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Abstract

We apply a heuristic technique known as “source tilting” to a Monte Carlo solu-
tion for radiation transport, in the difference formulation, that otherwise employs a
piecewise-constant treatment of the material temperature. Source tilting improves
the accuracy of the piecewise-constant treatment, reducing the excessive energy
flow that occurs in the thick limit. An analysis of the cause of excessive energy
flow suggests an interpolation scheme that removes this defect, obtaining the cor-
rect diffusion limit flux between zones. The results obtained with our interpolation
scheme agree almost identically to those of a self-consistent piecewise-linear treat-
ment of the difference formulation while avoiding its additional costs. The resulting
method is capable of providing robust and accurate calculations for problems in-
volving optically thick zones. We comment on the monotonicity issues that arise
when employing this transport method.
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1 Introduction

In computational radiation transport, there has been a substantial amount of
recent interest in algorithms that have the diffusion limit [1]. These algorithms
are more generally referred to as asymptotic-preserving discretization schemes
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[2]. A discretization of the transport equation is said to have the diffusion limit,
or be asymptotic-preserving, if it provides a valid discretization of the diffusion
equation obtained from the transport equation using a continuum asymptotic
analysis, when a similar asymptotic analysis is applied to the discretization
of the transport equation. If the discretization of the transport equation is
asymptotic-preserving in this sense it will provide accurate solutions as the
physical system approaches the diffusion limit, without having to shrink the
zone sizes, or time steps, to scales that are small compared to the mean free
path, or mean free time, of a photon.

The development of asymptotic-preserving transport algorithms has progressed
for both deterministic and Monte Carlo solution methods. Beyond the relevant
work referred to in [1], significant progress was made in this area for the Sn

method applied to the non-linear transport of thermally emitted photons [3].
More recently, the Monte Carlo treatment of the transport equation has been
extended to a self-consistent piecewise-linear treatment of the material state
variable, first for a linearized grey treatment in the standard formulation of
radiative transport [4], then in the difference formulation [5]. The result is a
robust treatment that is accurate in the presence of optically thick zones, as
was the case for the earlier work employing the Sn method.

The Implicit Monte Carlo (IMC) algorithm [6], augmented by random walk
and source tilting [7], has been an effective tool for the transport of thermally
emitted photons for quite some time. The random walk process softens the
deleterious computational impact of effective scattering, while source tilting
is used to reduce the teleportation of thermal energy caused by the piecewise-
constant treatment of the material temperature as the time step size is re-
duced. Although IMC has been a workhorse for some time it does not provide
correct coupling between the radiation field and the material energy [8,9].

The difference formulation for the transport of thermally emitted photons [10]
removes the issue of computational efficiency associated with a Monte Carlo
treatment of photon transport in a thick system. A self-consistent piecewise-
linear treatment of the material state variable in the difference formulation
removes the energy teleportation problem associated with the energy absorbed
on one side of a zone immediately causing emission of thermal energy on
the other side of the zone. Although the implementation of a self-consistent
piecewise-linear treatment of the difference formulation in higher dimensions
is possible in principle, the task of implementing all of the required particle
types and associated scoring arrays is daunting.

With due respect for the self-consistent piecewise-linear treatments for the
transport of thermally emitted photons, the question of whether or not a
variation on the theme of source tilting [7] can successfully address the is-
sue of energy teleportation, while avoiding the higher cost of a self-consistent
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piecewise-linear treatment, is still open. This question is especially important
when considering integrating the difference formulation with hydrodynamics
codes that otherwise implement the material state variables as constant func-
tions of space within a zone.

Fleck and Canfield [7] argue that the spatial sampling of Monte Carlo source
particles in optically thick media must be consistent with the spatial gradients
of the material state variable, Φ = aT 4, if transport in such media is to be
calculated accurately. In their paper, they consider a linear (within a zone)
spatial sampling scheme, with the slope derived from the values of Φ in nearest
neighbor zones. This sampling scheme has become known as “source tilting,”
or just “tilting,” in the lore of the IMC algorithm, because the constant value
of Φ in a zone is tilted in order to produce the spatial distribution of source
particles. More formally, in this scheme the piecewise-constant form for Φ(x)
in the problem domain is mapped onto a piecewise-linear function in some
prescribed fashion.

In this paper we investigate two such mappings in the context of the difference
formulation. The first, which we call “source tilting,” is identical to the scheme
of Fleck and Canfield. The details of this scheme in the difference formulation,
and an analysis of its consequences, are described in Sect. 4. It is in this anal-
ysis that the goal of source tilting is more clearly understood, this being that
of getting the flux (between zones) produced by the Monte Carlo simulation
to agree with the correct continuum diffusion limit, and as a result produce an
asymptotic-preserving algorithm. It is the discontinuity in the value of Φ at a
zone boundary, when it is not physical, that produces excessive flux between
adjoining zones.

The results of the analysis of source tilting inspires a second “interpolation”
scheme. Recognizing that unphysical discontinuities in Φ(x) are the source
of excess flux between zones in the optically thick limit, we remove these
discontinuities by using linear interpolation of Φ between zone centers. This
produces the correct diffusion limit for the flux between zones. Zone interfaces
where sharp discontinuities in the material opacity occur are dealt with by
carefully handling the derivative of Φ(x) approaching the discontinuity from
the left, and the right. This interpolation scheme, described in Sect. 5, provides
solutions nearly identical to those of a self-consistent piecewise-linear finite
element method and is our preferred method for practical calculations.

In Sect. 2 we give a cursory review of the difference formulation. Section 3 de-
scribes the piecewise-constant implementation of the difference formulation,
supporting a segue to Sects. 4 and 5 that explain our source tilting and inter-
polation algorithms, respectively. We show computational results in Sect. 6,
comparing them with those of piecewise-constant and self-consistent piecewise-
linear calculations. We also compare our results with those of recently pub-
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lished benchmark calculations. We perform a computational error analysis of
our algorithms and comment on monotonicity issues, giving physical argu-
ments and constraints for when monotonicity is not violated. Section 9 recaps
our results and contains our conclusions. To keep the presentation concise, we
reserve lengthy derivations for appendices.

2 Difference formulation

Radiation transport in media is described by the Boltzmann equation for
photons coupled to the material energy equation,

1

c

∂I

∂t
+ Ω · ∇I =−σa(I −B) , (1)

∂Emat

∂t
=
∫

dν
∫

dΩσa(I −B) + G , (2)

respectively. Here I represents the intensity field, σa the absorption cross sec-
tion, B = 2hν3

c2
(ehν/kT − 1)−1 is the blackbody field, Emat the energy of the

material, ν the frequency, G is a volumetric heat source, and Ω the direction of
travel for photons. It is assumed that the material is in local thermal equilib-
rium (LTE) at the material temperature, T . In this formulation for radiative
transport, we assume that there is no physical scattering and that the medium
is static. The difference formulation for photon transport,

1

c

∂D

∂t
+ Ω · ∇D =−σaD − 1

c

∂B

∂t
− Ω · ∇B , (3)

∂Emat

∂t
=
∫

dν
∫

dΩσaD + G , (4)

is obtained from the standard formulation, Eqs. (1) and (2) above, by defin-
ing the photon intensity field relative to a Planckian at the local material
temperature, using the definition D = I − B. The two formulations for the
transport of thermally emitted photons are formally equivalent. The benefit
of working with the difference formulation, at least when employing a Monte
Carlo solution technique, is that noise is greatly reduced in the thick limit
[11].

Although the derivative nature of the source terms in the difference formula-
tion,

−1

c

∂B

∂t
− Ω · ∇B , (5)

appears complicated, these sources are relatively easy to implement in a Monte
Carlo solution of the transport equation. The fact that the sources are indepen-
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dent of the material opacity allows them to be sampled without uncontrolled
approximations, leading to a cleaner and more efficient implementation, com-
pared to the standard formulation of transport. The frequency dependence of
the source terms is factored out using the chain rule,

−1

c

∂B

∂t
− µ

∂B

∂x
=

4π

c

∂B

∂Φ

[
− 1

4π

∂Φ(x, t)

∂t
− µc

4π

∂Φ(x, t)

∂x

]
, (6)

and it can be shown that (4π/c)∂B/∂Φ is a frequency distribution, since is
it is positive and its frequency integral is unity [10,5]. Here Φ = aT 4 is the
radiation energy density of a black body at the material temperature. We have
assumed slab geometry and µ is the cosine of the direction of the radiation
relative to the x-axis. For the remainder of the paper we will present results
in slab geometry.

3 Piecewise-constant implementation

The basic discretization strategy used in this paper is identical to the one used
in [11]. The problem is divided into N zones, enumerated by i ∈ (1, N). The
position of the left edge of zone i is xi. The position of its right edge is xi+1,
this also being the position of the left edge of the next zone. The value of
the material state variable, T , or equivalently Φ = aT 4, is a constant function
of space within each zone as depicted by the shaded regions of Fig. B.1. Its
values are denoted as Φi. The material energy density, Emat, and the material
opacity, σa, are treated as constant functions of space within each zone as
well. These material properties may be represented by simple formulas, or by
more complicated physical data tables indexed by the material temperature
and density, as the case may be. If the boundary conditions for a problem are
defined as thermal baths, the boundary condition for the left side is Φ0 and
the boundary condition for the right side is ΦN+1.

The temporal treatment of the material state variable, Φ, is piecewise-constant
in time. However, it is treated implicitly (as in backward-Euler), taking on its
unknown end of time step value immediately after the beginning of the time
step, t0, for the duration of the time step, ∆t. This is done in order to obtain
unconditional stability for the time evolution of a problem. If the opacity of
the material is a function of the material state variable it is evaluated using
the known value of the material state variable at the beginning of the time
step. In order to be able to run the Monte Carlo solution of the transport
equation, the frequency distribution of source particles (4π/c)∂B/∂Φ is also
evaluated explicitly, using the known value of the material state variable at the
beginning of the time step. The details of sampling the frequency distribution
of the source terms are included in [10,5].
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The gradient source term is zero within each zone i since the field Φi is constant
there. Because of the discontinuities at zone interfaces, the gradient source
terms are

−µc

4π

∂Φ

∂x
= −µc

4π

N+1∑
i=1

δ(x− xi) (Φi(t0 + ∆t)− Φi−1(t0 + ∆t)) . (7)

Here δ(x − xi) is the Dirac delta function and the Φi(t0 + ∆t) are unknown
values of the material state variable that must be implicitly solved for. Note
that there are N + 1 zone interfaces.

To determine the sources due to the time derivative term in Eq. (6), we as-
sume that the fields immediately jump to their end of time step values at the
beginning of the time step. This gives

− 1

4π

∂Φi

∂t
= − 1

4π
δ(t− t0)[Φi(t0 + ∆t)− Φi(t0)] . (8)

This source is constant as a function of space within each zone and thus
sampled uniformly with a partially unknown factor [Φi(t0 + ∆t)− Φi(t0)].

The implementation of the angular and spatial distribution of the source terms
is obtained by writing them in terms of distribution functions for the gener-
alized particle coordinates. For a thorough discussion of this, the reader is
referred to [10] and references within.

The unknowns, Φi(t0+∆t), are calculated by solving the energy balance equa-
tion, Eq. (4), at the end of the time step, t0 + ∆t. To accomplish this, we first
formally integrate Eq. (4) from t0 to t0 + ∆t to obtain the following function,

f(x) = Emat(T (x, t0))− Emat(T (x, t0 + ∆t))

+ 2π
∫ t0+∆t

t0
dt
∫

dν
∫

dµσa(ν, T (x, t0))D(x, t; ν, µ) +
∫ t0+∆t

t0
dt G(x, t) .

(9)

We then integrate f(x) within each zone, thereby defining the following quan-
tities,

fj =
∫ xj+1

xj

dxf(x) ,

= Ej(t0)− Ej(t0 + ∆t) + (σD)j + Gj , (10)

where
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Ej =
∫ xj+1

xj

dxEmat(T ) = ∆xi
ρcν

a1/4
Φ

1/4
i , (11)

Gj =
∫ xj+1

xj

dxG(x, T ) , (12)

and

(σD)j = 2π
∫ xj+1

xj

dx
∫ t0+∆t

t0
dt
∫

dν
∫

dµσa(ν, T (x, t0))D(x, t; ν, µ)

= Nj

+
∑

i

(DDT )i
j (Φi(t0)− Φi(t0 + ∆t))

+
∑

i

(DDX)i
j (Φi−1(t0 + ∆t)− Φi(t0 + ∆t)) . (13)

We have assumed that ρcν is constant within each zone, during the time step,
and Nj is the contribution from the census particles to zone j from the prior
time step, (DDT )i

j is the contribution to zone j from the time-derivative
sources emanating from zone i, and (DDX)i

j is the contribution to zone j
from delta function sources from zone edge i. Note the non-linearity of Φ in
Eq. (11). Our unknown Φi(t0 + ∆t) are found by demanding that fj = 0 for
all j. We solve for these by way of a Newton-Raphson iteration algorithm.

When zone sizes are much greater than one mean free path, the piecewise-
constant implementation of the difference formulation suffers from excessive
energy flow for both time dependent problems and situations approaching
steady state. To gain some understanding of this issue, consider a finite slab
of thickness L, composed of a material with a constant absorption coefficient,
σ. The material is heated on the left with a thermal bath, ΦL, and cooled on
the right with a thermal bath, ΦR, with ΦL > ΦR. We consider the situation
where steady state has been reached, with a constant flux of energy, F , flowing
to the right.

Within the slab, in the continuum diffusion limit [10], the flux is given by

F = − ca

3σ

∂T 4

∂x
= − c

3σ

∂Φ

∂x
. (14)

Since F is constant, Eq. (14) states that Φ is linear as a function of space
within the problem volume where the diffusion limit is valid. The diffusion
limit is not valid in the boundary layers within one mean free path, or so, of
the problem boundaries. For the purpose of this discussion we can ignore the
corrections needed to accommodate this detail.

In our piecewise-constant discretization, as the problem approaches steady
state, we may ignore the ∂Φ/∂t source term. The remaining sources are the
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∂Φ/∂x sources due to the discontinuities in Φ that occur at the boundaries
between zones. Under conditions that each zone is optically thick, (xi+1 −
xi)σ � 1, these sources are completely absorbed in the zone that they are
directed into. The flux leaving each zone boundary at xi traveling to the right
is computed by integrating the source for positive µ,

F (xi) =
c

4
(Φi−1 − Φi) . (15)

An equal amount of negative source leaves the zone boundary in the opposite
direction.

When the piecewise-constant discretization of the problem reaches steady
state, the flux at all of the interfaces between the zones is the same, and
by Eq. (15) the step in the value of Φ at all of the interfaces is the same. The
total change in Φ, ΦL − ΦR, is distributed across N + 1 interfaces, and the
flux traveling across the problem is

F =
c

4

(ΦL − ΦR)

N + 1
. (16)

It is obvious from Eq. (16) that computational results using a piecewise-
constant treatment of the source terms will poorly represent optically thick
zones as the flux does not depend upon the opacity as it should. By suitably
adjusting the zone sizes, subject to the constraint that zones remain optically
thick, any monotonic solution for Φ(x) can be obtained. Figure B.3 shows
examples of how the steady state solution of Φ, obtained from actual Monte
Carlo simulations, can change due to the zoning of the problem. Here a steady
state profile of Φ = aT 4(x) is plotted. The changes in zoning are apparent from
the figure. In all three cases, the solution is monotonic, but can strongly dif-
fer from the correct solution: a straight diagonal line. To obtain an accurate
solution properly driven by the physics one must ensure that all of the zones
in the problem are optically thin.

In order to get the correct flux for a problem with optically thick zones, we
must go beyond a piecewise-constant treatment of the material state vari-
able. The symbolic implicit Monte Carlo (SIMC) method, in the difference
formulation, was extended to a self-consistent piecewise-linear treatment of
the material state variable in [5], following the lead of [4] who did it for a
linearized form of the standard formulation of transport. The implementation
of the self-consistent piecewise-linear method is complicated, and more ex-
pensive, but it produces accurate solutions for optically thick zones. An open
question is whether or not source tilting, or a variation on this theme, can ob-
tain these same accuracy benefits at a lower computational cost. In the next
sections, we turn to the construction and evaluation of suitable schemes for
the difference formulation.
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4 Source tilting

In this scheme, reformulating what appears in [7], the tilted value of Φ to use
within zone i, Φ̃i(x), is constructed by matching the slope of the line found
by connecting the centers of the neighboring zones. The slope m using this
construction is

m = 2

(
Φi+1 − Φi−1

xi+2 − xi + xi+1 − xi−1

)
. (17)

We require that this prescription does not change the total integrated source
strength of the original piecewise-constant profile, thus keeping the total en-
ergy emitted by the tilted sources the same as their piecewise-constant coun-
terparts. This is done by tilting about the value Φi at the center of the zone.
By inspection, the following expression for Φ̃i(x) satisfies this requirement:

Φ̃i(x) = 2

[
Φi+1 − Φi−1

xi+2 − xi + xi+1 − xi−1

]
(x− 1

2
(xi+1 +xi))+Φi xi ≤ x < xi+1 .

(18)
Defining the basis functions χ1

i (x) and χ2
i (x) as

χ1
i (x) =

xi+1 − x

xi+1 − xi

, (19)

χ2
i (x) =

x− xi

xi+1 − xi

,

Eq. (18) can be recast as

Φ̃i(x) = Φ1
i χ

1
i (x) + Φ2

i χ
2
i (x) , (20)

where

Φ1
i = (Φi+1 − Φi−1)

(xi − xi+1)

(xi+2 − xi + xi+1 − xi−1)
+ Φi , (21)

Φ2
i = (Φi+1 − Φi−1)

(xi+1 − xi)

(xi+2 − xi + xi+1 − xi−1)
+ Φi . (22)

The basis functions of Eq. (19) allow us to express our tilted field in a compact
way.

Equations (18) through (22) are valid for interior zones where the zone in ques-
tion has nearest neighbor zones on either side. For zones adjoining a problem
boundary, the prescription for performing the tilt must be modified. In these
cases, the slope is determined by a line connecting the centers of the nearest
neighbor zone and the boundary zone. For the left zone boundary, one has
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Φ1
1 = Φ1 − (Φ2 − Φ1)

(x2 − x1)

(x3 − x1)
, (23)

Φ2
1 = Φ1 + (Φ2 − Φ1)

(x2 − x1)

(x3 − x1)
. (24)

The right boundary zone has

Φ1
N = ΦN − (ΦN − ΦN−1)

(xN+1 − xN)

(xN+1 − xN−1)
, (25)

Φ2
N = ΦN + (ΦN − ΦN−1)

(xN+1 − xN)

(xN+1 − xN−1)
. (26)

Figure B.1 shows an example of the tilted field when constructed from an
original piecewise-constant field. Note that for this tilt prescription, the tem-
peratures on the left- and right-hand side of an interface between zones are
usually not equal, leading to a discontinuous Φ̃(x).

The source terms for the tilted treatment of Φ are constructed by making the
replacement Φ → Φ̃ in the time derivative and gradient terms of Eq. (6). We
now examine these source terms in greater detail. There are two contributions
to the gradient source: contributions from within a zone due to the fact that
Φ̃i(x) is not constant within zone i, and a residual contribution from the zone
edges because Φ2

i is not equal to Φ1
i+1, in general. Within zone i, the gradient

source term is

−µc

4π

∂Φ̃i

∂x
= −µc

4π

Φ2
i − Φ1

i

xi+1 − xi

. (27)

Substituting the values for Φ1
i and Φ2

i obtained from Eqs. (21) and (22), re-
spectively, or the slope directly from Eq. (17), we obtain

−µc

4π

∂Φ̃i

∂x
= −µc

2π

Φi+1 − Φi−1

xi+2 − xi + xi+1 − xi−1

. (28)

Note that the gradient source term within zone i does not depend upon Φi.
For zone 1 and zone N , the boundary zones for the problem, the special cases
of Eqs. (23) through (26) are used to construct this source term.

At the boundary between zones a singular contribution to the gradient source
term occurs due to the discontinuity in Φ̃ that appears there:

−µc

4π
δ(x− xi)(Φ

1
i+1 − Φ2

i ) . (29)

This source term is expanded in terms of the Φi by substituting Φ1
i+1 and Φ2

i ,
defined in Eq. (19). It is instructive to consider the case where the zone sizes
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are equal. The singular contribution to the gradient, at xi, in this case is

−µc

4π
δ(x− xi)

(
3

4
(Φi − Φi−1)−

1

4
(Φi+1 − Φi−2)

)
. (30)

Comparing Eqs. (30) and (7), it can be seen that the effect of source tilting
reduces the source strength at the edges between zones. To the degree that
the four (zone center) values, {Φi−2, Φi−1, Φi, Φi+1}, fall on a straight line, as
a function of x, the strength of the singular contribution to the ∂Φ/∂x source
term is reduced to zero.

Assuming that Φ̃(t) jumps immediately to the end of time step value at the
beginning of the time step, the time-derivative source term gives

− 1

4π

∂Φ̃i

∂t
= − 1

4π
δ(t− t0)

2∑
l=1

−(Φl
i(t0 + ∆t)− Φl

i(t0))χ
l
i(x) . (31)

Except for the fact that we must expand the Φl
i in terms of the Φi using Eqs.

(19) through (22), this source term has the same form as the equivalent one in
the self-consistent piecewise-linear treatment [5]. It is sampled in an identical
manner. For a detailed analysis of these source terms, the reader is referred
to [5] and the references within.

In a piecewise-constant treatment of the material state variable, the source
particles due to ∂Φ/∂t are emitted uniformly within each zone. However, tilt-
ing requires additional source particles to be emitted with a linear distribu-
tion (due to x-dependence in Eq. (31)) within each zone. Due to the tilting of
sources, the unknown factor in the weight of a photon depends on the three
terms Φi+1(t0 + ∆t), Φi−1(t0 + ∆t), and Φi(t0 + ∆t), as opposed to the single
term Φi(t0 + ∆t) in the piecewise-constant case. In Appendix A we show the
non-linear system of equations (analogous to Eq. (13)) that are used in solving
the energy-balance equation using this tilt prescription.

5 Interpolation

In regions where material state properties (e.g. opacity, specific heat, etc.) of
the slab are smooth and continuous, it is natural to expect that the material
temperature (and the sources constructed from the material temperature) is
continuous as well. By definition, a piecewise-constant implementation of the
temperature can never have sources that are continuous. The tilting prescrip-
tion for Φ described in the previous section attempts to build sources from
temperature profiles that are, loosely speaking, closer to being continuous
since the temperature within each zone has been tilted. Perfect continuity is
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not achieved because the tilting prescription allows for unequal temperatures
at the left and right sides of each zone boundary. This is evident from the fact
that interior delta function sources still exist in this prescription for source
tilting (i.e. Eq. (30)).

In this section we construct a prescription for Φ̃(x) that enforces continuity
by linearly interpolating between the Φi at the zone centers as depicted in
Fig. B.2. Thus the sources are constructed using “shifted” or “offset” zones
that have zone edges located at the centers of the original N zones defined in
the piecewise-constant discretization. There are N+1 such shifted zones, N−1
of them being interior, with zone edges being derived from the zone centers of
the piecewise-constant discretization, and two half zones on the left and right
hand sides of the problem (or adjoining any locations in the problem where
the material properties undergo significant change). Because the sources terms
are defined on these shifted zones, the Monte Carlo particles are emitted from
the shifted zones as well. The energy deposition of the Monte Carlo particles
is done in the original zone structure.

In the piecewise-constant discretization, the problem volume is divided into N
zones, enumerated by i ∈ (1, N), with the left edge of zone i being located at
xi and the right edge being located at xi+1. The left edge of an interior shifted
zone j ∈ (2, N − 1) is (xj−1 + xj)/2 and the right edge is (xj + xj+1)/2. The
interpolated field for interior shifted zone j is given by

Φ̃j(x) = Φj−1

[
xj+1 + xj − 2x

xj+1 − xj−1

]
+ Φj

[
2x− xj − xj−1

xj+1 − xj−1

]
, (32)

while the interpolated field for the half zones at the problem boundaries (or
equivalently, zone interfaces between significant changes in material proper-
ties) are given by

Φ̃1(x) = Φ̃2(x) , (33)

and

Φ̃N+1(x) = Φ̃N(x) . (34)

We construct our sources using the interpolated field defined by Eq. (32), and
the special cases for the half zones at boundaries.

In the case of source tilting described in Sect. 4 we had the advantage that the
scheme for producing the tilted field, Φ̃i(x), from the piecewise-constant field,
Φi, conserved the total energy (in the field Φ) within the zone. As a result of
this, the ∂Φ/∂t source term, when integrated within the zone during the time
step, was identical to its piecewise-constant counterpart. This equality is not
automatic in the case of interpolation, and as we show below, the integrated
time derivative source terms are not identical to their piecewise-constant coun-
terparts in the general case of arbitrary zone sizes.
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The gradient sources, on the other hand, do not suffer from this defect. Its
source within each interior shifted zone j is given by

−µc

4π

∂Φ̃j(x)

∂x
=

µc

8π

[
Φj(t0 + ∆t)− Φj−1(t0 + ∆t)

xj+1 − xj−1

]
, (35)

remembering that the index j of Φ̃j refers to the shifted zone j, while the
indices on the right hand side of the equation refer to zone indices of the
original piecewise-constant discretization. Monte Carlo sampling of this source
term is done with a uniform distribution, within the shifted zone, and the
unknown factor carried by the particles that must be solved for is Φj(t0+∆t)−
Φj−1(t0+∆t). Unlike the case for the original piecewise-constant discretization,
and the case for source tilting, there are no δ(x) function sources on the
boundaries between zones, except in the case of zone edges adjoining problem
boundaries or significant changes in material properties where the continuity
is not enforced.

The gradient sources, when integrated over any shifted zone j, are identical
to the piecewise-constant integrated sources within the same region, since

−µ
∫ xj+1+xj+2

2

xj+xj+1
2

dx
∂B

∂x
= −µ∆B = −µc

4π
(Φj+1 − Φj) . (36)

This expression holds if either the interpolated field, Eq. (35), or the piecewise-
constant field, Eq. (7), is used. Note that there are no constraints on the sizes
of the zones.

In sharp contrast to source tilting, where the interior δ-function sources are
only softened, the δ-function sources are completely eliminated when using
interpolation, except where sharp discontinuities in the material opacity occur
and one would expect a discontinuity in the solution. The strength of the δ-
function sources of the original piecewise-constant treatment have now been
completely spread across the zones without introducing a new particle type,
obtaining the benefit of the improved source treatment without increasing
computational overhead.

The time-derivative source within each shifted zone is given by

− 1

4π

∂Φ̃j

∂t
= −δ(t− t0)

4π

[
∆Φj−1

(
xj+1 + xj − 2x

xj+1 − xj−1

)
+ ∆Φj

(
2x− xj − xj−1

xj+1 − xj−1

)]
,

(37)
where

∆Φj = Φj(t0 + ∆t)− Φj(t0) .

Sampling of this source must be done from a linear distribution due to the
x-dependence of this term.
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We now again integrate this source within the same integration region as was
done in Eq. (36), obtaining

− δ(t− t0)

4π

(
∆Φj+1[

xj+2 − xj+1

2
] + ∆Φj[

xj+1 − xj

2
]

− 1

4
[(xj+2 − xj+1)− (xj+1 − xj)](∆Φj+1 −∆Φj)

)
. (38)

Using only the piecewise-constant time-derivative source, Eq. (8), the analo-
gous integration gives

−δ(t− t0)

4π

(
∆Φj+1

(
xj+2 − xj+1

2

)
+ ∆Φj

(
xj+1 − xj

2

))
. (39)

The two expressions above differ by the term 1
4
[(xj+2−xj+1)−(xj+1−xj)](∆Φj+1−

∆Φj), which vanishes if one uses equally spaced zones. For problems that have
unequal zone sizes (see Sect. 6.3), we choose to interpolate only the gradient
source term, leaving the time derivative term piecewise constant, Eq. (8),
thereby preserving energy conservation. This gives satisfactory results.

In Appendix B we show the non-linear system that is constructed when solving
the energy balance equation for the case of interpolation.

6 Results

To test the efficacy of our modified source term treatment, we run Marshak
wave [12] calculations, comparing our results to the self-consistent piecewise-
linear work shown in [5] and to piecewise-constant calculations [11]. We also
run some of the benchmark calculations shown in [13], and Larsen’s test prob-
lem defined in [14]. The latter examples exhibit material opacities that are
discontinuous in space as well as being temperature and frequency dependent.
Larsen’s test problem also requires unequal zone sizes.

6.1 Marshak waves

For these calculations we assume a grey opacity σ = 200/cm. Initial conditions
consist of a left problem boundary at x0 = 0 in contact with a 1 keV heat
bath and an initial temperature of the slab at or near zero. Our heat capacity
is .1 jerk/cm-keV (1 jerk = 109Joules). To avoid negative excursions of the
material temperature (due to the spatial discretization of material properties),
we employ a slope limiting procedure similar to that of [15] for our source
tilting algorithm. For our interpolation algorithm, we enforce positivity by
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replacing any negative temperature excursion at the end of a time step by the
initial temperature.

Figure B.4 shows comparisons of a calculated Marshak wave at t = 30 shakes
(shake=1 × 10−8 seconds) using source tilting and the original piecewise-
constant treatment, for: (a) 12.5, (b) 25, (c) 50, and (d) 100 mean free paths
(mfp) per zone. The initial temperature of the slab was zero. In each of the
four panels of the figure, the top line represents the piecewise-constant calcu-
lation, while the bottom line is calculated using the source tilting procedure.
As the optical thickness of the zones is decreased, the temperature profile of
the Marshak wave changes. The changes are quite significant for the piecewise-
constant calculations, and less so for the calculations employing source tilting.

Figure B.5 is completely analogous to Fig. B.4, except that calculations are
now performed using our interpolation procedure. Aside from discretization
effects near the foot of the Marshak wave, the profiles of the waves when
calculated using interpolation are nearly stationary as we vary the zone size.
This is especially evident when the results are overlaid, as shown in Fig. B.6
(a). Here we have drawn lines connecting the zone centers for convenience
when comparing to the analogous 80 zone (12.5 mfp/zone) result calculated
using the self-consistent piecewise-linear method of [5], shown in panel (b).
Our results agree very well.

It is clear from our results that source tilting/interpolation improves our Mar-
shak wave calculations by reducing the dependence of propagation speeds
on zone sizes. Interpolation of the sources gives propagation speeds with the
least sensitivity to zone sizes, even to the point where each zone can con-
tain 100 mfp. Excessive energy flow, in this case, is almost eliminated. This
is a remarkable result. In fact, the reason for excessive energy flow in thick
systems is clear. In the piecewise-constant treatment all gradient sources (δ-
function sources) reside on zone boundaries and directly contribute to energy
flow between zones. This is an unphysical effect. In both interpolated and self-
consistent piecewise-linear calculations, only those sources born close enough
to zone edges contribute to transport. In the case of source tilting, only part
of the δ-function sources are spread into the zones. Hence a calculation using
source tilting can still suffer from excessive energy flow, though less so than
in a piecewise-constant treatment. With the difference formulation, the mech-
anisms causing unphysical energy flow are easily understood, and remedied.

6.2 Test cases from Reference [13]

The first of two examples from [13] involve using a temperature-dependent
opacity of the form σ = σo/T

3, where σo = 300 keV3/cm. The heat capacity
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of the slab is .3 jerk/cm-keV. A 1 keV heat bath is in contact with the left
side of a slab of width .05 cm. We have performed these calculations using
interpolation. Figure B.7 shows results comparing calculations with 10, 20, 50,
and 100 zones. Figure B.8 shows similar results, but this time with different
time steps of ∆t =1.25×10−6, 1.25×10−5, and 1.25×10−4 shakes. Our results
are stationary as the zone size and time step size are varied. They also agree
well with [13] (see Figs. 1, 3, and 4 of [13]).

The second example uses a slab of width .075 cm. The heat capacity is the
same as the first example, and the opacity of the slab has a similar 1/T3

dependence, where

σo(x) =


300 keV3/cm 0<x<.025

.003 keV3/cm .025<x<.05

300 keV3/cm .05<x<.075 .

Thus there are significant discontinuities in the material opacity. Within each
of the three regions separated by the changes in opacity there are 50 zones
(150 zones in the problem). Figure B.9 shows results at various times using
interpolation, with continuity enforced across the changes in opacity (red) and
discontinuity allowed at the changes in opacity (black). Failing to properly
support the physical discontinuity in the solution where the material opacity
has a discontinuity produces an error, seen in the kinks in the solution near
these changes in opacity. Figure B.10 shows a close-up of Fig. B.9 (c) where
the kinks are more readily distinguishable. In panel (d) of Fig. B.9, we show
our solution near steady state. This figure differs from the result shown in [13].
However, we believe our solution near steady state to be correct. One would
expect the temperature to be (nearly) continuous, allowing only discontinuities
in the first derivative at the discontinuities in opacity. One would also expect
a monotonically decreasing (going to the right of the slab) solution at steady
state. Our result more closely matches these conditions. We suspect that the
result shown in [13] has not reached steady state.

The kinks in the solution shown in Fig. B.9 are easily understood. In the
difference formulation, any discontinuity in temperature manifests itself as a
δ-function source due to the gradient terms in Eq. (5). Temperature disconti-
nuities are present at problem boundaries and where there is significant change
in material opacity. By requiring temperature continuity across these changes
in opacity, the δ-function source is replaced by a uniform source within the
shifted zone that contains the discontinuity. The latter source will produce
weaker energy flow across the zone boundary than the original (and physi-
cal) δ-function source. Thus there will be insufficient heating and cooling of
the zones adjacent to the discontinuities in opacity, causing the kinks seen in
Fig. B.9.
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6.3 Larsen’s test problem

Larsen’s test problem is originally defined in [14]. A slab with a thickness of
4 cm is heated by a 1 keV radiative source at the right boundary. The heat
capacity of the slab is constant, .05109 Jks/cm3-keV. The opacity is defined
as

σ(ν, T, x) = σo(x)
1− e−hν/kT

(hν/keV )3
,

where

σo(x) =


1 keV3/cm 0<x<1

1000 keV3/cm 1<x<2

1 keV3/cm 2<x<4 .

This opacity closely models inverse Bremsstrahlung absorption corrected for
stimulated emission. The spatial zoning is also defined as

∆x =


.10 cm 0<x<1

.02 cm 1<x<2

.20 cm 2<x<4 .

As there is no analytic solution, we compare our result with a similar calcula-
tion done using a much finer spatial zoning and smaller time step, as seen in
Fig. B.11. The plots show results at a time t = .090 shakes, or 900 ps, using
a time step of .01 shakes (10 ps). We also compare to calculations using the
piecewise-constant algorithm (no source tilting) in Fig. B.12. Panel (a) of this
figure shows a close-up of the interior optically thick region with calculations
using interpolation and zone refinements of 1×, 2×, 4×, and 8× the original
zoning. Panel (b) shows the analogous results using the piecewise-constant
algorithm. Note the teleportation effects in this latter case, and the slower
convergence with zone size refinement. Since this test problem uses unequal
zone sizes, we have used piecewise constant ∂B/∂t sources so as to maintain
energy conservation as described previously in Sect. 5. We note that sampling
of the frequency in these calculations was simple due to the fact that in the
difference formulation, there is no σB source term as in standard formulation
calculations. In other words, there was no need for binning the frequency or
angular variables. Our results agree very well with those shown in [16].

7 Error Analysis

In [5], it was shown that in a self-consistent piecewise-linear calculation the
temperature of a zone during a Marshak wave calculation is second order
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accurate. In Fig. B.13 we show similar calculations using our source tilting and
interpolation algorithms as well as the original piecewise-constant treatment.
The different panels of this figure represent calculations with different gray
opacities. All temperatures were taken from the zone residing at 1 cm, after
a finite amount of time, as labeled in the plots. We plot the temperatures as
a function of photon mean free path/zone, or σ ∆x, where ∆x is the zone
width. For small σ ∆x, the error in the temperature is linear for the source
tilting, interpolated, and piecewise-constant calculations, as is evident in the
top left panel. This is in stark contrast to the quadratic behavior of the self-
consistent piecewise-linear calculations in [5], and is indicative of the accuracy
of these discretization schemes in the optically thin limit. Thus, for problems
where the zones are optically thin, source tilting and interpolation give no
improvement over piecewise-constant calculations, as expected. The situation
is different when the zone widths contain many photon mean free paths. For
piecewise-constant calculations, teleportation effects (as described in Sect. 3)
become pronounced, causing excessive energy flow. This is clearly seen in the
panels of Fig. B.13 where σ ∆x > 1. The source tilting algorithm shows similar
behavior, though not as pronounced. Interpolation is the most stationary in
this limit, showing very little, if any, energy teleportation. Hence, in the limit
of many mean free paths per zone, source tilting, and to an even greater degree
interpolation, performs much better than piecewise-constant calculations.

8 Monotonicity issues

Brooks et al. [5] showed that a self-consistent piecewise-linear treatment of
the material state variable can violate monotonicity for optically thick prob-
lems with large temperature gradients. Though our interpolation algorithm is
an ad-hoc approximation to a self-consistent piecewise-linear treatment, our
results that utilize interpolation can suffer from similar monotonicity viola-
tions when working in the optically thick regime. This is in direct contrast to
piecewise-constant calculations, where monotonicity violations have not been
observed in practice. We will show, however, that monotonicity can be eas-
ily preserved in the optically thick limit by interpolating only the gradient
sources. Empirically, it seems that by not interpolating the time-derivative
sources, we can retain desirable monotonicity characteristics and preserve en-
ergy conservation, while minimizing computational cost.

To elucidate these statements, we perform an optically thick limit (σ∆x � 1)
analysis of the first three zones (labeled 1, 2, and 3) of the slab adjacent to
the left problem boundary, as shown in Fig. B.14. A thermal bath, ΦB, heats
the slab at the problem boundary located at position x1. Within each zone,
the field Φ(x) = aT 4(x) takes on the values Φ1, Φ2, and so forth. Panel (a)
shows the initial configuration of the system at time t0. Here all values of Φi
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are equal to some initial Φ0 � ΦB. Panel (b) shows the system after one time
step ∆t. Here Φ1(t0 + ∆t) > Φ2(t0 + ∆t) > Φ3(t0 + ∆t), and monotonicity is
preserved. Panel (c) shows a scenario, where after one time step ∆t, we have
Φ1(t0 + ∆t) > Φ2(t0 + ∆t) < Φ3(t0 + ∆t), which violates monotonicity. To
understand how the scenarios in panel (b) and (c) might occur, it is necessary
to look at the net energy flow into zone 2 during the first time step.

8.0.1 Piecewise-constant calculation

In a piecewise-constant calculation, the net energy flow into zone 2 due to
gradient sources occurs due to the source located at x2, from the portion
directed in the positive µ direction. Using Eq. (7), the total energy within
time ∆t is

−
∫ ∆t

0
dt
∫ 1

0
dµ

µc

4π
[Φ2(t0 + ∆t)−Φ1(t0 + ∆t)]

=
∆t c

8π
[Φ1(t0 + ∆t)− Φ2(t0 + ∆t)]

≈ ∆t c

8π
[Φ1(t0 + ∆t)− Φ0] . (40)

In the second line above we have assumed that, due to the large opacity, the
change in Φ2 after one time step (whether it be positive or negative) is small.
The expression in Eq. (40) is positive and therefore only contributes to a
positive change in Φ2.

Particles that are born uniformly in zone 1 due to the ∂B/∂t sources traverse
only a short distance before they are re-absorbed due to the large opacity. Thus
only particles born near the left side of x2 traveling in the positive µ direction
can traverse into zone 2, thereby contributing to the energy flow into this zone.
Consider the source born in an infinitesimal region dx a distance x to the left
of x2, traveling in the positive µ direction. Using Eq. (8), the contribution of
sources born in this region that deposit energy in zone 2 within time dt is
given by

dµ dt dx e−σx/µδ(t− t0)
−1

4π
[Φ1(t0 + ∆t)− Φ1(t0)] =

dµ dt dx e−σx/µδ(t− t0)
−1

4π
[Φ1(t0 + ∆t)− Φ0] . (41)

Integrating over positive µ, x, the time-step interval [t0, t0+∆t], and extracting
the leading order term in 1/σ gives

− 1

8πσ
[Φ1(t0 + ∆t)− Φ0] . (42)
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Equations (40) and (42) combine to give the net energy flow into zone 2:(
∆t c

8π
− 1

8πσ

)
[Φ1(t0 + ∆t)− Φ0] . (43)

Thus the condition to have positive energy flow into zone 2, and thus respect
monotonicity, is ∆t c > 1/σ, which is easily fulfilled.

8.0.2 Interpolation of the gradient sources

In the case where we interpolate the gradient sources only, the energy flow
into zone 2 due to the ∂B/∂t sources are again given by Eq. (42) (they are
identical to piecewise-constant case). The gradient sources, on the other hand,
must be calculated using shifted zones. The shifted zone that encompasses
half of zone 1 and zone 2, for example, will emit particles uniformly within
this region. Thus there will be a significant fraction of particles emitted from
this shifted zone that could contribute to zone 2. However, because of the
µ dependence of these sources (see Eq. (35)), particles have equal positive
or negative weights, depending on the direction of travel. Thus the overall
contribution from positive and negative weight particles will in general cancel,
except near the zone edge at x2. The net energy flow within time dt due to
volume dx is given by

2dµ dt dx e−σx/µ −µc

4π∆x
[Φ2(t0 + ∆t)− Φ1(t0 + ∆t)] ≈

2dµ dt dx e−σx/µ µc

4π∆x
[Φ1(t0 + ∆t)− Φ0] . (44)

Here µ points in the positive direction, x is the distance from x2, and ∆x is
the zone size. The factor of two is due to the fact that half the contribution
will come from sources born to the left of x2 that traverse into zone 2, and
the other half from sources born to the right of x2 that traverse into zone 1.
The latter contribution has negative weight (due to the µ dependence), and
when subtracted, contributes to the overall flow across the interface at x2.
Integrating Eq. (44) within time interval [t0, t0 + ∆t], x, and positive µ, and
taking the leading order term in 1/σ gives

∆t c

6πσ∆x
[Φ1(t0 + ∆t)− Φ0] . (45)

Using Eqs. (42) and (45), the total energy flow into zone 2 is(
∆t c

6πσ∆x
− 1

8πσ

)
[Φ1(t0 + ∆t)− Φ0] . (46)

Thus the condition for positivity is ∆t c > 3
4
∆x, which is not difficult to

satisfy.
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8.0.3 Interpolation of the gradient and ∂B/∂t sources

Energy flow due to the interpolated gradient sources is given by Eq. (45).
The largest contribution of the interpolated ∂B/∂t source that is born within
the shifted zone, contributing energy to zone 2, occurs in the region bounded
by the positions x2 and (x2 + x3)/2. This is due to the fact that particles
born within this region will immediately become re-absorbed (due to the large
opacity). Since there is no µ dependence for this source, all particles have the
same sign for their weight (regardless of direction) and thus contribute to the
energy deposited into zone 2. The net energy change is

∫ 1

−1
dµ
∫ t0+∆t

t0
dt
∫ x2+x3

2

x2

dx

(
−1

4π

dΦ̃2

dt

)

=
−1

4π∆x

∫ x2+x3
2

x2

dx[∆Φ1 (x3 + x2 − 2x) + ∆Φ2 (2x− x1 − x2)]

≈ −1

4π∆x

∫ x2+x3
2

x2

dx[∆Φ1 (x3 + x2 − 2x)]

=
−∆x

16π
[Φ1(t0 + ∆t)− Φ0] . (47)

Here ∆Φi = Φi(t0 + ∆t)−Φi(t0) and we have again assumed that the change
in Φ2 is small. Including the gradient sources, the net energy flow into zone 2
in this case is (

∆t c

6πσ∆x
− ∆x

16π

)
[Φ1(t0 + ∆t)− Φ0] , (48)

and the condition for positivity is ∆t c > 3
8
σ(∆x)2. In the limit of large σ

(or large zone sizes) this condition is difficult to satisfy. Monotonicity is easily
violated in this case.

9 Conclusions

A computational algorithm for the transport of thermally emitted radiation
is accurate in the diffusion limit if it successfully addresses two issues. The
first is getting the coupling of the energy in the radiation field to that of the
material correct. This was noted by [8] and more formally developed in [9]. The
second is getting the correct flux between optically thick zones. Algorithms
can successfully deal with one, or the other of these two issues independently.
As an example, the IMC [6] algorithm does not produce correct coupling of
the radiation to the material due to the effective scattering, but it is less
subject to problems with energy teleportation, probably also due to effective
scattering. The SIMC algorithm, using a finite element piecewise-constant
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discretization of the material state variable, gets the local energy coupling
correct, but produces excessive flux between optically thick zones.

Algorithms have been developed for transport that use self-consistent linear
finite-element techniques that successfully address both of the above require-
ments for accurate solutions in the diffusion limit. This has been done for
both deterministic and Monte Carlo methods. Self-consistent piecewise-linear
treatments are, by their nature, more complicated than piecewise-constant
treatments of the material state variable. The primary goal of this investiga-
tion has been to learn whether or not an ad-hoc piecewise-linear treatment
of the source terms, following the lead of [7], is sufficient to produce accurate
solutions in the optically thick limit.

We have investigated two strategies for an ad-hoc piecewise-linear treatment
of the source terms in the difference formulation for transport of thermally
emitted photons. The first strategy is taken directly from [7], translating it
to the case of the difference formulation for transport. It demonstrates an im-
provement for optically thick situations, and an analysis of it points to getting
the proper radiation flux in the diffusion limit being the key to success. The
second strategy, a linear interpolation of the material state variable between
zone centers, gets the flux between zones in the thick limit correct, and thereby
delivers the most accurate results in this limit.

Self-consistent piecewise-linear treatments of the material state variable can
suffer from problems with monotonicity. We have shown that our source tilt-
ing and interpolation algorithms can be subject to monotonicity violations,
as compared to piecewise-constant calculations where these problems do not
occur in practice. We analyzed a specific situation, in the thick limit, where
monotonicity can be violated and derive conditions that must be satisfied to
preserve monotonic behavior of the solution. The required condition, for the
case of linear interpolation of only the gradient source between zone centers,
is easily satisfied, and this method has been found to produce robust and
accurate solutions.

We have compared results of our algorithms with published benchmark cal-
culations, obtaining very good agreement in all cases except one. In this lone
exception, we have given arguments for why we believe our result is correct.
These comparisons give us confidence that our algorithm produces accurate
results and is stable for wide ranges of zone sizes and time steps.

Relaxing the requirement of optically thin zones in order to produce an ac-
curate transport simulation is of fundamental importance. While fine zoning
might be possible in one dimensional simulations, it is not practical in two, or
three, dimensional problems. By finding that interpolation, alone, is sufficient
to produce accurate results in the diffusion limit, we simplify the situation for
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these simulations, making them more practical.

A Non-linear system using source tilting

Here we follow closely the derivations shown in [5]. Since we solve for the
unknown fields Φ by Newton-Raphson iteration, it is necessary to be able to
express the quantities in Eq. (10) in terms of Φ and ∂/∂Φ. The first term of
Eq. (10) that involves the unknown field Φ is

−
∫ xi+1

xi

dxEmat(T ) = −Ei = −∆xi
ρcν

a1/4
Φ

1/4
i , (A.1)

where ∆xi is present due to the integration over the zone and represents the
width of that zone. The partial derivative with respect to Φ is required for the
Newton Raphson solution of the non-linear system,

∂Ei

∂Φj

=
ρcν

a1/4

1

4
Φ
−3/4
i δij.

Again, as was mentioned in Sect. 4, the unknown terms Φ are evaluated at
the end of the time step.

Analogous terms can be derived for the term of Eq. (10) that involves the
argument σD. The contribution of Monte Carlo particles at zone j is given by

(σD)j = Nj (A.2)

+
∑

i

(DDTuniform)i
j (Φi(t0)− Φi(t0 + ∆t))

+

[∑
i

(DDTlinear)
i
j {(Φi+1(t0)− Φi+1(t0 + ∆t))− (Φi−1(t0)− Φi−1(t0 + ∆t))}

]
+
∑

i

(DDXdelta)i
j {
[

3

4

]
(Φi−1(t0 + ∆t)− Φi(t0 + ∆t)) +

[
1

4
(Φi+2(t0 + ∆t)− Φi−1(t0 + ∆t))

]
}

+

[∑
i

(DDXuniform)i
j (Φi−1(t0 + ∆t) + Φi+1(t0 + ∆t))

]
.

Here Nj is the contribution from the census particles from the prior time
step, (DDTuniform)i

j is the contribution to zone j from the time-derivative
sources emanating from zone i, (DDTlinear)

i
j is the contribution to zone j

from the time-derivative sources originating from zone i, (DDXdelta)i
j is the

contribution from zone-edge delta function sources, and (DDXuniform)i
j is

the contribution to zone j from the uniform gradient sources emanating from
zone i. The fields with arguments of t0 are explicit, whereas the fields with
arguments of t0 + ∆t are the implicit fields that must be solved. If one elimi-
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nates all terms in square brackets,
[ ]

, from Eq. (A.2) one recovers the original

piecewise-constant non-linear system. Note the similarity with Eq. (52) of [5].

Since all terms of Eq. (A.2) are linear in the unknown fields Φ(t0 + ∆t), it
is straightforward to construct ∂(σD)j/∂Φi. We do not show this expression
explicitly here.

B Non-linear system using interpolation

Since only the sampling of particles is done in the ‘shifted’ zones, and the
scoring of particles is done in the original zones, the expressions for the Ej

and (σD)i
j are similar to those of the previous section. In fact, Ej is identical

to Eq. (A.1). (σD) is given by

(σD)j = Nj (B.1)

+
∑

i

(DDTuniform)i
j (Φi(t0)− Φi(t0 + ∆t))

+
∑

i

(DDTlinear)
i
j {(Φi+1(t0)− Φi+1(t0 + ∆t))− (Φi−1(t0)− Φi−1(t0 + ∆t))}

+
∑

i

(DDXuniform)i
j (Φi−1(t0 + ∆t) + Φi+1(t0 + ∆t)).

The definitions of the various terms have been given in the previous section.
Note that there are no delta function contributions, since in these terms vanish
when using the interpolation scheme. The index j runs through the original
zones (i.e. j = 1, N), whereas the index i runs through the ‘shifted’ zones (i.e.
i = 1, N + 1).

If one chooses not to interpolate the time-derivative sources, one simply has

(σD)j = Nj (B.2)

+
∑

i

(DDTuniform)i
j (Φi(t0)− Φi(t0 + ∆t))

+
∑

i

(DDXuniform)i
j (Φi−1(t0 + ∆t) + Φi+1(t0 + ∆t)).

In this case one retains the original number of particle types as in a piecewise-
constant implementation of the difference formulation (but not the same types).
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Φ

i+2 xi+3x x x xi−1 i+1i

Fig. B.1. (Color online) Example of source tilting (dashed lines) constructed from
a piecewise-constant Φ = aT 4 profile (shaded regions).

Φ

i i+2 xi+3x x x xi−1 i+1

Fig. B.2. Example of interpolation (dashed lines) constructed from a piece-
wise-constant Φ = aT 4 profile (shaded regions). The dot-dashed lines indicate the
zone boundaries of the ‘shifted’ zones used for source sampling, as explained in the
text.
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Fig. B.3. Examples of steady-state solutions of Φ(x) = aT 4(x) using the piece-
wise-constant algorithm in the thick limit with constant opacity. All calculations
had the same initial conditions, the only difference being the zone sizes (see text).
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(a) (b)

(c) (d)

Fig. B.4. Comparison of tilting versus the original piecewise-constant treatment
for a 1keV driven Marshak wave at t = 30 shakes with initial slab temperature
being zero. Panel (a) represents a calculation using 12.5 mfp/zone, (b) 25 mfp/zone,
(c) 50 mfp/zone, and (d) 100 mfp/zone. In each panel, the top (red) curve is the
piecewise-constant result, while the bottom (black) curve is the result using tilting.
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(a) (b)

(c) (d)

Fig. B.5. Comparison of interpolation versus tilting treatment for a 1keV driven
Marshak wave at t = 30 shakes with initial slab temperature being zero. Panel (a)
represents a calculation using 12.5 mfp/zone, (b) 25 mfp/zone, (c) 50 mfp/zone, and
(d) 100 mfp/zone. In each panel, the top (black) curve is the tilting result, while
the bottom (red) curve is the result using interpolation.
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(a) (b)

Fig. B.6. Panel (a) shows overlay of calculations using interpolation for 12.5, 25, 50,
and 100 mfp/zone (shown in Fig. B.5) at t = 30 shakes. Lines have been connected
between centers of zones to facilitate comparison with panel (b), which shows an
analogous 80 zone (12.5 mfp/zone) self-consistent piecewise-linear calculation de-
veloped by Brooks et al. [5].
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(a) (b)

(c) (d)

Fig. B.7. Results of the first test example taken from [13] after total time t = .1
shakes. Panel (a) shows results for 10 total zones, (b) for 20 total zones, (c) for 50
total zones, and (d) for 100 total zones. We have connected lines between the center
of each zone so as to help facilitate comparison with results shown in [13].

(a) (b) (c)

Fig. B.8. Results of the first test example taken from [13] at time t = .1 shakes but
using different time step sizes ∆t. Panel (a) shows results using ∆t=1.25×10−6, (b)
∆t=1.25×10−5, and (c) ∆t=1.25×10−4. All of these calculations used 50 zones.
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(a) (b)

(c) (d)

Fig. B.9. Results of the second test example taken from [13] at different times (in
shakes) as shown in the plots. The black lines are calculations where discontinuities
are supported at zone interfaces where opacity changes occur. The red lines are
calculations where discontinuities are supported only at the problem boundaries on
each side of the slab. Note the kinks around the positions where the opacity changes
in this case. Figure B.10 shows a close up of panel (c).
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Fig. B.10. Close up of Fig. B.9c, showing the region near the discontinuities in
opacity.

(a) (b)

Fig. B.11. Plot (a) shows the result of Larsen’s test problem at total time t = .09
shake using ∆t=.001 shake and spatial zoning as defined in the text. Plot (b) shows
the same calculation but with a zoning that is eight times smaller.
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(a) (b)

Fig. B.12. Plot (a) shows a close up of Larsen’s test problem at t = .09 shake using
our interpolation algorithm with 1×, 2×, 4×, and 8× the original zoning. Plot (b)
shows similar results, but without source tilting. Note the effects of teleportation
and the stronger dependence on zone sizes in the latter case.
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Fig. B.13. Temperature of zone at 1 cm after a finite time during Marshak wave
calculations. Each panel shows results for different material opacities and different
times, as labeled. The x axis is plotted in units of mean free paths per zone. ∆x
represents the zone size.
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Fig. B.14. Figure depicting scenario used for thick limit analysis in Sect. 8. Panel
(a) shows the initial conditions at time t0. Panel (b) shows a scenario after one time
step ∆t where the values of the field Φ(x) preserve monotonicity. Panel (c) shows a
scenario after one time step where monotonicity is not preserved.
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