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Abstract  
Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or 
protons is an area of great topical interest in the inertial confinement fusion community, 
particularly with respect to the fast ignition (FI) proposal to use this technique to initiate 
burn in a fusion capsule. Experiments designed to investigate electron isochoric heating 
have measured heating in two limiting cases of interest to fast ignition, small planar foils 
and hollow cones. Data from Cu Kα fluorescence, crystal x-ray spectroscopy of Cu K 
shell emission, and XUV imaging at 68eV and 256 eV are used to test PIC and Hybrid 
PIC modeling of the interaction. Isochoric heating by focused proton beams generated at 
the concave inside surface of a hemi-shell and from a sub hemi-shell inside a cone have 
been studied with the same diagnostic methods plus imaging of proton induced Kα. 
Conversion efficiency to protons has also been measured and modeled. Conclusions from 
the proton and electron heating experiments will be presented. Recent advances in 
modeling electron transport and innovative target designs for reducing igniter energy and 
increasing gain curves will also be discussed. 

 

This work was performed under the auspices of the U.S. Department of Energy by 
University of California Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48, with the additional support of the Ohio State University, the Hertz 
Foundation and General Atomics. 



 

1. Introduction 
The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds 

particular promise for fusion energy because the independently generated ignition pulse 
allows ignition with less compression, resulting in (potentially) higher gain.  Designing 
targets able to exploit the FI scheme efficiently requires an understanding of the transport 
of electrons in prototypical geometries and at relevant densities and temperatures. We 
present an overview of recent research designed to investigate proton and electron 
isochoric heating in regimes of interest to fast ignition. This work, which is part of the US 
Fusion Energy Program, has been conducted through international collaborative 
experiments carried out on the Callisto and Titan laser facilities at LLNL in the USA, at 
the Vulcan laser facility in the UK and at the ILE Osaka Gekko PW facility in Japan. In 
the near term the goals of this program are to test theoretical models of isochoric heating 
with well diagnosed experiments. In the longer term  we aim to carry out tests of the 
integrated problem where short pulse lasers isochorically heat shock-compressed 
materials. Finally we plan to carry out fast ignition experiments on ignition scale plasmas 
on the National Ignition Facility.  

In cone coupled electron fast ignition the fuel capsule is imploded onto the tip of a 
hollow cone. The short pulse laser is focused through the cone and relativistic electrons 
(of a few MeV average energy) are transported from the cone tip over a distance of the 
order of 100 µm into the assembled DT core at about 300 gcm-3 and confined within a 
diameter <40µm. The total energy deposited in the hot spot is about 20kJ in 10 ps. 
Overall coupling efficiency between laser energy and thermal energy in the ignition hot 
spot should exceed 10% and preferably reach 20% (as seen in the first small scale 
integrated experiments) to make the scheme practically attractive.  

Modeling of the laser accelerated electron sources, the transport of energy by 
electrons and the consequent isochoric heating have advanced considerably (studies into 
the sensitivity of the electron transport to the incident electron distribution are currently 
underway, while a number of new target concepts that may reduce the ignition energy 
and increase the gain curve are also under active investigation) but there is still no well 
established modeling capability to enable extrapolation from small scale experiments to 
full scale FI.  The processes are complex and challenging from both experimental study 
and modeling aspects. We have recently used two limiting cases, which address specific 
issues in electron transport and offer good opportunities for comparison with modeling.  

(1) Thin foils of small area constrain electrons to reflux between the surfaces in a 
time short compared to the laser pulse duration so that there is always approximate 
cancellation of the net injected current by reflux current thus eliminating the effect of 
Ohmic heating by the return current of cold electrons, which is a dominant effect in 
initially cold solid targets in the absence of refluxing. (2) In the opposite limit a hollow 
cone couples the laser to a long thin wire and provides a situation where there is 100% 
compensation of the fast electron injection into the wire by the cold electron return 
current thus maximizing Ohmic effects. The geometry is simple in that the area of the 
current flow is constant and equal to the cross sectional area of the wire. 



Protons offer an alternative means of isochoric heating with very different 
physical constraints. The requirement is similar to that for electrons; to deliver about 15kJ 
to <40 µm with a proton axial temperature of about 3MeV. Conversion efficiency to 
protons should exceed 15% assuming the beam is focused to < 40 µm. Cone geometries 
similar to the designs used for electron fast ignition are currently envisioned. For proton 
FI, the cone must protect the proton source foil from rear surface plasma formation 
induced by the implosion but it should not cause Molieré scattering outside the required 
<40µm hot spot. The source foil should be thick enough to protect its rear surface from 
pre-pulse shock modification but thin enough to allow adiabatic energy loss to 
acceleration of protons to dominate over collisional energy loss for the refluxing 
electrons. The laser irradiation should produce sufficiently high temperature electrons 
uniformly across the source foil to make collisional losses relatively insignificant and to 
result in a sheath axial development that is spatially uniform giving radial proton 
focusing to a spot size <40 µm. The laser pulse length should be short enough to limit 
edge effects on the sheath to optimize focusing of the protons.  Following successful 
initial studies of focusing protons with hemi shell targets, using a 10 J 100 fs laser we 
extended the study to higher energy and longer pulses using PW class lasers at the RAL 
Vulcan, ILE Gekko and LLNL Titan facilities. Proton focusing was significantly 
aberrated in these experiments where a relatively small laser focal spot produced a central 
maximum in the sheath extension giving radial components to the acceleration. This 
paper will describe recent theoretical and experimental progress in this area. 

  

2. Electron isochoric heating and transport  

 
Studies and modeling of the laser accelerated electron sources, the transport of energy 

by electrons and the consequent isochoric heating have advanced considerably but there 
is still no well established modeling capability to enable extrapolation from small scale 
experiments to full scale FI.  The processes are complex and challenging from both 
experimental study and modeling aspects.  
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Figure 1: Targets for electron transport studies.  a,b) low mass foil which maximizes hot electron refluxing.  c,d) wire that 
has no refluxing.     
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Figure 2: a) experimental XUV image and b) 
Lasnex model of heated foil.  
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Figure 3: a) experimental XUV image and b) Cu-Kα 
emission from a heated cone-wire target 



We have recently used two limiting cases (Fig. 1), which address specific issues in 
electron transport and offer good opportunities for comparison with modeling.          

Thin foils of small area constrain electrons to reflux between the surfaces in a time 
short compared to the laser pulse duration so that there is always approximate 
cancellation of the net injected current by reflux current thus eliminating the effect of 
Ohmic heating by the return current of cold electrons, which is a dominant effect in 
initially cold solid targets in the absence of refluxing.   The isochoric phase of target 
heating is shown by 256 eV x-ray imaging (Fig. 2).  An absolute image fit via 2D 
LASNEX modeling shows a 2 keV peak temperature and a 4:1 radial temperature 
variation in 100x100x5 µm3 target.  The modeling shows that electron thermal 
conduction equalizes front/back temperature during the XUV emission in thin targets and 
that 12% of the laser energy is converted to thermal energy in the target.  

In the opposite limit a hollow cone couples the laser to a long thin wire and provides 
a situation where there is 100% compensation of the fast electron injection into the wire 
by the cold electron return current thus maximizing Ohmic 
heating by the return current. The geometry is simple in that 
the area of the current flow is constant and equal to the cross 
sectional area of the wire.   For this target, thermal emissions 
were imaged in the XUV at 256 eV and energetic electron 
current from its 8 keV Cu-Kα spectroscopy (Fig. 4).  
LASNEX modeling of the XUV emission gives a maximum 
temperature of 350 eV, while the Cu-Kα line width gives a 
temporal mean temperature of 160 eV [Greg05]. (The Kα 
emission is linear with current, and presumably also with 
temperature so gives mean temperature, while XUV emission 
varies as fourth power of temperature, so is heavily weighted 
toward the max wire temperature.) The electron propagation along the wire is shown by 
the Cu-Kα imaging system to have a 1/e attenuation length of ~ 100 µm (Fig. 4).  Both 
the temperature and propagation length results are in reasonable agreement with 
LASNEX model and the analytic model by Bell and Kingham [Bell03] (Fig. 5). 

Other features of the cone-wire experiments are still in need of interpretation.  
Electron propagation along the wire is 
observed by the Cu-Kα imaging system 
to have a much longer range component 
(l>1mm) about 2% of the peak.  The 
cone-laser interaction also produces 
complications since this geometry is 3D 
and prone to modification by the laser 
pre-pulse.  Both of these effects are being 
addressed in ongoing experiments.  
Experimentally, we have two approaches: 
1) ‘nail’ targets that provide a flat surface 
for coupling the laser to the wire, and 2) 
flat plates set at glancing laser incidence angle to emulate the laser-cone interaction.  In 
simulations we are investigating the role of pre-pulse in modifying the cone geometry.  
Results from this work will be presented elsewhere. 
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Figure 4: a) Image and b) 
line-out of Cu Kα emission 
from heated target.  
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Figure 5: a) Lasnex simulation of heating in cone-wire 
target. b) Experimentally observed maximum 
temperature compared to simulation and expectation 
from model of Bell & Kingham. 



 
2.3. Proton heating   

 
Protons offer an alternative means of isochoric heating with very different physical 

constraints. The requirement is similar to that for electrons: i.e to deliver ~15kJ to a less 
than 40 µm diameter spot with a proton axial temperature of about 3 MeV. Conversion 
efficiency to protons should exceed 15% assuming all the beam is focused within this 
spot. Cone geometries similar to the designs used for electron fast ignition are currently 
envisioned. For proton FI (Fig. 6a), the cone must protect the proton source foil from rear 
surface plasma formation induced by the implosion but it should not cause Moliére 
scattering outside the hot spot. The source foil should be thick enough to protect its rear 
surface from pre-pulse shock modification but thin enough to allow adiabatic energy loss 
to acceleration of protons to dominate over collisional energy loss from the refluxing 
electrons. The laser irradiation should produce sufficiently high temperature electrons 
uniformly across the source foil to make collisional losses relatively insignificant and to 
result in a sheath axial development that is spatially uniform giving radial proton 
focusing to a spot size <40 µm. The laser pulse length should be short enough to limit 
edge effects on the sheath to avoid significant loss of well focused protons.  The protons 
must also deliver their energy in a short time; because of their velocity spread, the proton 
generating foil must be quite close to the core – ≤2 mm depending on details [Atzeni02].  

A prototype of such a proton source was built (Fig. 6b) to test our capabilities and its 
performance.  It was sized to appropriately for the 500 µm diameter shells used on 
Omega and Gekko.  The accelerating surface in inside the cone was 125 µm in diameter, 
so could only produce about a quarter of the protons seen from a hemi-shell; electrons 
flowed off that surface and presumably produced sheath fields along the walls of the 
cone.  Those fields could change the proton focus [Toncian06].  That was enough to 
demonstrate focused heating of a Cu foil target (Fig. 6c,d).  Upcoming experiments are 
planned to explore the effects of metal walls on the proton yield and focus. 

 
Following successful initial studies of focusing protons with hemi shell targets, using 

a 10 J 100 fs laser [Patel03] we extended the study to higher energy and longer pulses 
using PW lasers at the RAL 
Vulcan and ILE Gekko 
facilities. Proton focusing was 
significantly aberrated in these 
experiments where a relatively 
small laser focal spot produced 
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Figure 6: a) Requirements for proton ignition structure. b) Test structure Cu Kα c) image and d) line-out of spot 
heated by focused protons 
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Figure 7: a) LSP simulation of 100 µm diameter hemi-shell 3.3 ps 
after 0.1 ps injection of 1.3 MeV hot electrons showing evolved 
proton density and typical paths. b) transverse proton concentration at 
various test planes for a 10 µm laser focus.  c) transverse proton 
concentration for a 50 µm diameter laser focus. 



0.1

1

10

100

0.1 1 10 100

JanUSP , 10J,100fs 

Nova PW , 400J, 0.8 ps 

Vulcan PW, 300J, 0.8 ps 

Energy J / thickness micron 

E
ff

ic
ie

n
c
y
 >

 3
M

e
V

 %

a) ID hybrid PIC model 

5µm Al 
CH4

Vacuum

Vacuum

Promoted 

electrons 
kT=1.2 MeV

Drift !" = 3

b)

 
Figure 8: a) Conversion efficiency as a function of foil thickness b) 
model structure 

a central maximum in the sheath extension giving radial components to the acceleration. 
Sub-scale modeling by M. Foord, LLNL, using hybrid PIC LSP to model a hemi with 
radius of curvature, rc = 50 µm shows considerable reduction in proton focus aberration 
occurs when the laser beam is spread from 10 µm to 50 µm diameter (Fig. 7).  The focus 
for the former occurs at 1.4rc while the latter is at 1.0rc, as expected for an unaberrated 
beam.  In addition, the focus is more compact; 6 µm vs. 4 µm for the 1/e diameter.  Self-
similar scaling of these results to full FI scale (960 µm diameter shell) gives a focused 
beam ~38 µm diameter, on track for Fast Ignition. 

Conversion efficiency to 
protons of energy >3MeV is also 
key research area in proton FI. 
Analytic models and hybrid PIC 
modeling are being developed to 
obtain better understanding of 
how to optimize for proton fast 
ignition. From analytic methods it 
is clear that collisional losses in 
refluxing electrons in the foil 
should be minimized, the electron 
temperature should be maximized to reduce collisional losses, depletion of the supply of 
protons should be avoided by proving a sufficiently thick proton rich layer (adsorbed 
hydrocarbon monolayers may be insufficient), and the proton to other ion ratio in the 
source layer should be as high as possible. Recent 1D numerical modeling with the 
hybrid PIC code LSP are beginning to show promising results, namely >50% conversion 
of electron energy to proton energy > 3MeV. 

 
2.4. Fuel Assemblies for Fast Ignition 

Another area or research relevant to FI is the design of optimized implosions for 
assembling the compressed fuel.  The hydrodynamics of FI implosions deserve separate 
attention since, with their externally supplied ignition sources, FI implosions optimize 
with different imploded fuel configurations than their conventional counterparts.  In 
particular, while the conventional ICF approach is fundamentally dependent on the 
formation of a robust hotspot to ignite, this central hotspot is in fact a liability in FI.  
Since ignition occurs effectively from the outside of the fuel assembly in FI, the fusion 
burn wave in a FI target would propagate predominantly around the edge of a hotspot 
fuel assembly where the fuel density is high.  In a high aspect ratio hotspot implosion, 
this would amount to nearly two-dimensional burn front propagation.  It is evident that if 
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Figure 9: Schematic comparison of fast ignition of a typical hotspot implosion and a quasi-isochoric implosion. 
 



a near-uniform density, or isochoric, fuel assembly could be arranged, the burn wave 
would propagate much more efficiently through the fuel, namely directly through the 
center of the implosion in a more three-dimensional manner.  Indeed, the gain models 
which have been proposed for FI target design (and cited to demonstrate its advantages 
over conventional hotspot ignition) typically assume a near-uniform spherical assembly 
as a starting point [Atzeni99, Tabak06].  A challenge in realizing the potential of FI is 
then whether and how such quasi-isochoric implosions can actually be realized.  Fig. 9 
schematically contrasts a conventional hotspot and a quasi-isochoric fuel assembly in FI. 

Quasi-isochoric (“hotspot-less”) implosion designs will clearly differ markedly from 
the high-velocity, robustly-igniting hotspot implosions traditional in ICF.  One approach 
to designing such implosions is to appeal to the classical self-similar solutions of ideal 
hydrodynamics as first described by [Guderley42].  A peculiarity of these solutions is that 
a particular sub-family of solutions represents the implosion of a spherical shell into a 
nearly uniform density imploded core.  Such an implosion is precisely the isochoric 
assembly sought as a FI target.  Using these idealized, self-similar implosions as a guide, 
a laser power history can be designed to mimic the self-similar implosion of a shell of 
frozen DT fuel into a compact quasi-isochoric mass of the necessary density for FI.  Fig. 
10 illustrates an example of such a laser history and the resulting quasi-isochoric 
imploded core from a 1D numerical simulation.  The remarkably small hotspot volume 
and near uniformly dense imploded core are evident. 

3. Summary 

In conclusion, for typical we have studied two limiting cases of electron isochoric 
heating with and without dominant refluxing and we are using these as benchmark cases 
for developmental hybrid PIC modeling. We have also measured heating by focused 
proton beams using both hemi-shell and most recently sub-hemi-shell–in-cone targets. 
We find that better control of the accelerating sheath geometry is needed to reduce the 
focal spot size to that need for FI. Conversion efficiency modeling suggests that 
efficiencies higher than so far obtained and meeting the need for FI should be possible 
with suitable design optimization, experiments on the Titan and Vulcan laser systems are 
planned to confirm these predicted trends.  
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Figure 10: Radial target build, laser power history, and the resulting imploded DT core for an example quasi-
isochoric FI target. 
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