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Abstract

An approach for the topological representation of simplicial finite element meshes as graphs is pre-
sented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few,
local kernel operations. The performance of the graph representation is demonstrated and analyzed,
using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph repre-
sentation initializes inO(N1.1

E
) time and fractures inO(N1.0

I
) time, while the reference implementation

requiresO(N2.1

E
) time to initialize andO(N1.9

I
) time to fracture, whereNE is the number of elements

in the mesh andNI is the number of interfaces to fracture.

1 Introduction

The initiation and propagation of cracks and eventual fragmentation of a solid are among the most complex
physical processes to which advanced computer simulationsprovide access. Within the field of computa-
tional solid mechanics, several different methods has beenexplored to simulate the fracture and fragmenta-
tion of solids: finite-element methods [1, 4, 14, 21], extended finite-element methods [9] and element-free
Galerkin methods [5]. In conventional finite-element methods two distinct approaches to simulating frac-
ture have becomede facto standard: the smeared crack model and the discrete crack model (c.f. de Borst
et al. [10] for a detailed review). In the smeared crack model, individual cracks are not explicitly resolved;
instead, their effect on a solid is incorporated via deterioration of the material stiffness and strength.

By contrast, the discrete crack model is considerably more intuitive: a crack is introduced directly into
the finite element discretization of the solid as a displacement discontinuity. This approach regards fracture
as afree-discontinuity problem, i. e., a problem in which the displacement field may develop discontinuities
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over asingular or jump set that is not knowna priori. The mechanical behavior of the crack may conve-
niently be modeled by recourse to cohesive theories of fracture, and the evolution of the singular set may
be achieved by the adaptive insertion procedure of surface-like cohesive elements at bulk-element interfaces
[6, 21]. The insertion is customarily governed by a criterion evaluated at bulk-element interfaces throughout
the course of a simulation. These adaptively-inserted cohesive elements capture the gradual de-cohesion
process of the crack surfaces as the fracture proceeds.

Another class of problems that may be viewed and analyzed as free-discontinuity problems concern
processes of strain and damage localization such as spallation and shear banding. For instance, solids de-
forming at high strain rates often develop narrow layers of high strain. Outstanding features of these strain
localization zones are ultra-high local strain rates, local temperature raises, and high propagation speeds
[16, 25, 28, 31, 34, 35]. Cracks, whether as a result of ductile fracture or of microvoid growth and co-
alescence often form along these shear bands [16, 32]. Moreover, spallation in metals may be regarded
as the result of a process of damage localization leading to the formation of void sheets [8, 29]. These
strain localization layers may be regarded strictly as asub-grid phenomenon and, consequently, the bands
of strain localization may be modeled asdisplacement discontinuities. These displacement discontinuities
are confined to volume-element interfaces and are enabled bythe insertion of specializedstrain-localization
elements. These elements consist of two surfaces, attached to the abutting volume elements, that can sep-
arate and slip relative to each other. The kinematics of the strain-localization elements is identical to the
kinematics of cohesive elements proposed by Ortiz and Pandolfi [ 21] for the simulation of fracture [33].

In a simulation that uses cohesive elements or strain localization elements, the finite element mesh is
initially coherent. As the simulation advances, a failure criterion is computed at bulk-element interfaces each
time a specified number of computational steps have been performed. When the failure criterion is satisfied
at a particular interface, a cohesive or localization element is introduced into the mesh. This element in
turn governs the mechanics of the fracture or strain localization process at the interface. The continuous
evolution of the topology of the mesh is an inherent feature of both cohesive element and localization
element approaches. This evolution involves complex operations on the mesh, with the result that robust
three-dimensional implementations that take into accountthese changes in topology are difficult to develop.
A formal approach for the manipulation of the topology of finite element meshes is thus necessary in order
to bring the complexities of these operations to a manageable level, and also to avoid the creation ofad hoc
algorithms that may result in error-prone and inefficient implementations.

Mesh descriptions often assume one of the following two representations:full or reduced. According to
the full representation, all topological entities in a mesh, such as points, segments or faces, are represented
explicitly in the data structure. By contrast, in the reduced representation, one or more classes of topological
entities are not represented explicitly, and hence their topological information must be inferred in terms
of other entities that exist in the data structure [12]. The most common representation of a finite element
mesh is a connectivity list or table. In this representation, each row in the table simply lists the nodes for
a particular element according to some ordering convention. The connectivity table, although simple to
implement, has proved extremely cumbersome for complex topological manipulations of meshes, such as
those imposed by the aforementioned cohesive element and localization element methods.

Most advanced mesh representations are capable of effectively dealing with issues of non-manifold
topologies, storage requirements, efficiency of construction, and modification or retrieval of topological in-
formation. For instance, the radial-edge data structure introduced by Weiler [30] emphasizes completeness
and suitability for the representation of non-manifold topologies. Here, completeness is defined as the abil-
ity to generate all topological information from the representation alone, i.e., all adjacency relationships are
directly retrievable or derivable from the information contained in the data structure [7, 24, 30]. Specialized
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topology-based data structures were introduced by Beall and Shephard [3], with a varying degree of explic-
itness. Some of the proposed data structures are fully explicit, while the rest offer different levels of implicit
representation with the objective of minimizing storage.

Previous efforts to develop a representation of a mesh, in which —possibly radical— topological changes
occur, often involve the direct manipulation of finite-element connectivity arrays by means of complex al-
gorithms [22, 23]. While this approach may be effective for relatively smallmeshes and light computational
loads, it ostensibly fails to deal properly with non-manifold topologies and does not scale well to large
meshes. Recently, Celes et al. [7] developed an implicit data structure that supports fracture and fragmen-
tation. The authors particularly stress storage reductionand the representation of various types of elements,
including simplicial ones. A direct comparison with our approach, however, is not possible at this time as
the authors do not report performance data for fracture.

In the present work, acomplete approach for the topological representation of simplicialfinite ele-
ment meshes as graphs is developed. By recourse to algebraictopology and graph theory, the originaln-
dimensional simplicial complex is reduced to a uni-dimensional simplicial complex in the form of a graph,
thus greatly decreasing the complexity of topological manipulations. We show that the graph representation
is particularly well-suited for the simulation of fractureand fragmentation. Some implementation issues are
discussed, followed by a performance comparison of the graph representation with the reference algorithm
of Pandolfi and Ortiz [22, 23], and the simulation of the brittle fracture of a gypsum cylinder subjected to a
pressure pulse as a numerical example.

2 Finite Element Meshes as Graphs

We define a finite element mesh as a simplicial complexK ∈ R
N of dimensionn ≤ N such that a simplex

σ in the(n− 1)-skeleton ofK, σ ∈ K(n−1), is a face of at least one simplex of dimensionn.
An oriented simplex+σ is a simplexσ together with a particular ordering of its points and all even

permutations thereof. The same simplex with all odd permutations of this ordering is said to have an opposite
orientation and is denoted as−σ. A p-chain onK is a functionc : K 7→ N such thatc(σ) = −c(−σ) and
c(σ) = 0 for all but finitely many orientedp-simplices inK [11, 19]. The elementary chainc corresponding
to σ is defined as

c(τ) :=











0, if τ 6= σ;

1, if τ = σ;

−1, if τ = −σ.

(1)

The symbolσ is often used to denote both a simplex and its elementary chain.
Consider the orientedn-simplexσ = [x0, . . . , xn] in which xi ∈ R

N , i ∈ [0, . . . , n] are its points. We
define theface operator as

di(σ) := [x0, . . . , xi−1, xi+1, . . . , xn], (2)

which returns theith (n − 1)-simplex that is aproper face of the simplexσ. It follows that theboundary
operator can be defined as

∂n(σ) :=

n
∑

i=0

(−1)idi(σ). (3)

Next consider a pair of simplices,σp ∈ K andσp−1 ∈ K, with p ∈ [1, . . . , n]. If σp ∩ σp−1 = σp−1, then
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let xi be the extra point ofσp that does not belong toσp−1. Theincidence number is defined as

[σp, σp−1] :=











0, if σp ∩ σp−1 = ∅;

1, if σp−1 = di(σ
p);

−1, if σp−1 = −di(σ
p).

(4)

Let f : K 7→ N be an injective map that assigns to each simplex in the mesh a non-negative integer.
Then let

V = { v | v = f(σ) ∈ N , σ ∈ K },

E = { e | e = (u, v), u = f(σp) ∈ V, v = f(σp−1) ∈ V, σp ∈ K, σp−1 ∈ K, [σp, σp−1] 6= 0}
(5)

whereE ⊂ [V ]2 is the set of integer pairs for which the corresponding simplices have a non-zero incidence
number. The graphG = (V,E) is used to represent the mesh simplicial complex, whereV is the vertex
set andE is the edge set. The mapf : K 7→ V between the simplicial complex and the vertex set is
bijective. Note thatf is a labeling that has been extended not only to the points but to all simplices inK. It
follows then that vertices represent simplices and edges represent their adjacency, and that by the definition
of the incidence number, edges connect vertices that represent a simplex and its proper faces. The edges
are assumed to be directed, i.e. ife ∈ E, u = tail(e), v = head(e) andσ = f−1(u), τ = f−1(v), then
dim(σ) = dim(τ) + 1, which renders the graphdirected, oriented (i.e. no loops or multiple edges) and
acyclic.

The in-degree of a vertexv is the number of edge heads adjacent to it and is denoted asd−(v). Con-
versely, theout-degree is the number of edge tails adjacent tov, denoted asd+(v). Thesource vertex set of
a vertex is defined asD−(v) = {u | u = tail(e)∀e s.t. v = head(e)}, and thetarget vertex set of a vertex is
defined asD+(v) = {u | u = head(e)∀e s.t. v = tail(e)}.

A path on the graphG is defined as the sequenceP = v1e1 . . . viei . . . en−1vn where both the vertices
{v1, . . . , vn} ⊂ V and the edges{e1, . . . , en−1} ⊂ E are distinct. The tail and head vertices of edgeei are
vi andvi+1, correspondingly, with the initial and terminal vertices of P beingv1 = init(P ) andvn = ter(P ),
respectively. The length of the path from vertexu to vertexv is the number of edges in the path, and a path of
lengthk is denoted asP k. The distanced(u, v) is the length of the shortest path between the vertices. Note
that for the graphG constructed as described above, the length and the distanceare equal. Furthermore, if
there exists a path between two vertices, their distance is given by

d(u, v) = |dim(σ)− dim(τ)|, σ = f−1(u), τ = f−1(v). (6)

Next consider the simplexσp. All paths of lengthp with initial vertex f(σp) have terminal vertices that
correspond to the points that define the simplex, i.e.

σp = [f−1(v0), . . . , f
−1(vi), . . . , f

−1(vp)], vi ∈ { v | v = ter(P p)∀ init(P p) = f(σp) }. (7)

Now letK be the collection of all point subsets{x0, . . . , xp} such that each subset spans a simplex in
K. The collectionK is known as thevertex scheme of K and is a prime example of anabstract simplicial
complex [19]. DefineS as the collection of setsap = {v0, . . . , vi, . . . , vp} with vi given by Eq. (7) for each
of the simplicesσp ∈ K. The collectionS is also an abstract simplicial complex in which the setsap ∈ S
are its simplices. Thus, there is a bijective correspondence f mapping the vertex set ofK to the vertex set
of S, and thereforeK andS are isomorphic [19]. By virtue of this isomorphism, our graph representation
is complete in the sense of Weiler [30]. The simplicial complexK is ageometric realization of the abstract
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simplicial complexS. Furthermore, the abstract simplicial complexS is apartially ordered set in which the
covering relation is defined asap−1 ⊂ ap. Thus, the graphG is in effect aHasse diagram of the abstract
simplicial complexS where the representation of the empty set has been omitted.

In addition, the graphs obtained by representing a simplicial complex in this manner are(n + 1)-partite
(i.e. they haven + 1 “levels”, from points to the simplex of highest dimension),and are also simplicial
complexes themselves [2, 13].

Let g : V 7→ S ⊂ N | e = (u, v) ∈ E, g(u) 6= g(v) be a surjective map that assigns to each vertex in
the graph an integer that is different from the integer corresponding to the vertices adjacent to it. This map
is avertex coloring of the graph. The cardinality of the smallest setS is thevertex chromatic number χ(G).
The graphG hasχ(G) = 2; nevertheless, for ease of visualization and convenience in implementation, we
choose the vertex coloringg : V 7→ S | g(f(σ)) = dim(σ)∀σ ∈ K and thereforeS = {0, . . . , n}.

Let h : E 7→ S be a surjective map that assigns to each edge in the graph an integer inS. We choose
the maph : E 7→ S | h(e) = i , e ∈ E, f−1(head(e)) ≡ +di(f

−1(tail(e))). Note that the ordering of the
proper faces is important here. Although this map is not anedge coloring from the point of view of graph
theory (viz. there are adjacent edges that map to the same integer), we associate the integers inS with colors
(0 = red, 1 = green, 2 = blue, ...), which not only enhances the visualization of graphs, but also aids in the
determination of simplex orientation, as described later.

The 0-simplex or point has the simplest representation as a graph that consists of a single, isolated vertex
shown in Fig.1 as a red oval.

Figure 1: 0-simplex or point.

The use of interpolation functions of order higher than linear requires additional points that are not
present in a strictly simplicial mesh. These additional points are easily accommodated by simply including
them, and play no defining role in the topological manipulations of the mesh. Thus, although ann-simplex
hasn + 1 0-simplices or points [17, 19, 20], the graph representation of a simplex may include additional
points to accommodate higher-order finite elements.

In order to illustrate the graph representation for higher order elements, henceforth we consider the
particular case of quadratic interpolation functions. Thus, the 1-simplex or segment is augmented with an
extra point as shown in Fig.2. Both segments are represented by green vertices with theirproper faces,
points 0 and 1, connected to them by colored, directed edges.Both segments have been augmented by
midpoint 2 to accommodate quadratic interpolation functions.

The segments in Fig.2 have opposite orientations. This is represented in the graph by edge colors.
Disregarding the midpoint, the oriented segment in Fig.2a is represented as[x0, x1], whereas the bottom
segment is[x1, x0]. Thus, the ordering of the points differs by an odd permutation.

The graph representation of the 2-simplex or triangle is shown in Fig.3. Both triangles in the figure are
represented as[x0, x1, x2] since the arrangement of the corner points differs only by aneven permutation
[19, §5]. Note, however, that the difference in ordering is recorded in the graph as an even permutation of
the colors of the edges connecting the triangles with their segments.

A finite element mesh in the context of the graph representation is a simplicial complex where an extra
graph vertex is introduced, as shown in Fig.4. Thisroot vertex, shown as a white oval in the figure, guaran-
tees that the graph isweakly connected, regardless of whether the mesh is intact or in a highly fragmented
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(a)

(b)

Figure 2: 1-simplex or segment.

(a)

(b)

Figure 3: 2-simplex or triangle.
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state. This greatly simplifies the manipulation of the graph. For the tetrahedron in Fig.4, the colors of the
edges define an ordering of the vertices that is considered canonical, and any deviations from it are recorded
within the graph, as described next.

Figure 4: Single-tetrahedron mesh and its corresponding graph.

3 Ordering and Orientation

Within the context of algebraic topology, all even permutations of a selected ordering of vertices represent
the same orientation of a simplex. Nevertheless, in the caseof frequent interaction with traditional finite
element connectivity arrays (e.g., using the graph representation within an existing finite element code), it
is necessary to record additional orientation informationin the graph in order to fully recover these arrays.

The added complexity is required to preserve the order of thenodal connectivity when exchanging
information between the graph and connectivity arrays. A nodal connectivity array is essentially a collection
of memory address offsets, and therefore it is crucial to preserve its ordering to avoid accessing incorrect or
invalid memory locations. Thus, the graph representation is endowed with the property that any alteration
of the ordering of the points is recorded, regardless of the reordering being an even or odd permutation, as
shown in Fig.3.

Consider now the case of two triangles that share a segment, as shown in Fig.5. The order of segment
0 changes depending on whether it is seen as a proper face of triangle 0 or triangle 1 (i.e., segment 0=
+d0(triangle 0) = −d1(triangle 1)). This is reflected in Fig.5a, where the edge joining triangle 0 with
segment 0 is red, whereas the edge joining triangle 1 with thesame segment is green. Additionally, the
orientation of the segment is also different according to whether it is considered part of one triangle or the
other, and the corresponding graphs record this differenceas a swap of the colors of the edges that join the
segment with points 0 and 1.

When both triangles form part of the same simplicial complex, however, the graph representation con-
tains a single instance of the shared segment, as shown in Fig. 5b. Therefore, each edge joining the segment
with a point records a single color, which by convention is the color assigned by the first simplex that refer-
ences the edge. In order to avoid the loss of ordering information of points with respect to the segment for
each of the original triangles, edge color maps are introduced.

An edge color map is a simple bijective transformation that records(n−1)-simplex ordering information
for an n-simplex when the latter is a shared face of several(n + 1)-simplices. Lete ∈ E be an edge in
the graph. Then letu = tail(e), v = head(e), σ = f−1(u), andτ = f−1(v), with dim(τ) > 0. Then it
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(a)

(b)

Figure 5: Local Ordering as Color Maps.

follows thatd+(v) = dim(τ) + 1 and that the edge color map can be defined asC : {0, . . . , dim(τ)} 7→
{0, . . . , dim(τ)} | dC(g(ê))(dg(e)(σ)) = dg(ê)(τ) ,∀ ê s.t.v = tail(ê). Edges are thus endowed with a color
map property, besides their own color.

The color maps in Fig.5b indicate the color translation that must be applied to the edges joining the
segment and points to recover the ordering shown in Fig.5a. Thus, the color map for the edge joining
triangle 0 and segment 0 is the identity map, which indicatesthat no color transformation is necessary to
recover the original colors of the edges joining the segmentwith its points. By contrast, the color map
associated with the edge joining triangle 1 and segment 0 indicates that to recover the color of the edges
joining the segment with its points shown in Fig.5a for triangle 1, blue must be replaced by red and red by
blue, while green is left intact (the fourth color, yellow, is included to accommodate tetrahedra, thus allowing
for the use of constant-sized color maps for all edges, whichgreatly simplifies the implementation). The
fact that the color map for the edge joining triangle 1 and segment 0 in Fig.5b is not the identity is indicated
by the dashed line used to represent the edge.

4 Graph Fracture

Let cp be thep-chain inK such thatcp =
∑

σp ∀σp ∈ K. We define the chain of internal interfaces as
cI,n−1 := cn−1 − ∂n(cn). On the graphG, the set of vertices corresponding to the internal interfaces is
given byVI,n−1 = {v | v ∈ V, d−(v) = 2, d+(v) = n}, and by analogy tocp we defineVp = {v | v ∈
V, g(v) = p}.

The first step in the graph fracture procedure consists of identifying open simplices. We define an open
simplex as one that is adjacent to a simplex incI,n−1 that has been identified as fractured by a failure
criterion. Hence, in a three-dimensional simulation, if a triangle (2-simplex) is marked as open, then all
its faces (segments and points) and the adjacent tetrahedraare marked as open too. On the graphG, the
corresponding vertices inVI,n−1 and all vertices in all paths that start or end in an open vertex in VI,n−1 are
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considered open as well, and the set that contains them is denoted asVF .
Thestar Stσ of a simplexσ ∈ K is defined as the union of the interiors of the simplices inK that have

σ as a face. The star of a simplex corresponds to a subgraphG′ of G, with V ′ andE′ its corresponding
vertex and edge sets. Moreover,G′ is an induced subgraph ofG, in the sense that if two verticesu and
v in V ′ are joined by an edge inE′, then there is a corresponding edge inE that also joinsu andv, i.e,
e′ = (u, v) ∈ E′, u, v ∈ V ′ =⇒ e = (u, v) ∈ E, u, v ∈ V . We call the subgraphG′ corresponding to
the star Stσ the simplex subgraph ofv = f(σ) and denote it asG′(v). The number of (weakly)connected
components of a graphG is N(G) and the components themselves areG1, . . . , GN(G). An articulation
point of a graphG is a vertexv such thatG \ v has more connected components thanG.

Let VF,i = {v | v ∈ VF , g(v) = i} be the set of open vertices that correspond to openi-simplices,
with i ∈ {0, . . . , n}. The fracture algorithm is effected by performing SPLIT(G,VF,0, n, 0), with the SPLIT
procedure defined in Algorithm1.

Algorithm 1 SPLIT(G,U, n, i) Split articulation points.
Require: U ⊂ Vi, i ≤ n− 1

1: for all v ∈ U do
2: if i < n− 2 then
3: SPLIT(G,D−(v), n, i + 1)
4: else
5: CLONE(G,D−(v), n)
6: end if
7: G′′ ← G′(v) \ v // Check whetherv is an articulation point
8: for all j ∈ {2, . . . , N(G′′)} do
9: Y ← {u | u ∈ G′′

j , g(u) = i + 1}
10: V ′ ← {V ′, z} // Split the vertex in the subgraph and graph
11: for all u ∈ Y do
12: E′ ← E′ \ (u, v)
13: E′ ← {E′, (u, z)}
14: end for
15: end for
16: end for

Note that the fracture algorithm is defined recursively, andtherefore its expression is relatively sim-
ple. The isomorphism between the changing graphG and simplicial complexK is preserved throughout
these operations. The cloning operation only duplicates internal interface simplices, and thus preserves the
isomorphism betweenG andK. The splitting operation applies only to articulation points (or articulation
simplices inK) that join otherwise independent components of the mesh. The corresponding vertex and
simplex are split according to the number of components, andtherefore the isomorphism is also preserved.

A sequence of operations comprising the fracture algorithmis further illustrated in Fig.6 for a test
fracture problem involving two tetrahedra sharing a face. At the outset, this common face is assumed to have
undergone fracture and then the algorithm proceeds, as required, to completely separate the two tetrahedra.

An important feature of the graph representation is its ability to correctly handle non-manifold meshes.
In order to further elucidate this point, we employ the fracture algorithm to open all internal faces of the two
test meshes shown in Fig.7. The first mesh consist of two identical cubes with a common vertex and the
second mesh of the same two cubes but now sharing an edge. The graph-based fracture algorithm is clearly
capable of correctly handling the two non-manifold meshes,as is evident from Fig.7. For the purpose of
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First selected open point is 2 (Alg.1:1), process open segments 1 and 5 attached to it (Alg.1:2-5):

Extract subgraph for segment 1, which clones open triangle 2, creating triangle 7 (Alg.2):

=⇒

There are 2 branches in segment 1’s subgraph, so the segment is split (Alg.1:7-15):

=⇒

Next is segment 5, now attached to 0 open triangles. Its subgraph has 2 branches (Alg.1:7-15):

=⇒

Both open segments for point 2 were split, its subgraph has 2 branches now (Alg.1:7-15):

=⇒

Next is point 1, with segment 3 the only remaining open segment (Alg. 1:1-5), which is split (Alg.1:7-15):

=⇒

Point 1 is split (Alg.1:7-15):

=⇒

Finally point 3, with 0 open segments, is split, obtaining 2 separate tetrahedra (Alg.1:7-15):

=⇒

Figure 6: Fracture procedure for two joined tetrahedra.
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Algorithm 2 CLONE(G,U, n) Duplicate fractured interface simplices.
Require: U ⊂ VI,n−1

1: for all v ∈ U do
2: if v ∈ VF,n−1 then
3: Y ← D−(v) // Note thatd−(v) = 2, hence|Y | = 2
4: u1 ← u ∈ Y s.t.[f−1(u1), f

−1(v)] = 1
5: u2 ← u ∈ Y s.t.[f−1(u2), f

−1(v)] = −1
6: V ← {V, w}
7: E ← E \ (u2, v)
8: E ← {E, (u2, w)}
9: for all z ∈ D+(v) do

10: E ← {E, (w, z)}
11: end for
12: end if
13: end for

comparison, we also show the results obtained by the application of the classical fracture algorithm proposed
by Pandolfi and Ortiz [22, 23], which does not yield the expected outcome.

(a) Original mesh (b) Fracture from [22] (c) Graph fracture

Figure 7: Two cubes joined by a point.

Next, we investigate the performance of the graph representation for problems involving fracture and
fragmentation of tetrahedral finite element meshes. Our implementation of the graph representation has
been developed using the Boost Graph Library (BGL) [26]. The BGL applies the principles of generic
programming for the construction of advanced data structures and algorithms commonly used in graph
theory. The use of the BGL helps to significantly reduce the development time and offers excellent flexibility
in the handling of various data types and related algorithms.

We compare the performance of our BGL-based implementationto the reference fracture algorithm of
Pandolfi and Ortiz [22, 23]. To this end, we evaluate the computational cost of performing two distinct oper-
ations: the construction of the initial representation of atetrahedral mesh and the separation of all tetrahedra
in the mesh by way of fracture. In Fig.9, we plot the time in seconds necessary to build the initial repre-
sentation of a mesh as a function of the number of elements fortwenty different tetrahedral meshes. The
green color in the plot corresponds to the graph representation, whereas the red color to the reference im-
plementation, respectively. Clearly, the graph representation exhibits linear dependence of the initialization
time with respect to the size of the finite element mesh. By contrast, the initialization time for the reference
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(a) Original mesh (b) Fracture from [22] (c) Graph fracture

Figure 8: Two cubes joined by an edge.

implementation is essentially quadratic. The massive savings offered by the graph representation become
fully realized for meshes composed of approximately 200,000 elements: the initialization time is reduced
from days to mere minutes.

Figure 9: Initialization time. Comparison of 20 meshes.

Fig. 10contains a plot of the time required to fracture all internalinterfaces in a finite element mesh as a
function of the number of such interfaces in the mesh. The plot was obtained using the same set of meshes
as for the initialization study. Again the green color in theplot corresponds to the graph representation, and
the red color to the reference implementation. The Pandolfi-Ortiz algorithm provides better performance for
relatively small meshes, i.e. containing less than approximately 80,000 internal interfaces (corresponding to
approximately the same number of elements). In the case of larger meshes, however, an opposite trend is ob-
served as the graph-based fracture algorithm furnishes substantial performance benefits. More importantly,
the cost of the graph-based algorithm appears to be merely linear in the number of interfaces undergoing
fracture, whereas it is nearly quadratic for the Pandolfi-Ortiz algorithm.
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Figure 10: Fracture time. Comparison of 20 meshes.

5 Numerical example

In order to demonstrate the power of the graph-based fracture algorithm, we perform a computer simulation
of the fracture and fragmentation of artificial kidney stones. Lithotripsy is a medical procedure designed
to induce stresses in renal calculi (kidney stones) throughthe repeated application of pressure pulses to the
exterior of the human body. The goal of the procedure is to break up the kidney stones into small fragments
that, subsequently, can exit the kidney through the urethra. The pressure pulses are commonly generated
in a lithotripter. The ability of the lithotripter to fragment kidney stones is customarily investigated experi-
mentally. These experiments, however, employ gypsum cylinders in lieu of renal calculi. The cylinders are
submerged in water as to simulate the effect of live tissue. Aseries of identical pressure pulses is applied to
the cylinders in the form of a planar front along the cylinderaxis. The appearance of cracks in the cylinders
depends on both the peak pressure of the pulse and the number of applied pulses. Moreover, a salient feature
of the crack pattern is formation of a spall plane at 2/3 of thecylinder length.

5.1 Gypsum experiment

Shock wave lithotripsy has become the primary technique in the treatment of renal calculi. However, much
controversy still remains as to precise mechanisms leadingto the comminution of kidney stones. At present,
brittle fracture is widely believed to be the main mechanismleading to fragmentation [15]. In view of the
difficulties associated with accurate control and instrumentation of the kidney stone fracture in live tissue,
but also to study lithotripter performance separately, artificial stones are generally used in the research of the
fragmentation mechanisms. The Ultracal-30 gypsum is most frequently adopted as a model for renal calculi,
as it is suitable for lithotripsy studies in vitro, acute animal experiments in which the stones are implanted
in the kidney, and as a target to compare in vitro performanceof intra-corporeal lithotripters [18].

A typical experimental setup involving the Ultracal-30 gypsum cylinders is shown in Fig.11a [18]. The
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cylinders are loaded by a pressure pulse along the cylinder axis. The pressure profile of the pulse is plotted
in Fig. 11b.

(a) (b)

Figure 11: Gypsum stone experiment setup (a) with pressure pulse applied to the gypsum sample (b).

Recovered gypsum cylinders are presented in Fig.12. The formation of a spall plane at 2/3 of the
cylinder length is clearly visible. Also, the three-dimensional surface reconstruction with damage signs due
to cavitation is shown.

Figure 12: 3D surface reconstruction (left) shows damage from cavitation, and cross-section (right) shows
the characteristic spallation plane [18].
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5.2 Finite element simulation

In our finite-element simulation of the artificial kidney stone lithotripsy we explicitly model both the gypsum
cylinder and the surrounding water. A very fine discretization of the cylinder is introduced in order to provide
a suitable number of possible fracture paths. Overall, the mesh, which is shown in Fig.13, includes 223,020
tetrahedral elements (130,202 for gypsum and 92,818 for water).

(a) (b) (c)

Figure 13: Finite element mesh used in the simulation. (a) Mesh for water. (b) Mesh for gypsum cylinder.
(c) Cross section showing the finer gypsum mesh embedded in the coarser water mesh.

The mechanical response of water is assumed to be well represented by an acoustic element that allows
for the propagation of pressure waves only. The finite-deformation acoustic formulation is displacement-
based in order to simplify the solid–fluid interaction. Gypsum is modeled as a neo-hookean finite-deformation
elastic solid. In the simulation, we use composite tetrahedral finite elements [27].

The material properties employed in the simulation are shown in Table1, whereE, ν, ρg, σc andGc

denote the Young’s modulus, Poisson’s ratio, mass density,fracture critical stress and fracture energy of the
gypsum, respectively, andK andρw are the bulk modulus and mass density of water.

E ν ρg σc Gc β2 K ρw

[GPa] [kg m−3] [MPa] [J m−2] [GPa] [kg m−3]
10.8 0.3461 1700 6.0 21.88 5.0 2.25 1000

Table 1: Material parameters used in the simulation

We present the results of our finite-element simulation in Fig. 14. The sub-figures show different per-
spectives of the final state of the gypsum sample, with cracksrepresented by a solid color and the sample
itself as a translucent cylinder. The color corresponds to the component of the normal stress along the axis of
the cylinder, with blue for lower values and green for highervalues. The simulation is capable of capturing
all of the essential components of the experiments. Thus, when the pressure wave enters the cylinder, a
network of frontal cracks develops (Fig.14a). As the wave proceeds along the axis of the cylinder, a failure
cone forms, a typical phenomenon associated with fracture under compression (Figs.14b, 14c, 14d). The
formation of a spall plane at 2/3 length may be observed in allsub-figures in Fig.14, in particular in Fig.14c.
Finally, exfoliation is best observed in Fig.14e. The salient feature of these experiments, the formation of
the spall plane, is evidently captured very well in our simulation.
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(a) (b)

(c) (d)

(e)

Figure 14: Gypsum fracture simulation results: (a) Frontalcracks. (b) Surface and internal cracks. (c) Spall
at 2/3 of length. (d) Spall and failure cone. (e) Exfoliationand spall.

16



A. Mota, J. Knap, M. Ortiz . . . Fracture and Fragmentation of Simplicial FE Meshes using Graphs

6 Conclusions

We have developed a graph representation of simplicial finite element meshes that is isomorphic to the
original simplicial complex, and therefore preserves all topological information. By extending the graph
representation to include ordering information, legacy finite element codes can make use of the graph rep-
resentation for complex topological operations, thus minimizing the changes needed in the legacy code. In
particular, the graph representation is well-suited for fracture, as demonstrated by the simulation of the brittle
fracture of an artificial kidney stone. The required operations for fracture in the graph result in simple re-
cursive algorithms capable of handling non-manifold topologies. In addition, the initialization performance
of the graph fracture is superior to the reference implementation and better suited for fracture for large
meshes. Furthermore, the localized nature of the operations needed for fracture render the graph represen-
tation specially well-suited for parallel implementation. The performance of the parallel implementation of
the method deserves detailed analysis and will be addressedin a subsequent publication.
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