it was shown above, the GTL for a short step segment with low kink density is 
implemented via kink exchange between corners of the segment.  Similarly, the GTL for 
a facetted 3 D crystallite should operate only via step exchange between edges limiting a 
face.  This exchange starts with step splitting from the edges, i.e. with the rounding of the 
edges and apexes.  The reason for splitting is entropic repulsion between steps:  each step 
is allowed to meander only between its two neighbors.  Radius of the corner rounding 
decreases as the ε/kT ratio and supersaturation increases. 
 
Let us assume that the edge and apex rounding spreads over a small portion of the cubic 
crystallite face and that the crystallite is larger than the 3D critical nucleus for the given 
supersaturation  Δµ,  L > 4ωα/Δµ (Fig. 8a,b).  In absence of dislocations, the facet 
propagation rate is controlled by 2D nucleation.  The edge of the square-shape 2D 



nucleus or of the outer diameter of the disc-shape nucleus equals 2ωα/Δµ, twice less the 
facet size of the 3D nucleus.  Thus there are steps loops supercritical with respect to the 
2D nucleation but smaller than the facet size: 2ωα/Δµ < 2l < L (Fig.8).  The 2D 
nucleation rate J2 (nuclei/cm2.s) is the same as on the infinite crystal face since the 
species, their sub- or supercritical clusters do not “know” the crystallite size, i.e. the J2 is 
independent of L.  The lower effective J2 may be tuned to the GTL by fluctuations only, 
i.e. by elimination of the excess crystalline layer(s) as soon as they appear.   For instance, 
let the upper layer shown in Fig 8a as a circular disk should collapse.   If that removal 
happens, the effective nucleation rate will be lower than that of the infinite face thus 
implementing the GTL.  This process is similar to retreat of the protruded segment CB in 
Fig. 7.    
 
Shrinking of an island by a single particle detachment diminishes the free energy of the 
system only if the disc diameter 2l < 2ωα/Δµ, the diameter of a critical nucleus (2l is on 
the left from the maximum on the lower curve in Fig. 8b showing dependence of the 
Gibbs free energy on the 2D cluster size).   Otherwise, for the shrinking, the system must 
overcome the potential barrier by fluctuations. The barrier is the higher the more the 
island size 2l exceeds the critical size 2ωα/Δµ.  In other words, as soon as the new island 
reaches the supercritical size, i.e. 2l > 2ωα/Δµ, the island has two options: 1. to proceed 
growing with the growth driven by systematic decrease of the system potential or 2. 
 
to shrink back to a subcritical size over the potential barrier.  Clearly, the first option has 
higher chance to be taken.  These arguments suggest that the considered crystallite should 
grow at the 2D nucleation rate ignoring the GTL.  Of course, the overall facet normal 
growth rate is ~ L2 until the crystallite size L < (vst/J2)1/3 where vst is the step rate [14].  
 
The situation is different if the edge and apex rounding is spread over the crystallite face 
leaving a flat terrace of the size ~ 2ωα/Δµ or less near the face center even in the 
supersaturated solution (that should happen close to the roughening transition).  Then the 
top layer easily collapses and the effective 2D nucleation rate will be tuned to implement 
the GTL.  The GTL should also be effective if a screw dislocation leads the growth of the 
crystallite face or point defects decrease the potential barrier for the top layer collapse.  
Evidently, the GTL is always valid for the crystallites with rough surfaces. 
 
We are not aware of experiments with 3D crystallites that may confirm or disprove these 
predictions.  It is well known however that a small crystallite in a vapor seen at 
equilibrium as a sphere only slightly truncated by the close packed facets becomes a 
polygon in a supersaturated vapor – the growth rate anisotropy is much stronger than that 
of the free surface energy.  
 
5. Conclusions 
 
Thermal fluctuations are insufficiently fast to ensure high kink density on steps on a 
crystal interface if kink energy noticeably exceeds kT, i.e. the transformation enthalpy is 
large.  Proteins and slightly soluble salts serve as examples. 



For short step segments with low kink density and for small well facetted 3D crystallites 
the Gibbs-Thomson correction to the crystallization driving force is valid only very close 
to equilibrium.  
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Figure Captions 
 
 
Fig.1. Steps with high kink density on the (111) face of a ferritin crystal.  AFM image.  
Steps are marked by numbers nearby.  Each ferritin molecule is a sphere 13nm in 
diameter seen on the terraces between steps.  The panel below shows probability 
distribution of interkink distances at relative supersaturation σ = Δµ/kT =1.1 
[6]. 
 
Fig.2. Single kink on a the step on orthorhombic (left) and rare kinks on the steps on the 
monoclinic (right) lysozyme faces.  In the former, molecular rows are visible on the 
terraces on the both sides of the step seen as the bold dark line.  On the left, the step is 
one lattice spacing (7.37nm) high, the kink is one lattice spacing (5.65nm) deep.  Average 
kink density on the monoclinic lysozyme is 2.10-3 1/nm (interkink distance is 490nm), 
lattice spacing along the steps is 6.5nm. Each view field is 3.5x7µm. 
 
Fig 3.  Horizontal and vertical steps (in bold) cross one another and create reentrant 
corner on the left.  Three kinks of the same sign are split from the corner and are 
supposed to move to the right.  Each rectangle with a backslash symbolizes a molecule.  
Two molecules may be considered as a stable “positive” 1-Dimensional (1D) nucleus if 
this molecular pair does not decay loosing one or all two of these molecules due to 
thermal fluctuations. The dip on the right between two kinks of the opposite signs may 
appear via detachment of a molecule (a “negative” 1D nucleus) from a kink free straight 
step portion and subsequent detachment of molecules occupying the so opened two kink 
positions.  In a supersaturated solution, the dip is ultimately filled and disappears so that 
only positive nuclei are stable.  The negative nuclei are stable in the undersaturated 
solution.    An impurity particle (shaded) adsorbed at the step may also initiate a 
“positive”1D nucleus.   
 
 
Fig 4.  The Gibbs-Thomson law (GTL) is implemented differently in liquids (left) and in 
solids (right).  In liquids, the work required to detach each and ever molecule from a 
liquid droplet, i.e. the chemical potential, does depend on the actual droplet size (see the 
text).  In crystals, the detachment work depends on the crystallite size only on the average 
over either the whole crystal or the crystalline layer or the row.  To illustrate this 
averaging, the molecular row shown on the right upper face of the cubic crystal is 
supposed to be dissolved molecule by molecule in the direction indicated by the arrow.  
To detach all but the last particle from the crystal one needs to spend the same work 3ε as 
that from a kink on an infinite crystal surface.   However, detachment of the last particle 



in the row requires 2ε.  Thus, averaging over the row results in the GT decrease of the 
chemical potential by the energy inversely proportional to the row length. Thus the 
chemical potential of the species in the regular kink position does not depend on the 
crystal size - when interactions between molecules span over the range much shorter than 
the crystallite size. 
 
Fig. 5.   The polygonal spiral consisting of straight step segments around the outcrop D of 
the screw dislocation to the face.  The segments are supposed to contain kinks the 
distance between which is shorter than the segment length.  The first segment, DA, do not 
propagate (crossed arrow) until it reaches the length of the cristallographically identical 
edge of the critical nucleus shown in the middle. 
 
Fig. 6. Subsequent stages of polygonal spiral development on monoclinic lysozyme. 
 
Fig. 7.  Same as the Fig. 5 but for the about kink free step.   The segment DA is supposed 
to shift to the position CB via several acts of 1D kink nucleation and stays kink free.  If 
DA is shorter than the edge of the 2D critical nucleus the GTL requires DA to retreat.  
The mechanism is based on the kink exchange between the apexes C and B.  Namely, the 
kinks of the opposite sign split from C and B due to random thermal detachment of 
species.  However, in a supersaturated solution, these kinks are pushed back since 
attachment frequency exceeds the detachment frequency.  As a result, on average, the 
kinks are unable to depart from B and C further than by the distance D/v and annihilate if 
the segment length L >> D/v.  Thus the GTL operates only if L < D/v. 
 
Fig.8. Implementation of the Gibbs-Thomson law on a small facetted crystallite in a 
supersaturated solution. The crystallite grows by 2D nucleation on its faces, with the 
nucleation rate independent of the face size (Sec. 2).  Therefore, to implement the GTL, 
the surface layers should dissolve if the crystallite is smaller that the 3D critical nucleus 
4ωα/Δµ for the given supersaturationΔµ. (a):  A circular step loop split from the face 
edge due to entropic repulsion from the edge.  If the loop is supercritical, i.e. its diameter 
2l exceeds the diameter 2ωα/Δµ of the 2D critical nucleus the loop can not dissolve 
unless it overcomes a part of the 2D potential barrier shown in the lower curve in (b).   
The upper curve in (b) shows, for comparison, the Gibbs free energy of the system for 
creation of the 3D cubic crystallite of the size L.  
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