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Abstract

A class II atomistic force field with Lennard-Jones 6-9 nonbond interactions is used to investigate

equations of state (EOS) for important high explosive detonation products N2 and H2O in the 

temperature range 700-2500 K and pressure range 0.1-10 GPa. A standard 6th order parameter-mixing 

scheme is then employed to study a 2:1 (molar) H2O:N2 mixture, to investigate in particular the 

possibility of phase-separation under detonation conditions. The simulations demonstrate several 

important results, including: (i) the accuracy of computed EOS for both N2 and H2O over the entire 

range of temperature and pressure considered; (ii) accurate mixing-demixing phase boundary as

compared to experimental data; and (iii) the departure of mixing free energy from that predicted by 

ideal mixing law. The results provide comparison and guidance to state-of-the-art chemical kinetic 

models.
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I. Introduction

Supercritical phase separation of fluid mixtures is an important phenomenon relevant to many 

fields of science and engineering [1-4]. The details of a pressure-volume-composition (P-V-x) 

coexistence surface are important in a number of applications including, planetary and geo-chemistry, 

chemical processing, toxic waste disposal, and detonation physics. The equation of state (EOS) of 

several binary fluid systems over limited phase space has been obtained from experimental PVT data

[4]. However, it is often difficult and expensive to perform experiments, especially for mixtures 

containing more than two components, and at high temperatures and pressures even for simple binary 

mixtures. 

Phase separation in a water-nitrogen mixture, the topic of the present study, has been proposed as

an important phenomenon in detonation physics [5]. The detonation of typical explosives containing C, 

H, N, and O atoms produces a mixture of N2, H2O, CO2, and other minor species at high temperatures 

(T = 1000-5000 K) and pressures (P = 1-100 GPa). It has long been surmised that supercritical phase 

separation under these extreme conditions may significantly impact the detonation characteristics [1]. 

Such phase separations in a H2O:N2 mixture have been experimentally demonstrated -- first on a 3:1 

(molar) mixture by Japas, et al. [6] at P< 0.25 GPa, and later at higher temperatures and pressures 

(using a diamond anvil cell) on a 3:1 mixture by Costantino and Rice [7], and on a 2:1 mixture by van 

Hinsberg, et al. [8]. The temperature and pressure in these experiments were limited to the range T < 

825 K and P < 5 GPa.

Molecular-level interactions play a crucial role in determining the EOS and phase diagrams of both 

single fluids and mixtures. Many theoretical models and simulations of detonation conditions neglect

the internal structure of molecules and replace it with a single spherical potential, typically a Lennard-

Jones 6-12 or a modified Buckingham exponential-6 form. This approach allows in particular the 

computation of the free-energy of single fluids using either variational or perturbational methods that 

employ the hard-sphere fluid as a reference system. Using an effective one-component fluid 

approximation for the mixture and suitable mixing rules for the unlike-pair interactions the free energy 

of a mixture can also be reliably calculated, which makes possible for example the calculation of 

solubility isotherms of binary mixtures. Using such an approach, Ree [1, 9] modeled a N2:H2O mixture 

by exponential-6 potentials and predicted phase separation at T = 4000 K and P = 33 GPa. Using a
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similar potential, Koshi and Matsui [10] carried out MD simulations at T = 2000K and observed phase 

separation to occur at a density of ρ = 1.35 g/cc (P ~ 6.3 GPa). 

Based on statistical mechanics arguments [11, 12] one can expect the spherical potential to be a 

good approximation for nonpolar molecules at high T and P, as has been verified by excellent 

agreement of EOS for N2, CH4, and CO2 with experimental data [13]. However, for polar molecules 

(H2O, NH3, CO) the nonpolar spherical potential is not a good representation, even at the high 

temperatures and pressures typical of most detonation environments, and ad hoc approximations such 

as temperature-dependent potentials [9] or multi-species representations [14, 15] need to be used. 

Moreover, the driving force for phase separation in nonpolar-polar mixtures such as N2-H2O is likely 

the intrinsic dipole moment itself [16], which is averaged out in any spherical approximation [17].  In 

order to account for phase separation in such models, additional, hard-to-justify assumptions, such as 

non-additivity of the unlike pair interaction [9] become necessary. This casts doubt on the reliability of 

theoretical predictions obtained using such models, particularly as far as direct comparison with

experimental data is concerned. 

The best avenue to bridge the gap between experiment and theory, and to assist in further

developments of modern thermochemical codes such as CHEETAH [14] is to model these systems in 

full atomistic detail using classical MD simulations. The molecular modeling literature abounds with 

examples of force fields developed for many different kinds of materials [18, 19]. The most accurate 

force fields, known as second-generation or class II force fields [19] are especially relevant to HE 

denotation products. Such force fields usually have a large number of parameters, both intra- and inter-

molecular, which are fit to accurate quantum mechanical calculations as well as to some experimental 

data. These parameters are usually developed for not-so-extreme conditions of temperature and 

pressure, and therefore might need modifications for simulations under detonation conditions. For 

instance, in order to describe bond-breaking and ionization processes that may occur under extreme 

conditions, one needs to take recourse to so-called reactive force fields [20, 21]. The purpose of this 

paper, however, is to explore the accuracy of standard class II force fields at T and P conditions much 

higher than what they are typically parameterized at.

In this paper we use the class II force field COMPASS [22] and show that it is able to generate

accurate equations of state for pure H2O and N2 over a wide range of temperatures and pressures. We 
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then study a 2:1 (molar) H2O:N2 mixture, and investigate the mixing-demixing phase boundary in the 

temperature range 700-1500 K using a standard 6th power parameter combination rule. We show that 

the phase boundary is in excellent agreement with available experimental data, and therefore can guide 

further developments in the mixture thermodynamics theory employed by chemical equilibrium 

calculations.

II. Force Field Details

Most force fields generally make a distinction between bonded (or valence) terms that operate only 

within the same molecule, and non-bond terms that operate between atoms belonging to different 

molecules, or between atoms within the same molecule separated by a few bonded neighbors. The 

bonded terms typically are functions of bond-lengths, angles, dihedrals, out-of-plane angles, and cross-

terms. Modeled after previously developed type II force fields like CFF [23], COMPASS [22] 

represents bond energy terms for both N2 and H2O in the quartic functional forms:

4
04

3
03

2
02 )()()()( bbKbbKbbKbE bondbondbond

bond −+−+−=

The above is the only relevant bonded (i.e. valence) term for N2. For water, in addition to the above 

bonded term for the OH bonds, one requires an angle term, which is also taken to be of the quartic 

form:
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In addition, a bond-bond and a bond-angle cross-term are also included (for water):
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However, the most important interactions that govern the EOS of the pure phases as well as the 

mixtures are the non-bond interactions, i.e., the coulombic and van der Waals interactions. The 

coulombic term is of the standard (unscreened) form:
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where qi and qj are partial charges on atoms i and j and rij is the distance between the two atoms. The 

van der Waals interaction between like atoms is chosen to be of the Lennard-Jones 9-6 form:
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Following standard convention we turn off non-bond interactions between bonded neighbors and 

bonded second neighbors, which imply that both for H2O and N2 the non-bond interactions operate only 

at the inter-molecular level. In addition, with no charge on the N-atoms, the coulomb interactions are 

present only between H2O molecules. The COMPASS parameters were developed to accurately 

reproduce not only the structural and vibrational data of isolated molecules, but for condensed phase 

properties (e.g., density, cohesive energy) as well. The parameters have been validated for a large 

number of (mostly) organic compounds encompassing both macro- and small-molecule systems [22,

25, 26], which include liquid N2 [22] and water [26] under ambient conditions.

Classical molecular dynamics (MD) simulations using the above force field are performed using 

LAMMPS [27]. NVT dynamics (i.e. constant system density) are carried out on a cubic simulation 

supercell, using the Nosé-Hoover thermostat with a time step of 1 fs. Periodic boundary conditions are 

employed, and both the coulomb and van der Waals contributions to the total potential energy 

evaluated through Ewald summation using the particle mesh Ewald technique [28]. For each phase 

point an equilibration run of 50000 steps (50 ps) on an initially randomized system is followed by a 

production run of 6x105 steps (0.6 ns), and the average pressure computed. The number of molecules in 

our simulation cell depends on the system under investigation. Thus for pure systems a size of 1200 

molecules seemed to suffice both for N2 and H2O (i.e., the results with larger system size, e.g., 1600 
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were essentially identical within statistical errors). Even for mixtures, a total of 1200 molecules 

appeared to yield accurate mixing-demixing phase boundary using the procedure described in section 

IV. However, to study the details of the phase separation dynamics, e.g., the time evolution of the

domain size as well as the pressure and energy relaxation time scales, much larger systems (up to 

259200 molecules) and longer simulation times (up to 4 ns) became necessary. 

III. Pure systems

In Fig. 1 we display the MD results for pure N2 and compare with predictions from an exponential-

6-based thermodynamic theory [14] parameterized by matching both equilibrium and shock wave 

experimental data. We also include experimental data at 673 K [29] to compare with the 700 K 

simulated isotherm. Additionally, using MD simulation results at different temperatures we have 

estimated a few thermodynamic points satisfying the Hugoniot condition:

)(
2 0

0
0 VVPPEE −

+
=− ,

which connects the (non-bond) energy, pressure, and volume (E, P, V) of the shocked state with the 

corresponding values (E0, P0, V0) of the initial, unshocked one. In the inset we show the MD-estimated 

Hugoniot (unfilled diamonds) together with two sets of shock wave data (unfilled squares [30] and 

circles [31]). We conclude that the force field parameters used in our MD provide a realistic 

representation of N2 for pressures up to at least 10 GPa and temperatures as high as a few thousand K, 

covering most of the thermodynamic region corresponding to non-dissociated supercritical fluid 

nitrogen. This is remarkable, considering that the force field parameters were originally developed by 

fitting low to room-temperature and low-pressure (1 atm) data.

H2O is a more interesting but more difficult case since it is harder to model with a consistent 

thermodynamic theory. Therefore, we compare the MD-computed values with experimental data [32,

33] from various sources, available for pressures up to ~ 3 GPa. As can be seen, the agreement is 

excellent for the entire temperature-pressure range of the experimental data. We also find that 

thermodynamic predictions that empirically account for the dipole moment of water [9] can be made to 
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agree with experimental data only over limited ranges of pressure and temperature. In order to avoid 

the limitations of these approaches, newer developments that treat the dipole moment explicitly are 

currently being pursued [34], and MD simulations such as reported here are expected to be a valuable 

guide. 

IV. H2O:N2 mixtures

Available experimental data on 3:1 and 2:1 molar mixtures of H2O:N2 indicate no mixing below T

~ 600 K, and a monotonic increase in the critical pressure above which the system phase separates, as 

indicated in Fig. 3(a). Previous theoretical calculations [1] suggest the possibility of phase separation at 

much higher temperatures and pressures, but the theory is not accurate enough to make a direct 

comparison with lower-T experimental data limited to T < 825 K. It is therefore of interest to study this 

mixture using MD simulations and compare with available experimental data.

Just like the pure phase we perform NVT dynamics on a cubic simulation cell of 1200 molecules

representing a 2:1 (molar) mixture of H2O:N2, i.e., 800 H2O and 400 N2 molecules in the cell. The 

initial configuration is a randomly mixed system, which is allowed to evolve through NVT dynamics at 

a fixed T and ρ. Following a total MD run of 6x105 steps (i.e. 0.6 ns), we compute the intermolecular 

diagonal and cross pair correlation functions gαβ(r) for all N and O atoms (i.e., α or β is either N or O), 

and from that the average coordination numbers )(Rnαβ and local number fractions )(RxNN and

)(RxOO , as defined below [35]: 

∫=
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In eq. (1) above, Nρ is the total number density in the system, and βx is the overall number fraction of 

species β, i.e., in our case of 2:1 (molar) mixture of H2O:N2, βx is 0.5 for both N and O. To 

characterize whether a mixture is homogeneous or phase separating we consider the sum of the two 

local mole fractions [36],

)()()( RxRxRx OONNs += , (3)

which should be equal to 1 (for all R) for a completely homogeneous mixture without any spatial 

variation of component densities. For an inhomogeneous mixture, particles of the same kind 

predominate the distribution, and 1)( >Rxs for R beyond the first peak of all the three pair-correlation 

functions NNg , NOg , and OOg . Fig. 3(a) displays the value of the function )(Rxs as a function of the 

overall system density ρ for a fixed temperature T = 850 K and for the choice of 3/1)/5( ρ=R , where 

R is in Å and ρ is in g/cc. For all densities considered, this value of R is beyond the first peak of all the 

gαβ.  Fig. 3(a) shows two distinct regions, a lower density region of smaller increase rate in )(Rxs ,

corresponding to a microscopically homogeneous system, and a higher density region of faster increase 

rate in )(Rxs indicative of microscopic inhomogeneities, i.e., phase separation. The intersection of 

these two regions can be identified as the transition density above which phase separation occurs [10, 

36]. Thus, from Fig. 3(b) the phase separation at T = 850K occurs at around a density of 1.1 g/cc, 

which corresponds to a pressure of  1.9 GPa, in excellent agreement with experimental data. The same 

procedure is followed at different temperatures, and the results are plotted in Fig. 3(a), along with the 

available experimental points. The theoretical results are in good agreement with the experimental data 

below 825 K.

The above results were obtained from 0.6 ns of MD simulation on a periodic system of 1200 

molecules and provide valuable information on the phase diagram of the N2-H2O binary system. At the 

same time, to study the characteristics of phase segregation kinetics in this system, including timescales 

for pressure and energy equilibration, domain growth and morphology, etc., we also carried out MD 

simulations on a much larger ensemble consisting of 259200 molecules (691200 atoms) for a total 

simulation time of 4 ns. Fig. 4(a-c) display snapshots from one specific run at T = 850 K and ρ = 1.6 

g/cc (P = 7.3 GPa) showing the self-similar domain evolution typical of phase separation kinetics. The 
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observed phase separation is in agreement with the phase boundary in Fig. 3(a). Details of this time 

evolution, including its dependence on the quench pressure will be published separately.

V. Departure from ideal mixing law

Determination of the mixing-demixing phase boundary from direct MD simulation, as illustrated 

in the previous section, involves long (~ 0.5-1 ns) MD simulations. An alternative criterion for phase 

separation is to compute the mixing energy defined by,

)()1()()( 22 22
NExOHExmixtureEE OHOHm −−−=∆ (4)

where E is the total energy averaged over a much shorter simulation (~ 20 ps), and OHx
2

is the mole 

fraction of H2O in the solution. One would then compare the mixing energy with a critical value to 

determine if the system would remain homogeneous or phase separate. In case of zero volume change

upon mixing, the ideal mixing law yields the following simple expression for the critical value of the 

mixing energy (see Appendix):
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for our 2:1 (molar) H2O:N2 mixture. In the above equation, 
2Nv and OHv

2
are the molar volumes of 

nitrogen and water respectively. So, according to the classical mixing law, the T-dependence of the 

critical value of mE∆ enters only through the (T, P) dependence of the molar volume ratio OHN vv
22

. 

From the pure phase results of Fig.1 and 2, we find that for 700 K ≤ T ≤  2500 K and 0.8 ≤ ρ ≤ 1.8,  the 

ratio OHN vv
22

lies within 1.5 and 1.7, which, according to eq. (5) corresponds to only a narrow range 

of critical TNkE Bm∆ between 0.474 and 0.479. However, as illustrated in Table I, our MD simulation 

indicates a stronger variation of this quantity with T, with the value at higher temperatures (1500 K) 

approaching the ideal mixing value.
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VI. Summary

Using classical MD simulations we show that a well-parameterized class II force field can 

reproduce experimental equations of state both for non-polar (N2) and polar (H2O) liquids over a wide 

range of temperatures and pressures relevant to detonation conditions. A standard sixth order mixing 

rule is shown to accurately determine mixing-demixing phase boundary. Given that experiments under 

extreme conditions are difficult and expensive, this provides an accurate and convenient way to 

extrapolate phase boundary information at higher temperatures and pressures, and can serve as a guide 

to systematic improvements in chemical equilibrium codes like CHEETAH [14].   
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APPENDIX: Ideal mixing law

From classical ideal mixing theory (under no volume changes upon mixing) the free energy of 

mixing Fm of the H2O:N2 system is given by [37]:

)1()1ln()1(1ln1

21
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vvTVk
F

B
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where V is the total volume of the system, kB the Boltzmann constant, ϕ the volume fraction of H2O, 

and v1(v2) the molecular volume of H2O (N2) respectively. The two phases will mix if Fm is a convex 

function of ϕ , i.e. 02

2
>
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The first two terms in Eq. (A.1) are related to the increase in configurational entropy due to mixing. If

we relate the last term of Eq. (A.1) to the excess Enthalpy mH∆ computed from MD simulations, 

which under the assumption of no volume change upon mixing is the same as excess internal energy 

mE∆ , condition (2) becomes:
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where N is the total number of molecules in the system, and we have recast the volume fractions ϕ and 

ϕ−1 in terms of mole fractions x and (1- x) by using the relations:

v
xv1=ϕ , and 

v
vx 2)1(

1
−

=−ϕ , (A.4)

where 21 )1(/ vxxvNVv −+== is the average molecular volume of the whole system. 

The critical concentration is obtained by setting the third derivative 0/ 33 =∂∂ ϕmF , which yields 

the following values of volume fraction and mole fraction at the critical point:

γ

γ
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For wide range of T and P of our interest OHN vv
22

=γ is between 1.5 and 1.7, which implies values 

of xcr between 0.65 and 0.69. Therefore, a H2O:N2 mixture in the 2:1 mole fraction ratio is expected to 

be close to the critical concentration.
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Table I. Calculated values of mixing energy ∆Em for a few phase points on the mixing-demixing phase 

boundary. Temperature, density, and the corresponding pressure of each phase point are indicated. 

T (K) ρ (g/cc) P (GPa) TNkE Bm /∆

700 1.10 0.6 0.399

850 1.40 1.9 0.511

1000 1.29 3.6 0.573

1200 1.55 7.8 0.553

1500 1.90 18.8 0.497
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Figure Captions:

1. Pressure-density isotherms for N2 at three different temperatures (indicated): MD results (♦, 

●, ▲) compared with thermodynamic theory predictions (◊, ○, ∆) with parameters obtained by 

fitting equilibrium and shock wave experimental data. Also included are some experimental 

data points [29] (crossed squares) at 673 K. For each isotherm a curve (fit to data represented 

by unfilled symbols) is drawn as a guide to the eye. Inset: MD-estimated Hugoniot (◊) 

together with two sets of shock wave data (□ [30] and ○ [31]).

2. Pressure-density isotherms for H2O: MD results (♦, ●, ▲) compared with experimental steam 

data (◊, ○, ∆) (ref. [32]) for three different temperatures. Two data-points at T ~ 1500 K (□) 

from ref. [33] are also included. Curves for each isotherm are drawn as a guide to the eye.

3. Mixing-demixing phase boundary points computed by MD and compared with experimental 

data: (a) computed critical pressure for a few different temperatures, with some experimental 

numbers indicated. Inset: close-up view of experimental + MD data for T between 600K and 

900K; (b) Static cross-correlation factor (Xs – 1) plotted as a function of density at T = 850 K, 

and critical pressure indicated.

4. A large-scale MD simulation (691200 atoms) at T = 850 K and ρ = 1.6 g/cc (P = 7.3 GPa), for 

a 2:1 (molar) H2O:N2 mixture showing progressive phase separation into N2-rich and H2O-rich 

domains: (a) Time t = 0, initial mixed state; (b) t = 1 ns; (c) t = 3 ns. Only N-atoms (blue) and 

O-atoms (white) are displayed for clarity.
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Figure 1
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Figure 2
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Figure 3(a)
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Figure 3(b)



(a)                                                                                     (b)

(c)

Figure 4




