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Abstract

Techniques to calculate one-loop radiative corrections to hyperfine splitting including binding

corrections to all orders have been developed in the last decade for s states of atoms and ions. In

this paper these methods are extended to p1/2 states for three cases. In the first case, the point-

Coulomb 2p1/2 hyperfine splitting is treated for the hydrogen isoelectonic sequence, and the lowest

order result, α
4π EF , is shown to have large binding corrections at high Z. In the second case, neutral

alkalis are considered. In the third case, hyperfine splitting of the 2p1/2 state of lithiumlike bismuth

is treated. In the latter two cases, correlation corrections are included and, in addition, the point

is stressed that uncertainties associated with nuclear structure, which complicate comparison with

experiment for s states, are considerably reduced because of the smaller overlap with the nucleus.
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I. INTRODUCTION

Precision theoretical predictions of hyperfine splitting (hfs) in the ground and excited

states of alkali atoms and ions requires the understanding of a number of different physical

issues. A major challenge is obtaining accurate wave functions, which requires advancements

in the atomic many-body problem for atoms beyond lithium. However, even if this problem

can be solved to sufficient accuracy, another major problem is the enhanced role of nuclear

structure, particularly in highly-charged ions where the electron wave function overlaps the

nucleus to a high degree. The distribution of nuclear magnetism is probed, and theoretical

uncertainties in this distribution can limit the interpretation of experiment.

In this paper our primary concern is a third kind of physics, the QED correction to the

electron magnetic moment. At low Z this is dominated by the Schwinger correction to the

lowest-order hfs energy EF , α
2πEF for s states, α

4πEF for p1/2 states, and − α
8πEF for p3/2 states

[1], but binding corrections can qualitatively change this result. At high Z a perturbative

expansion in Zα breaks down and exact calculations using relativistic electron propagators

are required. This problem has been studied for s states, and the computational techniques

have been developed by a number of groups [2–4]. However, less work has been done on p

states, and it is the purpose of this paper to extend our previous calculations to this problem.

Because the basic formalism that we will use has been given in some detail in Ref. [3], we

reprise it only briefly in the next section, with most of the discussion devoted to the part

of the calculation carried out with free propagators, which differs from our previous work.

The following three sections treat the hydrogen isoelectronic sequence, neutral alkalis, and

lithiumlike bismuth in turn. In the conclusion, directions for further progress are discussed.

II. COMPUTATIONAL DETAILS

We use an S-matrix approach to calculating both correlation and radiative corrections to

hyperfine splitting, which arises from the interaction

HI = −e
∫

d3r ψ̄(#r, t)#γ · #A(#r)ψ(#r, t) (1)

where

#A(#r) =
#µ × #r

4πr3
FBW (r). (2)
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Here #µ is the magnetic moment of the nucleus and FBW (r) accounts for the distribution of

nuclear magnetism, which we model with a simple uniform distribution. More sophisticated

distributions can be used, but one of the points of this paper will be that p1/2 states are

only weakly dependent on this so-called Bohr-Weisskopf effect [5]. We use this distribution

only in lowest order, using a point distribution for the QED corrections. Natural units in

which h̄ = c = 1 are used here.

The formulas for the diagrams of Fig. 1 can be found in our previous work [3, 6–8], and

in most cases apply to any state. The exception is the self-energy vertex diagram of Fig. 1b,

given by

Ev = −4πiα
∫

d3x d3y d3z
∫ dnk

(2π)n

ei#k·(#x−#z)

k2 + iδ
ψ̄v(#x)γµ

×SF (#x, #y; εv − k0)V (#y)SF (#y, #z; εv − k0)γ
µψv(#z), (3)

with V (#y) = −e#γ · #A(#y). This ultraviolet divergent object is rendered finite by subtracting a

term with the full bound state propagators SF replaced with free propagators S0. This finite

term is evaluated in coordinate space in a manner that is valid regardless of the angular

momentum of the valence state v. However, the term with free propagators involves more

complicated angular momentum issues. It is evaluated in momentum space, and is given by

νSE(A) = −4πiα
∫

d3p2 d3p1

∫ dnk

(2π)n

1

k2
ψ̄v(#p2)γµ

1

#p2 −#k − m
V (#q)

1

#p1 −#k − m
γµψv(#p1), (4)

with

V (#q) = ie#γ ·
#µ × #q

8π3|#q|2
. (5)

Here #q = #p2 − #p1 and the energy component of both four vectors p1 and p2 is the valence

electron energy εv. The dnk integration is easily carried out after Feynman parameterization,

using α1 = ρx for the electron propagator involving p1, α2 = ρ(1 − x) for the electron

propagator involving p2, and α3 = 1 − ρ for the photon propagator. This parameterization

leads to two combinations of #p1 and #p2, #Q1 ≡ (1−α1)#p1 −α2#p2 and #Q2 ≡ (1−α2)#p2 −α1#p1.

Carrying out the dnk integration then gives

νSE(A) = −
α

2π

∫ 1

0
ρdρ

∫ 1

0
dx

∫

d3p2 d3p1ψ̄v(#p2)V (#q)ψv(#p1) ln(∆v/m
2)

−
α

4π

∫ 1

0
ρdρ

∫ 1

0
dx

∫

d3p2 d3p1ψ̄v(#p2)Nvψv(#p1)(1/∆v), (6)
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where an ultraviolet divergent term that cancels with another part of the calculation has

been suppressed. In the above,

∆v = ρ2ε2v + ρ(m2 − ε2v) + α1#p1
2 + α2#p2

2 − |α1#p1 + α2#p2|
2 (7)

and

Nv = γµ[(1 − α2)#p2 − α1#p1 + m] V (#q) [(1 − α1)#p1 − α2#p2 + m]γµ. (8)

Our momentum space wavefunction is given by

unκν(#p) =
1

p







gv(p)χκν(p̂)

fv(p)χ−κν(p̂)





 , (9)

where gv and fv are upper and lower component wave functions with v = (n, κ), and χκν are

spherical spinors. As in our previous work we work with stretched states, which allow us to

replace #µ with µẑ. The numerators in νSE(A) can then be expressed in terms of a number

of operators sandwiched between spherical spinors we denote as TA through TJ , given by

TA = χ†
κν(p̂2)#σ · (ẑ × #q)χ−κν(p̂1)

TB = χ†
−κν(p̂2)#σ · (ẑ × #q)χκν(p̂1)

TC = χ†
κν(p̂2)#σ · (ẑ × #q)#σ · #Q2 χκν(p̂1)

TD = χ†
−κν(p̂2)#σ · (ẑ × #q)#σ · #Q2 χ−κν(p̂1)

TE = χ†
κν(p̂2)#σ · #Q1 #σ · (ẑ × #q)χκν(p̂1)

TF = χ†
−κν(p̂2)#σ · #Q1 #σ · (ẑ × #q)χ−κν(p̂1)

TG = χ†
κν(p̂2)#σ · #Q1 #σ · (ẑ × #q)#σ · #Q2 χ−κν(p̂1)

TH = χ†
−κν(p̂2)#σ · #Q1 #σ · (ẑ × #q)#σ · #Q2 χκν(p̂1)

TI = χ†
κν(p̂2) (ẑ × #q) · ( #Q1 + #Q2)χκν(p̂1)

TJ = χ†
−κν(p̂2) (ẑ × #q) · ( #Q1 + #Q2)χ−κν(p̂1) (10)

The specific equations are, using the abbreviation gv(pi) = gi and fv(pi) = fi,

ψ̄v(#p2)V (#q)ψv(#p1) =
1

p2p1
(g2f1TA + f2g1TB) (11)

and

Nv =
1

p2p1
{(g2f1TA + f2g1TB)[−2m2 + 2ε2v(1 − ρ)2]

−2εv(1 − ρ)[(g2g1(TC + TE) + f2f1(TD + TF )]

+2(g2f1TG + f2g1TH) + 4m(g2g1TI − f2f1TJ)}. (12)
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While we have written these operators for a general magnetic quantum number ν, in the

stretched state ν = j = |κ| − 1/2. We reduce them to functions of p1, p2, and the angle

between the vectors θ = cos−1(p̂1 · p̂2) using a device described in Ref. [9], where a rotation

allows three of the four angle integrations to be carried out analytically, leaving only the

integration over θ to be evaluated numerically. For s states with κ = −1, this leads to

TA = p2z − p1

TB = p1z − p2

TC = p1p2z(1 + α1 − α2) − α1p
2
1 − (1 − α2)p

2
2

TD = −p2p1(z
2 + α1 − z2α2) + α1zp

2
1 + z(1 − α2)p

2
2

TE = p2p1z(1 + α2 − α1) − α2p
2
2 − (1 − α1)p

2
1

TF = −p1p2(z
2 + α2 − z2α1) + α2zp

2
2 + z(1 − α1)p

2
1

TG = p2
1p2z(1 − α2

1 − α2 + 2α1α2) − p1p
2
2z

2(1 − α2
2 − α1 + α1α2)

−α1(1 − α1)p
3
1 + α2(1 − α2)p

3
2z − α1α2p

2
2p1

TH = p2
2p1z(1 − α2

2 − α1 + 2α1α2) − p2p
2
1z

2(1 − α2
1 − α2 + α1α2)

−α2(1 − α2)p
3
2 + α1(1 − α1)p

3
1z − α1α2p

2
1p2

TI = 0

TJ = p2p1(1 − ρ)(1 − z2), (13)

where a common factor of 2i
3

1
4π is understood. Because we are interested here in p1/2 states

with κ = 1 which is opposite in sign to that of the s states, we can evaluate the free

propagator term by simply interchanging TA and TB, TC and TD, and so on. The more

complicated formulas for p3/2 will be presented elsewhere.

After this reduction a five dimensional integral remains to be evaluated numerically. We

were able to achieve high precision with the program CUHRE, part of the CUBA multidi-

mensional integration package [10]. All other parts of the calculation were carried out in

the same manner as our s-state work [6–8]. We compress the notation of Ref. [8] as follows.

In that work another momentum space integration called νSE(C) was associated with the

side diagrams of Fig. 1a: here we combine the two into νSE(p) = νSE(A) + νSE(C), with p

standing for p-space. Another set of terms were associated with the subtracted parts of the

vertex and side diagrams we called νSE(B), νSE(D), and νSE(E), evaluated in coordinate

space: here we present only the sum as νSE(x). The perturbed orbital terms, νSE(PO)
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are unchanged. For the case of vacuum polarization we also follow the notation of Ref. [8],

where the effect was split into a term coming from perturbed orbitals, νVP(PO) and a vertex

correction νVP(V ). We now turn to the evaluation of corrections to hyperfine splitting for

the three cases described in the introduction.

III. HYDROGEN ISOELECTRONIC SEQUENCE

Precision study of the ground state of the hydrogenic sequence using exact numerical

methods is not only crucial for high Z, but is also of value at lower Z where expansions in

powers of Zα can be compared with. In Ref. [6] we were able to show agreement with the

known parts of the power series and in addition determine the size of the uncalculated higher-

order terms, which play a role for muonium hyperfine splitting. Because the nonrelativistic

wave function vanishes at the origin for p states, the power series expansion is simpler, being

of the form

ν2p1/2
=
α

π
EF

[

1

4
+ (Zα)2 (a lnZα + b) + ...

]

, (14)

in contrast to the s-state expansion, which has a large term linear in Zα and a squared

logarithmic term in the next order.

The extraction of coefficients like a and b from the numerical data of exact calculations

is always challenging because of the inevitable numerical errors present in that data. These

were particularly difficult to control in the present case for two reasons. The first had to do

with the slow convergence of the partial wave expansion in both the perturbed orbital and

the subtracted vertex terms at low Z. While at higher Z a clear 1/l3 behavior was obtained

early in the partial wave expansion, at low Z the behavior was still close to 1/l2 even at

l = 50. This leads to an uncertainty of about 0.0001α
πEF for ν2p1/2

. Also associated with

the subtracted vertex term are pole terms, where the Wick rotation encircles more deeply

bounded states in one or the other propagators. We use basis set techniques to evaluate

these terms, and found some sensitivity to the size of the basis set. For hydrogenic ions,

using a basis set with 350 positive- and 350 negative-energy states did give stability at the

0.00001 level. However, for neutral alkalis discussed below, this term was much more difficult

to control, in particular forcing us not to treat francium for now.

Our data shown in Table I clearly indicate the presence of the logarithmic term. More

interestingly, they also show the presence of a squared logarithmic term which is quite
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unexpected. Fitting them to the equation

ν2p1/2
=
α

π
EF

[

1

4
+ (Zα)2 (A ln2Zα + B lnZα+ C) + ...

]

, (15)

yields the coefficients

A = −0.6(1), B = −0.5(2), C = −2.8(6).

In Fig. 2, results computed with these fitted coefficients are seen to agree with those from

direct calculations up to Z = 40. Without the log-squared term, such good fits are not

possible. It would be desirable to have independent confirmation of the existence of the

log-squared term, but we are not aware of any such calculation at the present moment.

From Table I and Fig. 2, it can be seen that the deviation of the radiative correction

from the Schwinger value increases rapidly as Z increases. As with the s state, a complete

reversal of sign is present, taking place around Z = 40, and then increasing in magnitude to

−4.095α
πEF at Z = 100. Thus p1/2 states are just as nonperturbative as s states have been

shown to be at high Z, and studying hyperfine splitting of p states in highly charged ions

probes the same kind of physics as with s states.

IV. NEUTRAL ALKALIS

In a previous work [8] we treated corrections to the hyperfine splitting of the ground states

of alkalis, specifically 2s for lithium, 3s for sodium, 4s for potassium, 5s for rubidium, 6s

for cesium, and 7s for francium. The Coulomb potential used for the hydrogen isoelectronic

sequence is of course no longer an appropriate starting point, and as in Ref. [8] we use a more

realistic Kohn-Sham potential modified to give an effective charge of one asymptotically.

Calculating QED effects with exact propagators in neutral systems proved quite difficult

from a numerical standpoint, and that remains the case for the present calculation of 2p1/2

for lithium through 6p1/2 for cesium, with francium proving numerically intractable for now

as mentioned above. Extremely fine radial grids with up to 60000 points are required in

order to control the numerical Green’s functions. Our results are summarized in Table II.

As expected, neutral lithium is quite close to the α
4πEF limit, but even though the atoms

are neutral, as the nuclear charge increases the feature observed in the hydrogenic case of

first a reduction in magnitude and then a sign change is also present. Inclusion of vacuum
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polarization works in the opposite direction, so that the total QED effect is reduced, though

the change from the Schwinger value as Z increases is still pronounced.

In Table III we present a set of other contributions to the hyperfine splitting. EF is the

lowest-order hfs energy calculated assuming a point magnetic moment, and νBW is the shift

resulting from the use of a uniform distribution of magnetism in a sphere of radius R. We

note that at low Z this effect is very small, as in the nonrelativistic limit p1/2 wave functions

do not overlap the nucleus. Because of the presence of other electrons we also include the

effect of one-photon exchange ν1E, formulas for which can be found in Ref. [8]. For neutral

alkalis this is a very incomplete treatment of correlation, so the agreement of theory with

experiment is very poor. Discussion of how this situation can be improved is given in the

conclusion.

With the exception of cesium, the precision of the experiments on alkali p1/2 states is

insufficient to be sensitive to the radiative correction calculated here, although a slight im-

provement in the lithium measurement would change that situation. However, the accuracy

of the cesium experiment [19],

ν6p1/2
= 1167.654(60) MHz, (16)

which is a 5 ppm experiment, is almost two orders of magnitude greater than the −222 ppm

effect found for the QED correction in cesium. Reduction of wave function uncertainties

to this level of QED presents a challenge to many-body methods for this atom, which is of

considerable interest because of its role in parity nonconservation studies [18]. However, the

wave function in this case is sufficiently relativistic that some penetration of the nucleus is

present, and the Bohr-Weisskopf effect is 803 ppm, so that it will have to be controlled at

the 10 percent level to allow a test of the QED term. This problem would not be present

for the 6p3/2 state, which will be studied in a subsequent work.

V. LITHIUMLIKE BISMUTH

There has been considerable interest in hyperfine splitting in hydrogenlike and lithiumlike

bismuth. In the former case, the measurement at GSI [11],

ν1s = 5.0840(8) eV, (17)
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with a precision of 164 ppm, is in principle adequate to stringently test the QED correction,

which is qualitatively changed from the Schwinger value, with the coefficient of (α/π)EF

changing from 0.5, a 1162 ppm shift, to −3.5, a −8132 ppm shift. Unfortunately, the size

of the Bohr-Weisskopf effect is larger than QED, and uncertainties in it interfere with test-

ing QED. However, as first noted by Shabaev et al. [12], carrying out another accurate

experiment on the 2s state of lithiumlike bismuth allows one to greatly reduce this uncer-

tainty, since the Bohr-Weisskopf effect enters in a similar manner. Specifically, assuming

the validity of the QED calculations, one can use the hydrogenic 1s result to determine the

Bohr-Weisskopf effect, then use that in a lithiumlike 2s calculation to make accurate predic-

tion of the 2s hyperfine splitting. Following this suggestion to pin down the Boh-Weisskopf

effect, we have, in Ref. [7], calculated the 2s splitting to be

ν2s = 0.797 15(13) eV (18)

While this splitting was measured from the 2s − 2p3/2 line in an earlier electron beam ion

trap (EBIT) experiment [13], the result,

ν2s = 0.820(26) eV, (19)

was not accurate enough to test the QED correction. However, a new EBIT experiment [14]

is in progress to measure this splitting from the 2s − 2p1/2 line with more accuracy. In so

doing, the 2p1/2 hyperfine splitting ν2p1/2
may also be resolved, so we present an analysis of

this latter splitting incorporating our QED corrections.

In the last columns of Tables II and III, correlation and QED results for the 2p1/2 hyperfine

splitting of lithiumlike bismuth are shown. The correlation part of the calculation is in good

agreement with Ref. [15]. The QED effect of −0.193 meV is seen to contribute at a 720 ppm

level, so an accurate measurement of the splitting, which we predict to be

ν2p1/2
= 264.543 meV, (20)

should be sensitive to the effect. As with ν2s, this would test the striking qualitative change

in sign and order of magnitude of the radiative correction from the Schwinger value. The

numbers presented used a Bohr-Weisskopf radius of 5.82 fm determined, as discussed above,

by forcing agreement of the hydrogenic 1s hyperfine splitting measurement with theory.

Because of the reduced overlap with the nucleus of p1/2 states, we note that even a 5 percent
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change of the 5.82 fm value changes ν2p1/2
by only 0.105 meV, which can be compared to the

1.176 meV change for ν2s. However, there is still significant sensitivity in this case because

of the high nuclear charge, as the lower component of the p1/2 wavefunction behaves like an

s wavefunction. The really dramatic reduction in sensitivity to the Bohr-Weisskopf effect

comes when p3/2 states are considered, when the same exercise leads to a change of much

less than 0.001 meV.

VI. DISCUSSION

We have in this paper applied a numerical method that sums all orders of binding cor-

rections to the QED corrections to hyperfine splitting in p1/2 states. While the obvious next

step is extending the work to the more difficult case of p3/2 states, further research on each

of the three cases discussed for p1/2 states is called for, and we discuss the cases in turn.

For the point-Coulomb case the most significant problem was numerical in nature. The

partial wave expansions can only be carried out to about l = 50 with our methods at the

present moment, and in some cases the asymptotic region was not quite reached even at

the highest partial waves. A similar problem exists when the Zeeman effect is studied with

similar methods, and a solution was devised by Beier and collaborators [22]. Rather than

subtracting from the vertex diagram only a single term with two free propagators, two more

subtractions in which a single Coulomb interaction is present with three free propagators can

be made. This dramatically improves the partial wave convergence for the Zeeman effect,

and presumably would also allow higher precision to be obtained for the p1/2 hyperfine

calculation.

For the neutral alkalis less accuracy is needed, as the radiative correction is in general

much smaller than other theoretical uncertainties. While one of the main points of this paper

is that the Bohr-Weisskopf effect is smaller than for s states, the wave function uncertainties

are very difficult to control. The most pressing issue is to gain control over these wave

function uncertainties, which is a many-body problem in which it is not necessary to include

QED, with the exception that negative energy states must be excluded from intermediate

sums over states for certain diagrams. However, at some point one can expect the many body

problem will be controlled at a level where QED effects need to be included. At this point

a careful combination of QED and MBPT must be made to avoid double counting. Our
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calculation of one-photon exchange is done in a QED framework, including negative energy

states in intermediate summations and exchange of a transverse photon with retardation:

to combine with an MBPT calculation first-order MBPT would have to be subtracted from

that term. An interesting issue is what happens for second-order MBPT: it may be necessary

at some point to carry out a full two-photon exchange QED calculation for hfs and subtract

the MBPT limit. Hopefully the difference would be significantly smaller than the difference

for one-photon exchange QED, so that the very difficult project of considering an exact QED

calculation of three-photon exchange would not be necessary.

Finally, we have presented results for radiative and correlation corrections to the 2p1/2

hfs in lithiumlike bismuth. In this interesting case the high nuclear charge plays three roles.

The first is improvement of the convergence of the correlation calculation, so that wave

function uncertainties are negligible. The second is that the radiative corrections at this

high Z qualitatively change from the Schwinger correction result because of the large binding

corrections. The last, unfortunately, is that because the p1/2 state has a lower component

with s-state behavior, there is still sensitivity to the Bohr-Weisskopf effect. However, as

noted above, because of the high accuracy experiment on the hydrogenic 1s ground state

[11], for this ion this uncertainty can be controlled. Regardless, this shows the desirability

of doing experiments involving p3/2 states, which are basically completely unaffected by this

nuclear uncertainty. Because of this we wish to stress the desirability of doing experiments

on the hyperfine splitting of states involving p3/2 states, for example the ground state of

high-Z nitrogenlike ions.
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a b c d

FIG. 1: One-loop self-energy and vacuum polarization diagrams. Dashed lines end with crosses

are hyperfine interactions.
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FIG. 2: Self-energy contributions to the 2p1/2 hfs for hydrogenic ions in units of (α/π)EF .
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TABLE I: Breakdown of self-energy contributions to hydrogenic 2p1/2 hfs in units of α
π EF .

Z νSE(PO) νSE(p) νSE(x) νSE

1 −0.0008 1.1149 −0.8655 0.2487(5)

2 −0.0010 1.1109 −0.8626 0.2474(3)

3 −0.0014 1.1055 −0.8589 0.2452(2)

4 −0.0017 1.0990 −0.8545 0.2427

5 −0.0022 1.0915 −0.8496 0.2397

6 −0.0026 1.0833 −0.8443 0.2364

7 −0.0030 1.0745 −0.8388 0.2327

8 −0.0033 1.0651 −0.8330 0.2288

9 −0.0037 1.0553 −0.8270 0.2246

10 −0.0041 1.0451 −0.8209 0.2202

20 −0.0083 0.9295 −0.7570 0.1642

30 −0.0184 0.8012 −0.6953 0.0876

40 −0.0440 0.6660 −0.6384 −0.0164

50 −0.0999 0.5232 −0.5848 −0.1615

60 −0.2073 0.3685 −0.5365 −0.3752

70 −0.4031 0.1935 −0.4929 −0.7024

80 −0.7574 −0.0191 −0.4606 −1.2371

90 −1.4219 −0.3090 −0.4551 −2.1860

100 −2.7652 −0.7969 −0.5283 −4.0905
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TABLE II: Vacuum polarization (VP) and self-energy (SE) contributions to hfs for np1/2 states of

the alkalis and lithiumlike bismuth. QED is the sum of VP and SE: Units α
π EF .

7Li 23Na 39K 87Rb 133Cs 209Bi80+

νVP(V ) 0.000 0.002 0.006 0.036 0.101 0.313

νVP(PO) 0.000 0.000 0.002 0.021 0.103 0.641

νVP 0.000 0.002 0.008 0.057 0.204 0.954

νSE(PO) 0.000 −0.003 −0.001 −0.059 −0.710 −0.783

νSE(p) 1.485 5.072 6.628 7.964 8.599 −0.001

νSE(x) −1.243 −4.960 −6.830 −7.995 −8.189 −0.480

νSE 0.242 0.109 −0.032 −0.090 −0.300 −1.264

νQED 0.242 0.111 −0.024 −0.023 −0.096 −0.310

TABLE III: Correlation and QED contributions to np1/2 hfs in the alkalis and lithiumlike bismuth.

µ is the nuclear moment in nuclear mageton, I is the nuclear spin, and R is the nuclear radius in

Fermi. Units: MHz for the alkalis and meV for lithiumlike bismuth.

7Li 23Na 39K 87Rb 133Cs 209Bi80+

µ 3.25643 2.21752 0.391466 2.75182 2.58203 4.1106

I 3/2 3/2 3/2 3/2 7/2 9/2

R 3.088 3.825 4.398 5.480 6.206 5.820

EF 62.447 180.380 49.419 710.533 941.808 267.686

νBW 0.000 −0.001 −0.000 −0.105 −0.781 −1.143

ν1E 27.928 −20.757 −6.928 −117.075 −128.380 −1.807

νQED 0.035 0.046 −0.003 −0.038 −0.210 −0.193

Sum 100.410 159.668 42.488 593.353 812.437 264.543

Expt. 184.04(4)a 377.76(52)b 57.7(5)c 1624.8(32)d 1167.654(15)e

aRef. [16].
bRef. [17].
cRef. [21].
dRef. [20].
eRef. [19].
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