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Abstract   

Two-dimensional confined systems, such as substrate-supported incommensurate layers, 

are of interest because their structural and electronic properties may differ from those of 

bulk materials. While advances in experimental techniques have resulted in the growth of 

many such interesting systems, progress can often be hampered by the lack of an 

atomistic-scale understanding of the structure, especially for incommensurate systems. In 

this work, we develop an atomic-scale model for an ordered incommensurate gold-sulfide 

(AuS) adlayer that has been previously demonstrated to exist on the Au(111) surface, 

following sulfur deposition and annealing to 450 K.  We introduce theoretical techniques 

within density functional theory to take into account charge transfer in an 

incommensurate system and model scanning tunneling microscopy images, which are in 

good agreement with experiment. Our simulations indicate that this model is remarkably 

robust. We analyze the nature of bonding in this structure using state-of-the-art Wannier-

function based techniques. Our analysis provides a natural explanation for the 

extraordinary robustness and unusual stoichometry of this layer. This structure and its 

chemistry have implications for related S-Au interfaces, such as those in self-assembled 

monolayers of thiols on Au substrates. 
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Main text 

I. Introduction 

 Nano-structured materials, such as two-dimensional confined systems, have 

attracted immense interest because their structural and electronic properties often differ 

from those of bulk materials.1,2 These systems are promising candidates for many 

technological applications, including molecular electronic devices, sensors and 

catalysts.2-4 Advances in nano-scale growth methods have produced a wealth of systems 

with interesting properties,3-5 but progress is often hampered by the lack of an atomistic-

scale understanding of their structure, which can be rather complex. In particular, 

incommensurate structures, which are not uncommon, defy theoretical analysis because 

the layer and substrate cannot both be treated exactly within a common unit cell.   

In this work, we revisit the structure of an incommensurate nano-scale system 

which is particularly intriguing: a two-dimensional (2D) ordered layer of gold sulfide, 

formed on the Au(111) surface following sulfur deposition and annealing at 450K.5,6 

What is interesting about this layer is that it provides fresh insights into the nature of 

possible precursor states for the bonding of organic molecules (such as alkylthiols) to Au 

via sulfur, systems that are of great interest in technological applications.3 Both the 

incommensurate nature and the unusual stoichiometry of this layer required the 

development of new theoretical tools in the framework of first-principles calculations. 

These tools provide a comprehensive picture of the structure and chemistry of the sulfide 

monolayer that has important implications for a wider range of related applications.  

II Methods 
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 The scanning tunneling microscopy (STM) experiments were performed in ultra-

high vacuum with a base pressure of 4 × 10-10 Torr. The Au(111) surface was cleaned by 

Ar+ sputtering at 300 K, followed by annealing to 700 K for 10 min and 600 K for 60 

min. The characteristic herringbone reconstruction was observed following this 

procedure. SO2 (“Matheson”, anhydrous grade) was introduced by chamber backfilling. 

Only a small fraction of the SO2 decomposes and deposits sulfur on the Au(111) surface, 

as monitored by Auger electron spectroscopy.  Importantly, no oxygen-containing species 

was detected on the surface at any time, suggesting that the oxygen released during SO2 

decomposition is removed by an abstraction reaction with excess SO2.
7 Further 

experimental details can be found in Reference 5. 

 All our calculations were performed in the framework of density functional theory 

with the generalized gradient approximation for the exchange-correlation functional 

(PW-91)8. A plane-wave basis set was used, with scalar relativistic pseudopotentials to 

represent the atomic cores. 4 × 4 and 8 × 8 k-point meshes were used for calculations 

with and without the Au substrate respectively. Typically, the total energy for structures 

we considered is well-converged with a 3 × 3 k-point mesh. At least 10 Å of vacuum was 

used in each calculation to separate the slab geometries, and convergence of relevant 

physical quantities was checked with respect to vacuum size. Within this framework, we 

introduced new theoretical approaches to obtain first, the atomic structure, and second, 

the bonding characteristics, of the incommensurate AuS layer on Au(111).  

 In calculations for the atomic structure, we used the projected augmented wave 

method9 with an energy cutoff of 280 eV, as implemented in VASP. The Au substrate 

was represented by a slab of 6 Au(111) layers, the bottom 3 of which are frozen in their 
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bulk positions. Geometry optimization was performed with a force convergence criterion 

of 0.05 eV/Å. The resulting structures were used for analysis of bonding characteristics, 

by constructing localized Wannier functions from the Kohn-Sham wavefunctions.  

Further details of our theoretical approaches will be described below. 

III. Experimental results 

We have previously reported detailed scanning probe studies of the interaction of 

sulfur with Au(111).5,6 These studies established that sulfur interacts with Au(111) in a 

dynamic, rather than static, manner, with large scale mass transport and the dislodgement 

of Au terrace atoms to form a gold-sulfide phase.  

In short, STM images5 show that a sulfur coverage of as low as 0.1 ML 

completely lifts the herringbone surface reconstruction of Au(111) even at room 

temperature (300 K). At 0.3 ML, an ordered ( 3 × 3 )R30° adlayer of adsorbed sulfur 

atoms is formed. Above this coverage, a dynamic rearrangement of the Au surface 

occurs, with small islands and monatomic etch pits nucleating on Au terraces, strongly 

suggesting that Au atoms are removed from terraces into a growing gold sulfide phase 

that is distinct from that of adsorbed sulfur observed at lower coverages. Similar 

incorporation of stoichiometric amounts of substrate atoms into adsorbate-induced 

surface adlayers has been observed in other systems, such as a 2D oxide layer on 

Pd(111)10 and a 2D sulfide on Al(111)11. At a saturation coverage of 0.6 ML, the surface 

takes on a sponge-like morphology that is completely covered by a 2D layer. Quasi-

rectangular ring-like structures with some short-range order are formed when the system 

is subsequently annealed to 420 K.  Similar features have been observed during the 

electrochemical deposition of S on Au;12 it was proposed that these rings correspond to 
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strained S8 molecules.  Further annealing to 450 K leads to Ostwald ripening of the 

original etch pits, resulting in large vacancy islands of monatomic depth. The S coverage 

drops to approximately 0.5 ML and a 2D layer with long-range order completely covers 

the Au surface.  High-resolution STM images5 of this ordered 2D phase reveal that the 

system is incommensurate, with a (8.8 ± 0.4)×(8.2 ± 0.4) Å2 unit cell and an angle of 82° 

± 4° between the lattice vectors.  Based on the areas of the vacancy islands, it was 

estimated that approximately 0.5 ML of Au is incorporated into the ordered 2D sulfide 

layer, suggesting a 1:1 Au-S stoichiometry.5 This stoichiometry is distinct from those of 

bulk gold sulfides, Au2S and Au2S3.13 

IV. Atomic structure: Approach and model 

 The unusual stoichiometry and 2D nature of the gold sulfide layer suggest that it 

is a novel phase distinct from 3D bulk gold sulfides. To understand this interesting phase, 

we proceed to construct an atomic-scale model for this system. The incommensurate 

nature implies that the AuS layer does not interact strongly with the Au surface (this 

picture is later confirmed using Wannier orbital analysis of bonding). We therefore 

consider the system in two stages. First, we determine the atomic structure of an isolated 

AuS layer in a fixed unit cell consistent with experimental measurements, and in a fully 

relaxed cell.  Next, we analyze how the substrate affects the atomic and electronic 

structure of this layer, the latter in a manner which takes into account the 

incommensurate nature of the interaction by averaging over several different 

configurations.   

In the first step, given the Au(111) surface lattice, a natural choice for the fixed 

unit cell is given by the black box in Fig. 1(a): this cell has a lattice constant of 8.65 Å (3 
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times that of Au) in direction a1, and a lattice angle of 79°, both values within 

experimental error bars (8.65 Å is within the range of 8.4 Å to 9.2 Å for the first lattice 

constant). The lattice constant in direction a2 was fixed at the experimental value of 8.20 

Å, which is not a simple multiple of the Au lattice constant. We considered several 

models with different numbers of atoms per unit cell, with stoichiometry Au:S = 1:1, and 

different arrangements of these atoms, using for guidance information on the local 

coordination chemistry of Au and S in known compounds.14,15 Fully relaxing the 

positions of these atoms within the fixed unit cell resulted in only one stable structure (in 

all other structures, the atoms rearranged drastically and the atomic forces sometimes did 

not converge). The stable structure, which we call A, is planar with 4 Au and 4 S atoms 

per unit cell (Fig. 1(b)). Details of bond lengths are given in Table 1(a). The 

corresponding S coverage is 0.41 ML, assuming that a completely flat, unreconstructed 

Au(111) surface is entirely covered by the AuS layer. This coverage is close to the 

experimental estimate of 0.5 ML, taking into account the attachment of S atoms to the 

edges of Au vacancy islands present on the annealed, sulfide-covered Au(111) surface, 

and possible uncertainty in the experimental calibration.  

 We next allowed the unit cell parameters to relax without any constraints: this 

resulted in an almost uniform shrinking of the unit cell vectors. The lattice angle changed 

to 78° (which is within experimental error bars and close to the corresponding angle in A 

of 79°). The new lattice constants are 7.85 Å and 7.65 Å, which are respectively 9.3% 

and 6.7% smaller than the corresponding lattice constants in A. However, the ratio 

between lattice constants is 1.04, close to the corresponding ratio of 1.05 in A.  The 

atomic geometry also remains very similar to that in A (Fig. 2(a)). This shows that the 
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atomic structure and unit cell shape in A are robust. The relaxed unit cell is too small 

compared to experimental values (the lower bound in experiment being 8.4 × 7.8 Å2). 

However, the shrinking of the unit cell is consistent with the shorter bond lengths found 

in bulk Au2S14 and other compounds with Au-S bonds15 (Table 1). As discussed below, 

the larger unit cell observed in experiment is stabilized by charge transfer from the Au 

substrate. 

 We now consider the effects of the Au substrate. First, we examine this effect on 

important structural features of the AuS monolayer. Although the combined system is 

incommensurate, it is possible to fit the AuS unit cell in a supercell of the Au(111) 

surface by using the equilibrium Au lattice constant predicted from calculations on bulk 

Au (ctheory = 2.948 Å) instead of the experimental value (cexpt = 2.884 Å). In this 

arrangement, the gray area in Fig. 1(a), which is commensurate with the Au lattice, has 

dimensions of (8.84 × 7.80) Å2, which are still within experimental error bars for the AuS 

unit cell (7.80 Å is within the range of 7.8 Å to 8.6 Å for the second lattice constant). We 

can now perform geometry optimizations for a periodic system with a supercell 

containing a AuS layer on top of a 6-layered Au(111) slab. In the most stable structure, 

which we call B, the 2-fold coordinated Au atom (Au(2)) in AuS is at site X and the 4-fold 

coordinated Au atom (Au(4)) at site O (Fig. 1). Initial structures with Au(2) positioned at 

any of the three-fold sites of the surface layer, also relaxed to structure B.  If Au(4) is 

placed initially at X and Au(2) at O, each of these Au atoms remains at its initial site 

during geometry optimization. However, the remaining atoms completely rearrange to 

eventually yield the same structure (B), with the Au atom at site X becoming 2-fold 
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coordinated, and that at O becoming 4-fold coordinated.  This indicates that the AuS 

structure is favored and remarkably robust even in the presence of the Au substrate.   

 The incommensurate arrangement and long-range order of the AuS layer imply 

that the layer should feel an average effect of the substrate. This average effect is not 

altered as the relative position of the overlayer is varied. The calculations mentioned 

above are not useful in describing this effect because the forced matching of lattice 

constants between the overlayer and substrate introduces artificial corrugations for some 

atomic positions. Therefore, in analyzing the electronic features of the AuS layer, it is 

necessary to introduce a different approach to take into account the average effects of the 

substrate in the incommensurate system. 

 As the overlayer and substrate interact weakly with each other, and are both 

metallic, charge transfer is expected to be the dominant electronic effect of the substrate. 

The weak interaction with the substrate also suggests that the AuS atomic geometry and 

band structure will remain largely unchanged by the Au substrate, allowing us to use the 

structural features of the stable isolated layer A, and model charge transfer by changing 

the occupancy of the AuS bands (so-called ‘rigid band model’). We model the change in 

occupancy by shifting the Fermi level (EF) of A by an amount ΔEF to that expected for the 

combined system.   

 To estimate ΔEF, we first construct a series of models that are representative of 

the different relative positions that the incommensurate AuS layer can take on the 

Au(111) substrate. Next, we compute the average of the substrate-induced shifts in Fermi 

level at each of these positions. The models were constructed as follows. First, we relax 

atoms in the top 3 Au(111) layers of the 6-layer Au(111) slab, and atoms in the AuS 
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layer, with the additional constraints that the AuS layer be planar, with Au(2) at X and 

Au(4) at O.  The optimal height of the AuS layer above the Au surface is 2.53 Å, which is 

the same as the average height of the layer above the Au surface is in structure B.  We 

call the resulting system B’.  Next, we shift this AuS layer in steps by λa2 relative to the 

substrate (λ = 0.0, 0.1, …, 0.9). At each step, only the top 3 Au(111) layers are allowed to 

relax, resulting in systems which we call Bλ’.   

 We calculate the substrate-induced shift in Fermi level ΔEF by taking the average 

over λ of the differences in work functions ΔΦ between the metallic systems A and Bλ’. 

The work function of the systems are calculated using symmetric slabs, obtained by 

taking mirror images about the 3 frozen Au(111) layers, to give 9-layered Au slabs 

covered on both sides by AuS. The work function Φ is computed as Vvac
(c) – EF

(c), where 

EF
(c) and Vvac

(c) are the Fermi level and vacuum potential in the calculation. As described 

below, this approach allows us to estimate the effects of charge transfer remarkably well. 

V. Atomic structure: Results 

 The estimated EF of the incommensurate AuS layer on Au(111) is found to be 

(0.85 ± 0.03) eV closer to the vacuum potential than EF of A, corresponding to electronic 

charge transfer from Au(111) to A. This is consistent with the larger work function of A 

(6.18 eV) relative to Au(111), which we calculate to be 5.18 eV, in reasonable agreement 

with the experimental value16 of 5.31 eV.  

 We can now simulate STM images using A with ΔEF = 0.85eV, within the 

Tersoff-Hamann approximation.17 To take into account the effect of convolution between 

sample and tip wave functions,17 as well as the small amount of spot broadening in the 

scan direction x, we use elliptical Gaussian broadening with standard deviations sx of 1.2 
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Å and sy of 0.8 Å  (both less than half of the bond lengths in the structure). Our 

simulations reproduce convincingly the high-magnification experimental images at 2 

different sample bias voltages (Fig. 3), and are insensitive to the exact values of sx and sy. 

The calculations indicate that the bright spots in the STM images in Fig. 3 are associated 

with positions of the S(3,a) and  S(3,b) atoms.  

VI. Nature of bonding: Approach 

The fact that Au atoms from terraces can be incorporated into a stable, 

incommensurate AuS layer is quite remarkable. This warrants a closer examination of 

bonding in the AuS layer. In Fig. 4, the charge density difference between structure A 

(Fig. 1(b)) and the superposition of atomic densities is plotted in the plane of the 

structure. From this plot, it is evident that charge accumulates between the Au and S 

atoms, seemingly closer to the S. A small amount of charge accumulation seems to be 

present between Au(3,a) and Au(3,b) as well. In order to obtain more detailed chemical 

insights than that provided by Fig. 4, we use a recently developed scheme18 which 

provides an excellent description of bonding in well-characterized systems of both 

metallic and covalent nature. The analysis relies on the successive construction of two 

sets of localized Wannier orbitals with initially-specified centers and symmetries (e.g. 

atomic s, p or d symmetries). The first set (I) consists of atom-centered orbitals (AOs), 

and the second (II) of both AOs and bond-centered orbitals (BOs).  

 The construction of Wannier orbitals suited for the current application is 

described in detail in Reference 18. Briefly, we make a choice of symmetry properties of 

Wannier functions specified with (a) the centre of the Wannier function and (b) the 

irreducible representation of  its site symmetry group given in terms of its partner 
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function, for example a spherical harmonic. Such a choice is typically guided by the 

symmetry properties of Bloch functions at high symmetry points in the Brillouin zone, 

and is self-corrective, as discussed below. Well-localized Wannier functions can be 

obtained if they are Fourier transformed from Bloch functions that are smooth and 

periodic in Bloch vector k. As described in Reference 18, these Bloch functions can in 

turn be obtained by introducing an auxiliary subspace. This auxiliary subspace is 

constructed from highly localized functions of the chosen symmetry (spherical harmonic 

for the angular part, and a Gaussian form for the radial part). These highly localized and 

orthonormal orbitals are Fourier transformed to obtain Bloch functions that span the 

auxiliary subspace. The key point is that these Bloch functions have the same symmetry 

properties as those of the Bloch functions in the physical subspace of occupied (and some 

of the unoccupied in metals) electronic states in the system. A unitary transformation is 

performed on the Bloch functions in the physical subspace such that the overlap matrix 

between Bloch states of  the auxiliary and the physical subspace becomes hermitian, 

amounting to vanishing of open path non-abelian geometric phases. This gives the 

desired Bloch functions and corresponding well-localized Wannier functions. 

Determination of the unitary transformation is facilitated by singular value decomposition 

of the overlap matrix. The scheme is self-corrective in the sense that some of the singular 

values vanish in the case where the choice of symmetry of the auxiliary subspace is not 

quite optimal and hints for correction.  

 Another important feature of our approach18 is that Bloch eigenfunctions are 

weighted by the square-root of their occupation numbers in the above-described 

transformation. This allows treatment of metallic systems considered here. Further, the 
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resulting Wannier functions are no longer constrained to have unit charge as usual, but 

have an integrated charge that reflects the physics of the system. For example, the amount 

of charge in each localized AO and BO is directly related to atomic oxidation states and 

relative bond strengths respectively.   

VII. Nature of bonding: Results 

We use here two choices of auxiliary subspaces: (I) one with only atom-centered 

orbitals (AOs), and (II) one with AOs and bond-centered orbitals (BOs), by including 

more unoccupied states in the physical subspace. We first illustrate the method by 

discussing results for the stable structure A (Fig. 1(b)). The AOs for Au 6s (Fig. 5(a-c)), S 

3s (Fig. 5(d)) and S 3p (Fig. 5(e-f)) electrons are spatially extended, indicating that these 

electrons contribute substantially to bond covalency. In particular, the singular value for a 

Au-centered AO with s-symmetry vanishes, reflected in the distortion of these AOs from 

atomic-like s orbitals (Fig. 5(a-c)), in contrast to the S AOs that still resemble atomic-like 

s and p orbitals (Fig. 5(e-f)). This suggests an especially important role of Au 6s electrons 

in the covalency of bonds in the AuS layer. On the other hand, the Au 6p AOs are 

unoccupied and are especially localized, suggesting that the 6p orbitals of Au do not 

hybridize with 6s orbitals during bond formation. Au 5d AOs, although not spatially 

extended, are less localized than the 6p AOs, and as we discuss later, do contribute to 

bond formation. This is consistent with the general argument in the literature that 

electronegative ligands of Au support Au 5d participation in bond formation, while 

electropositive ligands support Au 6p participation:19 the electronegativity of S (Au) is 

2.58 (2.54). The lack of 6s-6p hybridization is also consistent with the relatively large 

energy separation between 6s and 6p levels compared to 6s and 5d levels in atomic Au.20  
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The amount of electron charge in Au AOs is largest for Au(2) and smallest for 

Au(4), consistent with formal oxidation states expected from the literature: AuIII and AuI 

have square planar and linear coordination geometries respectively, while the 5d9 

configuration in AuII is typically accompanied by a Au-Au bond.20 Indeed, the ring, Au(4)-

S(3,b)-Au(3,b)-S(2,b)-Au(4)-S(3,a)-Au(3,a)-S(2,a), is a motif found in Au2+ compounds.15,20  S is 

known to form bonds with Au in all three oxidation states;15 the 2- and 3-fold 

coordination for S is similar to that for O in Au2O3 
21 (the structure of Au2S3 is unknown).  

The 1:1 stoichiometry in structure A thus arises from having one AuIII(Au(4)), one 

AuI(Au(2)) and two AuII(Au(3,a) and Au(3,b)) atoms per unit cell, in contrast to bulk gold 

sulfides (Au2S and Au2S3)13 which contain purely AuI or AuIII respectively.   

Each Au (S) atom contributes 0.3-0.4 e (0.8-0.9 e) per bond. The Au-S bonds are 

partially polar, as indicated by their asymmetric BOs (Fig. 6). This is consistent with 

excess charge in S 3p AOs and shortage of charge in Au 6s (and some 5d) AOs. The 

origin of Au-Au interactions in AuII-AuII (and AuI-AuI) compounds has been the subject 

of considerable debate.19 Previous ab initio studies have described the AuII-AuII 

interaction as a single covalent bond with considerable 6s-6s character.19 Our calculations 

indicate that the 6s electrons indeed are key players in the Au-Au bond in the isolated 

AuS layer. We further predict that the Au-Au bond in isolated AuS is stabilized by 

delocalization over S(2,a) and S(2,b), as indicated by the multi-centered Au(3,a)-Au(3,b) BO in 

Fig. 6(c). In addition, the amount of charge in the Au(3,a)-Au(3,b) BO is 20-27 % less than 

that in the Au-S BOs, indicating that the Au-Au bond strength in isolated AuS is weaker 

than other bonds in the layer.  
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 To understand the effects of the substrate, we performed a similar analysis on 

structure B (Au(2) at site X on Au(111) and Au(4) at O (Fig. 1)), with AOs centered on 

atoms in the AuS layer and the top Au(111) layer. The shapes of Au-S BOs are not 

affected by the substrate (Fig. 7(a-b)), while the multi-centered Au-Au BO, though 

slightly extended towards the substrate atoms, remains largely confined within the AuS 

plane (Fig. 7(c-d)). The fact that BOs within the AuS layer largely retain their shapes 

even in the presence of the Au(111) layers suggests that the AuS layer does not interact 

strongly with the substrate, which is consistent with the experimentally observed 

incommensurability and our theoretical assumptions.  

 Compared to the isolated layer, the electronic charge in each BO increases by 54 

% on average, except for the Au-Au BO, where the increase is 15 %. In contrast, the 

contribution of each AO to bonding either decreases, or increases by at most 9 %. This 

implies that bonds within the AuS layer are strengthened at the expense of substrate 

electrons, which may explain the robustness of the AuS structure. Using ΔEF of 0.85 eV 

and the DOS of the isolated layer A, we estimate the quantity of charge transferred to the 

layer to be ~3.3 e per unit cell of A. Completely relaxing the isolated AuS layer in the 

presence of this extra charge does not change the atomic arrangements significantly (Fig. 

2(b)). Importantly, however, the optimized lattice constants of the charged layer are 8.4 Å 

and 7.9 Å: these are near the low end but within the respective experimental ranges of 

[8.4 – 9.2] Å and [7.8 – 8.6] Å (see Table 1(a) for bond lengths). The lattice angle of 76° 

is also reasonably close to the experimental range of [78° – 86°]. These results are in 

contrast to what we found for the neutral AuS layer, where the optimized lattice 

constants were too small compared to experiment. This further confirms that charge 
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transfer from the substrate stabilizes the stretched bonds in the supported layer, and that 

our estimated shift in EF models the effect of charge transfer reasonably well.  

VIII. Concluding Remarks 

 As previously established in detailed scanning probe studies,5,6 the Au(111) 

surface interacts with deposited sulfur in a dynamic, rather than static, manner, eventually 

resulting in a 2D incommensurate Au-S phase upon annealing to 450 K. STM alone was 

insufficient to decipher the atomic structure of the Au-S phase, since STM images the 

electronic, rather than atomic, structure. In this work, we revisit the structure of this 

intriguing incommensurate phase, and discuss in detail an atomic-scale model for the 

system, which reproduces convincingly high-magnification STM images. What is 

striking about this model is that it is remarkably robust, even in the presence of the Au 

substrate. Furthermore, the structure reflects the rich co-ordination chemistry of Au, 

which is also present in Au compounds synthesized from Au ions in solution or gas 

phase.19,20 We provide a natural explanation for the remarkable robustness of the model, 

in terms of charge transfer from the substrate, bond types and formal oxidation states of 

Au.  

 While we have not proven that the proposed model is the thermodynamically 

stable structure, the extraordinary robustness of the model and our bonding analysis 

indicate that it is strongly favored, and would therefore at least be an important precursor 

state. Together with STM studies, it is clear that the Au(111) surface is not simply an 

‘inert’ surface, but can interact dynamically with deposited sulfur, with the incorporation 

of Au atoms from terrace sites into a sulfide adlayer at higher coverages. Our results 

suggest that the ring-like features reported in the literature12 may not simply be S8 



17 

molecules. Similar adsorbate-induced mobilization of Au atoms has been observed when 

oxygen atoms are deposited onto Au(111), resulting in a gold oxide adlayer.6  

 The dynamic nature of the Au(111) surface and the incorporation of Au terrace 

atoms into a sulfide adlayer in this system have important implications for the structure of 

the S-Au interface in self-assembled monolayers (SAMs) of thiols on Au(111),3 which is 

crucial to determining their transport properties.22 Similar etch pits and islands have been 

observed in these systems, suggesting that Au terrace atoms will have similar interaction 

chemistry with thiol chains. The interface structure in thiol/Au systems, however, has 

commonly been interpreted in terms of a flat Au(111) surface,3 with only a few works23 

proposing an interface structure involving Au vacancies. The latter involve ab initio 

calculations which indicate that the adsorption of methylthiolate on Au(111) is stabilized 

by the introduction of vacancies in the Au substrate, with the increased adsorption energy 

more than compensating for the vacancy formation energy.23 Our observations are 

consistent with this picture and further highlight the importance of considering composite 

Au-thiol adlayer systems in contrast to conventionally assumed adsorption on flat 

Au(111).  

 Furthermore, we have introduced theoretical techniques to take into account 

charge transfer and thereby simulate STM images for an incommensurate system without 

requiring exceedingly large supercells. We suggest that in general, the shift in Fermi level 

can be obtained by comparing an experimentally determined work function of the 

combined incommensurate system with a quantitative theoretical estimate of the work 

function of the isolated adlayer. This would render possible computationally tractable 

first-principles studies of many incommensurate systems involving metallic adlayers on 
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metal substrates. We have also employed state-of-the-art Wannier function-based 

methods to yield detailed chemical insights into the nature of bonding in the system, and 

this analysis is applicable to a wide range of complex systems. 
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Geometric 
features 

Structure A Fully relaxed, 
neutral layer 

Fully relaxed, 
charged layer 

Experiment 

a1 × a2 8.7 × 8.2 7.9 × 7.7 8.4 × 7.9 (8.8 ± 0.4)×(8.2 ± 0.4) 

θ 79° 78° 79° 82° ± 4° 

Au(2)-S(3)  

(AuI-S-II) 

2.41 2.29 2.34  2.1714 

Au(3)-S(2)  

(AuII-S-II) 

2.33 2.25 2.30 - 

Au(3)-S(3)  

(AuII-S-II) 

2.41 2.28 2.35 - 

Au(4)-S(2)  

(AuIII-S-II) 

2.45 2.37 2.42 2.30-2.35, 2.4015 

Au(4)-S(3)  

(AuIII-S-II) 

2.58 2.37 2.43 2.30-2.35, 2.4015 

Au(3,a)-Au(3,b)  

(AuII-AuII) 

2.87 2.88 2.85 2.60, 3.1015 

Table 1. Geometric features in structure A, in the fully relaxed neutral and charged 

(3.3 e/cell) layers, and in experiment. (a1 × a2) and θ denote respectively the lattice 

dimensions (in Å) in the a1 and a2 directions, and the angle between lattice vectors for the 

AuS unit cell. The remaining rows tabulate bond lengths (in Å) in the respective AuS 

models and in experiment. The experimental bond lengths are taken from the literature of 

known compounds that contain Au-S or Au-Au bonds with the same formal oxidation 

states as given in brackets in the first column. Specifically, the bond length for AuI-S-II is 

taken from crystal data on bulk Au2S.14 In compounds with AuIII-S-II bonds, typical AuIII-
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S-II bond lengths are 2.40 Å if S bridges two AuIII atoms, and 2.30-2.35 Å otherwise.15 

The AuII-AuII bond length is about 2.60 Å for covalent AuII-AuII bonds and 3.10 Å for 

weaker AuII-AuII aurophilic interactions.15  
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FIG. 1. (color online) (a) Proposed orientation of AuS unit cell (black box). (b) 

Atomic structure of A. Numerical subscripts denote the coordination of each atom and 

letter subscripts indicate inequivalent atoms of the same coordination. The cross and 

circle in (a) mark sites X and O respectively, relevant to structure B described in the text. 
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FIG. 2 (color online) Fully relaxed structures and unit cells (red boxes) for isolated, 

(a) neutral and (b) charged AuS layers. The structure in (b) has a charge of 3.3 e/cell. 
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FIG. 3. (color online) (a) Constant height STM images collected at room 

temperature, (b) STM simulations.  Orange and black circles mark lateral positions of 

Au and S atoms respectively.  The numbers indicate sample bias voltages in mV, and the 

scan direction is given by x.  
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FIG. 4. (color online) Charge density difference plot.  The charge density difference 

between structure A and the superposition of atomic densities, is plotted in the plane of 

the structure; the scale runs from -0.0005e (black) to +0.0002e (white). 
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FIG. 5. (color online) AOs in structure A. 6s AOs for (a) Au(4), (b) Au(3,a) (similar to 

Au(3,b)), (c) Au(2); (d) 3s AOs, (e) and (f) 3p AOs for S(2,b) (similar to other S atoms).  Red 

and green surfaces represent positive and negative contour surfaces of the same absolute 

value.   
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FIG. 6. (color online) BOs in structure A. (a) Au(4)-S, (b) Au(2)-S, (similar to Au(3,a)-S 

and Au(3,b)-S) and (c) Au(3,a)-Au(3,b). Symbols are the same as in Fig. 5.  
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FIG. 7. (color online) BOs in structure B. Au(2)-S in (a) top and (b) side views (similar 

for other Au-S bonds), and Au(3,a)-Au(3,b) in (c) top and (d) side views. Symbols are the 

same as in Fig. 5. The isocontour value in (c) is half that in (a), (b) and (d). 

 

 

 

 

 

 

 
 
 
 
 
 
 




