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Abstract

An approach for the topological representation of simpli@inite element meshes as graphs is pre-
sented. It is shown that by using a graph, the topologicahgbsainduced by fracture reduce to a few,
local kernel operations. The performance of the graph sgmtation is demonstrated and analyzed,
using as reference the 3D fracture algorithm by Pandolfi attid (27]. It is shown that the graph repre-
sentation initializes i (N ;') time and fractures i® (N} ) time, while the reference implementation
requiresO(NZ1) time to initialize andO(N;9) time to fracture, wheréVy is the number of elements
in the mesh andV; is the number of interfaces to fracture.

1 Introduction

The initiation and propagation of cracks and eventual fraiggiation of a solid are among the most complex
physical processes to which advanced computer simulafiomgde access. Within the field of computa-
tional solid mechanics, several different methods has bgplored to simulate the fracture and fragmenta-
tion of solids: finite-element methods, [4, 14, 21], extended finite-element method4 pnd element-free
Galerkin methodsH]. In conventional finite-element methods two distinct aygmhes to simulating frac-
ture have becomde facto standard: the smeared crack model and the discrete cracél rfwoid de Borst
et al. [LO] for a detailed review). In the smeared crack model, indigiccracks are not explicitly resolved;
instead, their effect on a solid is incorporated via detation of the material stiffness and strength.

By contrast, the discrete crack model is considerably ndrétive: a crack is introduced directly into
the finite element discretization of the solid as a displaasndiscontinuity. This approach regards fracture
as afree-discontinuity problem, i. e., a problem in which the displacement field may develgpahtinuities
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over asingular or jump set that is not knowra priori. The mechanical behavior of the crack may conve-
niently be modeled by recourse to cohesive theories ofdractind the evolution of the singular set may

be achieved by the adaptive insertion procedure of sulikeeohesive elements at bulk-element interfaces
[6, 21]. The insertion is customarily governed by a criterion ea#bd at bulk-element interfaces throughout

the course of a simulation. These adaptively-inserted siebeslements capture the gradual de-cohesion
process of the crack surfaces as the fracture proceeds.

Another class of problems that may be viewed and analyzedeasdfscontinuity problems concern
processes of strain and damage localization such as $pali&td shear banding. For instance, solids de-
forming at high strain rates often develop narrow layersightstrain. Outstanding features of these strain
localization zones are ultra-high local strain rates, lleemperature raises, and high propagation speeds
[16, 25, 28, 31, 34, 35]. Cracks, whether as a result of ductile fracture or of miord growth and co-
alescence often form along these shear bamndsi”]. Moreover, spallation in metals may be regarded
as the result of a process of damage localization leadingeddrmation of void sheets3] 29). These
strain localization layers may be regarded strictly @slagrid phenomenon and, consequently, the bands
of strain localization may be modeled displacement discontinuities. These displacement discontinuities
are confined to volume-element interfaces and are enablétebgsertion of specializestrain-localization
dements. These elements consist of two surfaces, attached to thérgbuwlume elements, that can sep-
arate and slip relative to each other. The kinematics of titenslocalization elements is identical to the
kinematics of cohesive elements proposed by Ortiz and Rfahd for the simulation of fractured3].

In a simulation that uses cohesive elements or strain lat&in elements, the finite element mesh is
initially coherent. As the simulation advances, a failuitecion is computed at bulk-element interfaces each
time a specified number of computational steps have beearpetl. When the failure criterion is satisfied
at a particular interface, a cohesive or localization elein introduced into the mesh. This element in
turn governs the mechanics of the fracture or strain loaatim process at the interface. The continuous
evolution of the topology of the mesh is an inherent featuré&aih cohesive element and localization
element approaches. This evolution involves complex dip@m on the mesh, with the result that robust
three-dimensional implementations that take into accthege changes in topology are difficult to develop.
A formal approach for the manipulation of the topology ofténélement meshes is thus necessary in order
to bring the complexities of these operations to a managdatél, and also to avoid the creationaofhoc
algorithms that may result in error-prone and inefficienpliementations.

Mesh descriptions often assume one of the following twoasgntationsfull or reduced. According to
the full representation, all topological entities in a mesich as points, segments or faces, are represented
explicitly in the data structure. By contrast, in the redlioepresentation, one or more classes of topological
entities are not represented explicitly, and hence thgioltmgical information must be inferred in terms
of other entities that exist in the data structui€][ The most common representation of a finite element
mesh is a connectivity list or table. In this representatesch row in the table simply lists the nodes for
a particular element according to some ordering conventibime connectivity table, although simple to
implement, has proved extremely cumbersome for compleslégjcal manipulations of meshes, such as
those imposed by the aforementioned cohesive element aaliziation element methods.

Most advanced mesh representations are capable of effigctiealing with issues of non-manifold
topologies, storage requirements, efficiency of condtsnctand modification or retrieval of topological in-
formation. For instance, the radial-edge data structuredaced by Weiler30] emphasizes completeness
and suitability for the representation of non-manifolddimgies. Here, completeness is defined as the abil-
ity to generate all topological information from the reetation alone, i.e., all adjacency relationships are
directly retrievable or derivable from the information taned in the data structuré,[24, 3(]. Specialized
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topology-based data structures were introduced by BedlBhephardd], with a varying degree of explic-
itness. Some of the proposed data structures are fullyaiyplihile the rest offer different levels of implicit
representation with the objective of minimizing storage.

Previous efforts to develop a representation of a mesh, ichwh-possibly radical— topological changes
occur, often involve the direct manipulation of finite-elemh connectivity arrays by means of complex al-
gorithms P2, 23]. While this approach may be effective for relatively snmadtshes and light computational
loads, it ostensibly fails to deal properly with non-matdfdéopologies and does not scale well to large
meshes. Recently, Celes et ai] fleveloped an implicit data structure that supports frecand fragmen-
tation. The authors particularly stress storage reducimwhthe representation of various types of elements,
including simplicial ones. A direct comparison with our apgch, however, is not possible at this time as
the authors do not report performance data for fracture.

In the present work, @aomplete approach for the topological representation of simplitiaite ele-
ment meshes as graphs is developed. By recourse to algéfpalogy and graph theory, the originad
dimensional simplicial complex is reduced to a uni-dimenal simplicial complex in the form of a graph,
thus greatly decreasing the complexity of topological mpalgtions. We show that the graph representation
is particularly well-suited for the simulation of fractuaed fragmentation. Some implementation issues are
discussed, followed by a performance comparison of thehgrepresentation with the reference algorithm
of Pandolfi and Ortiz{2, 23], and the simulation of the brittle fracture of a gypsum igier subjected to a
pressure pulse as a numerical example.

2 Finite Element Meshesas Graphs

We define a finite element mesh as a simplicial comgiex R” of dimensionn < N such that a simplex
o inthe(n — 1)-skeleton ofK, o € K1) is a face of at least one simplex of dimensian

An oriented simplext-o is a simplexo together with a particular ordering of its points and all reve
permutations thereof. The same simplex with all odd pertionts of this ordering is said to have an opposite
orientation and is denoted asr. A p-chain onkK is a functionc : K — N such that(c) = —¢(—0o) and
¢(o) = 0 for all but finitely many orienteg-simplices inK [11, 19]. The elementary chaincorresponding
to o is defined as

0, if 7 # o,
cr):==<¢1, ifr=o0; 1)
-1, ifr=-0.

The symbol is often used to denote both a simplex and its elementarychai
Consider the oriented-simplexo = [zg, ..., z,] in whichz; € RV i € [0,...,n] are its points. We
define theface operator as
dZ(O') = [1‘0,...,33‘2‘_1,33‘2‘4_1,...,:17”], (2)
which returns the™ (n — 1)-simplex that is goroper face of the simplexo. It follows that theboundary
operator can be defined as

On(0) =Y (~1)'di(0). 3)
i=0
Next consider a pair of simplices? ¢ K ando?~! € K, withp € [1,...,n]. If 6? N oP~! = oP~!, then
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let z; be the extra point of? that does not belong 1@”~'. Theincidence number is defined as

0, ifePnoPt =0,
(0P, 0P =<1, if P! =d;(oP); (4)
—1, if oP~t = —d;(oP).

Let f : K — N be an injective map that assigns to each simplex in the mesim-@egative integer.
Then let

V={v|v=f(oc)eN,oce K},

E={ele=(u,v),u=fleP)eV,v=f(e" ) eV,o? c K, Pt € K, [0P,0P"] # 0} ®)
whereE C [V]? is the set of integer pairs for which the corresponding siceglhave a non-zero incidence
number. The grapli = (V, F) is used to represent the mesh simplicial complex, whéiie the vertex
set andE is the edge set. The map: K — V between the simplicial complex and the vertex set is
bijective. Note thaf is alabeling that has been extended not only to the points but to all so@glink’. It
follows then that vertices represent simplices and edgegsent their adjacency, and that by the definition
of the incidence number, edges connect vertices that mpressimplex and its proper faces. The edges
are assumed to be directed, i.eciE E, u = tail(e), v = heade) ando = f~1(u), 7 = f~1(v), then
dim(c) = dim(7) + 1, which renders the grapfiirected, oriented (i.e. no loops or multiple edges) and
acyclic.

Thein-degree of a vertexv is the number of edge heads adjacent to it and is denotéd (@g. Con-
versely, theout-degree is the number of edge tails adjacenttadenoted ag™ (v). Thesource vertex set of
avertex is defined aB~ (v) = {u | u = tail(e) Ve s.t. v = heade)}, and thetarget vertex set of a vertex is
defined aD* (v) = {u | u = heade) Ve s.t. v = tail(e)}.

A path on the graph is defined as the sequente= vie; ... v;e; .. . e,_1v, Where both the vertices
{v1,...,v,} C V and the edgeéey,...,e,—1} C E are distinct. The tail and head vertices of edgare
v; anduv; 1, correspondingly, with the initial and terminal verticdsfobeingv, = init(P) andv,, = ter(P),
respectively. The length of the path from verieto vertexw is the number of edges in the path, and a path of
lengthk is denoted a®*. The distancel(u, v) is the length of the shortest path between the vertices. Note
that for the grapl; constructed as described above, the length and the dista@@zual. Furthermore, if
there exists a path between two vertices, their distancieas dpy

d(u,v) = [dim(c) —dim(7)|, o= f"Y(u), 7=f"1). (6)

Next consider the simplex?. All paths of lengthp with initial vertex f(o?) have terminal vertices that
correspond to the points that define the simplex, i.e.

of = [fHvo)y. ooy fH )y ()], v € {v | v = ter(PP)Vinit(PP) = f(a”) }. (7)

Now let /C be the collection of all point subse{s, ..., z,} such that each subset spans a simplex in
K. The collectionkC is known as thevertex scheme of K and is a prime example of abstract simplicial
complex [19]. DefineS as the collection of set®” = {vo, ..., v;,...,v,} with v; given by Eq. {) for each

of the simplicess? € K. The collectionS is also an abstract simplicial complex in which the séts& S
are its simplices. Thus, there is a bijective corresponelgnmapping the vertex set @ to the vertex set
of S, and thereforeC andS are isomorphic19]. By virtue of this isomorphism, our graph representation
is complete in the sense of Weiler3[)]. The simplicial complexK is ageometric realization of the abstract
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simplicial complexS. Furthermore, the abstract simplicial compleis apartially ordered set in which the
covering relation is defined as?~! C a”. Thus, the grapld is in effect aHasse diagram of the abstract
simplicial complexS where the representation of the empty set has been omitted.

In addition, the graphs obtained by representing a singble@mplex in this manner afe + 1)-partite
(i.e. they haven + 1 “levels”, from points to the simplex of highest dimensioajd are also simplicial
complexes themselves,[13].

Letg: V — SCN|e=(u,v) € E, g(u) # g(v) be a surjective map that assigns to each vertex in
the graph an integer that is different from the integer @poading to the vertices adjacent to it. This map
is avertex coloring of the graph. The cardinality of the smallest Ses thevertex chromatic number x(G).
The graphG hasy(G) = 2; nevertheless, for ease of visualization and conveniemg@plementation, we
choose the vertex coloring: V +— S| g(f(c)) = dim(c) Vo € K and thereforeS = {0,...,n}.

Leth : £ — S be a surjective map that assigns to each edge in the graphegeinnS. We choose
themaph : £ +— S | h(e) =1i,e € B, f~'(heade)) = +d;(f~'(tail(e))). Note that the ordering of the
proper faces is important here. Although this map is nogdge coloring from the point of view of graph
theory (viz. there are adjacent edges that map to the sasgeint we associate the integersiwith colors
(0 =red, 1 = green, 2 = blue, ...), which not only enhances ibalization of graphs, but also aids in the
determination of simplex orientation, as described later.

The 0-simplex or point has the simplest representation azgghat consists of a single, isolated vertex

shown in Fig.1 as a red oval.
L ]
@D

Figure 1: O-simplex or point.

The use of interpolation functions of order higher than dineequires additional points that are not
present in a strictly simplicial mesh. These additionahpoare easily accommodated by simply including
them, and play no defining role in the topological manipolagi of the mesh. Thus, although asimplex
hasn + 1 0-simplices or pointsl[7, 19, 20], the graph representation of a simplex may include aduitio
points to accommodate higher-order finite elements.

In order to illustrate the graph representation for higheteo elements, henceforth we consider the
particular case of quadratic interpolation functions. Jhhe 1-simplex or segment is augmented with an
extra point as shown in Fi2. Both segments are represented by green vertices with gheoer faces,
points 0 and 1, connected to them by colored, directed edBeth segments have been augmented by
midpoint 2 to accommodate quadratic interpolation funcdio

The segments in Fig2 have opposite orientations. This is represented in thehgbgpedge colors.
Disregarding the midpoint, the oriented segment in Bayis represented ds, 21}, whereas the bottom
segment isx1, o). Thus, the ordering of the points differs by an odd permaiati

The graph representation of the 2-simplex or triangle isvshio Fig. 3. Both triangles in the figure are
represented as, 1, 2| Since the arrangement of the corner points differs only by\an permutation
[19, §5]. Note, however, that the difference in ordering is reeorth the graph as an even permutation of
the colors of the edges connecting the triangles with thegjnmeents.

A finite element mesh in the context of the graph represeamtasi a simplicial complex where an extra
graph vertex is introduced, as shown in FigThisroot vertex, shown as a white oval in the figure, guaran-
tees that the graph iseakly connected, regardless of whether the mesh is intact or in a highly frexgped
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(a)
(b)

Figure 2: 1-simplex or segment.

@)

(b)

Figure 3: 2-simplex or triangle.
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state. This greatly simplifies the manipulation of the grapbr the tetrahedron in Fid, the colors of the
edges define an ordering of the vertices that is considersahizal, and any deviations from it are recorded
within the graph, as described next.

Tetrahedron O

Figure 4: Single-tetrahedron mesh and its correspondiagigr

3 Ordering and Orientation

Within the context of algebraic topology, all even permiotad of a selected ordering of vertices represent
the same orientation of a simplex. Nevertheless, in the chfequent interaction with traditional finite
element connectivity arrays (e.g., using the graph reptasen within an existing finite element code), it
is necessary to record additional orientation informatiotihe graph in order to fully recover these arrays.

The added complexity is required to preserve the order omtigal connectivity when exchanging
information between the graph and connectivity arrays. dahconnectivity array is essentially a collection
of memory address offsets, and therefore it is crucial tegmee its ordering to avoid accessing incorrect or
invalid memory locations. Thus, the graph representasoendowed with the property that any alteration
of the ordering of the points is recorded, regardless of ¢loedering being an even or odd permutation, as
shown in Fig.3.

Consider now the case of two triangles that share a segnseshaavn in Fig5. The order of segment
0 changes depending on whether it is seen as a proper fadarajlér O or triangle 1 (i.e., segment=9
+dy(triangle O = —d;(triangle 1). This is reflected in Figba, where the edge joining triangle O with
segment O is red, whereas the edge joining triangle 1 witlstimee segment is green. Additionally, the
orientation of the segment is also different according tethér it is considered part of one triangle or the
other, and the corresponding graphs record this differasae swap of the colors of the edges that join the
segment with points 0 and 1.

When both triangles form part of the same simplicial complewever, the graph representation con-
tains a single instance of the shared segment, as shown.idlFigherefore, each edge joining the segment
with a point records a single color, which by convention is ¢blor assigned by the first simplex that refer-
ences the edge. In order to avoid the loss of ordering infoomaf points with respect to the segment for
each of the original triangles, edge color maps are intreduc

An edge color map is a simple bijective transformation teabrds(n— 1)-simplex ordering information
for an n-simplex when the latter is a shared face of sevérat 1)-simplices. Lete € E be an edge in
the graph. Then let = tail(e), v = heade), 0 = f~1(u), andr = f~!(v), with dim(7) > 0. Then it

7
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@)

-
- SR

Triangle 0 2 Triangle 1

(b)

Figure 5: Local Ordering as Color Maps.

follows thatd* (v) = dim(7) + 1 and that the edge color map can be defined'as{0,...,dim(r)} —
{0,...,dim(7)} | do(gey (dge) () = dge)(T),Vés.to = tail(¢). Edges are thus endowed with a color
map property, besides their own color.

The color maps in Figb indicate the color translation that must be applied to thges joining the
segment and points to recover the ordering shown in Bag. Thus, the color map for the edge joining
triangle 0 and segment O is the identity map, which indicéttes no color transformation is necessary to
recover the original colors of the edges joining the segmétit its points. By contrast, the color map
associated with the edge joining triangle 1 and segmenti@dteb that to recover the color of the edges
joining the segment with its points shown in Figa for triangle 1, blue must be replaced by red and red by
blue, while green is left intact (the fourth color, yellow,included to accommodate tetrahedra, thus allowing
for the use of constant-sized color maps for all edges, whielatly simplifies the implementation). The
fact that the color map for the edge joining triangle 1 andrsag O in Fig.5b is not the identity is indicated
by the dashed line used to represent the edge.

4 Graph Fracture

Let ¢, be thep-chain in K such that, = > o?Vo? € K. We define the chain of internal interfaces as
CIn—1 = cn—1 — Op(cy). ON the graphG, the set of vertices corresponding to the internal intexais
given by Vi ,—1 = {v | v € V,d (v) = 2, d"(v) = n}, and by analogy te, we defineV,, = {v | v €

V, g(v) = p}.

The first step in the graph fracture procedure consists otiigéng open simplices. We define an open
simplex as one that is adjacent to a simplexin,—; that has been identified as fractured by a failure
criterion. Hence, in a three-dimensional simulation, ifiarigle (2-simplex) is marked as open, then all
its faces (segments and points) and the adjacent tetraheelnrmarked as open too. On the graphthe
corresponding vertices ivi; ,—; and all vertices in all paths that start or end in an open xent&; ,,_; are
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considered open as well, and the set that contains them wdatbasV».

Thestar Sto of a simplexo € K is defined as the union of the interiors of the simplice&ithat have
o as a face. The star of a simplex corresponds to a subgrat G, with V' and E’ its corresponding
vertex and edge sets. Moreovét, is aninduced subgraph ofG, in the sense that if two verticas and
v in V' are joined by an edge if’, then there is a corresponding edgeFirthat also joinsu andv, i.e,
e =(u,v) € B'uyv eV = e=(u,v) € E, u,v e V. We call the subgrapli’ corresponding to
the star St the simplex subgraph aof = f(o) and denote it a&’(v). The number of (weaklyyonnected
components of a graphG is N(G) and the components themselves @fg ..., Gy (). An articulation
point of a graphG is a vertexv such that7 \ v has more connected components ttian

LetVrp; = {v | v € Vi, g(v) = i} be the set of open vertices that correspond to apgimplices,
with i € {0,...,n}. The fracture algorithm is effected by performing SPW&T Vi, n, 0), with the SPLIT
procedure defined in Algorithr.

Algorithm 1 SPLIT(G, U, n, ) Split articulation points.
Require UCV;,,i<n-—1

1: for all v € U do

2. ifi<n—2then

3: SPLIT(G, D~ (v),n,i + 1)

4:  dse

5: CLONE(G, D~ (v),n)

6: endif

7. G"— G'(v)\ v [l Check whethep is an articulation point
g foralje{2...,N(G")}do

o: Ve {ulueGy, glu) =i+ 1}

10: V'« {V' z} Il Split the vertex in the subgraph and graph
11: for all w € Y do

12: E' — FE'\ (u,v)

13: E —{F (u,z2)}

14: end for

15:  end for

16: end for

Note that the fracture algorithm is defined recursively, #metefore its expression is relatively sim-
ple. The isomorphism between the changing grépand simplicial complexx is preserved throughout
these operations. The cloning operation only duplicatesmal interface simplices, and thus preserves the
isomorphism betweet and K. The splitting operation applies only to articulation geifor articulation
simplices inK) that join otherwise independent components of the mesle cbiresponding vertex and
simplex are split according to the number of components tlagekfore the isomorphism is also preserved.

A sequence of operations comprising the fracture algoriihriurther illustrated in Fig6 for a test
fracture problem involving two tetrahedra sharing a faceth& outset, this common face is assumed to have
undergone fracture and then the algorithm proceeds, agedqto completely separate the two tetrahedra.

An important feature of the graph representation is itstghib correctly handle non-manifold meshes.
In order to further elucidate this point, we employ the fuaetalgorithm to open all internal faces of the two
test meshes shown in Fig. The first mesh consist of two identical cubes with a commatexeand the
second mesh of the same two cubes but now sharing an edgerdptelzased fracture algorithm is clearly
capable of correctly handling the two non-manifold meslssis evident from Fig7. For the purpose of

9
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First selected open point is 2 (Ald:1), process open segments 1 and 5 attached to it (Akg5):

s e D D ¢
d‘bé
%

- - -

b

oo d oo
‘ = o) G o> D D D D D

ccoocovsoosoooPDPOOBDS®

Finally point 3, with 0 open segments, is split obtainin

eparate tetrahedra (Al@:7-15):

..... 1«5)
: - @D @ &
S ‘ G G G = & D = b D
cocccocovovocoTooDOoBO®

Figure 6: Fracture procedure for two joined tetrahedra.
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Algorithm 2 CLONE(G, U, n) Duplicate fractured interface simplices.
Require: U C V7,1

1: for all v € U do

2: ifve VFm—l then

3: Y < D~ (v) [/l Notethatd™(v) = 2, henceY| = 2
4: up —u €Y stfu), )] =1
5: uy —u €Y s.t[fug), fHv)] = —1
6: V —A{V, w}

7: E — E\ (uz,v)

8: E — {FE, (uz,w)}

9 for all z € D*(v) do

10: E —{E,(w,2)}

11: end for

12:  endif

13: end for

comparison, we also show the results obtained by the afiplicaf the classical fracture algorithm proposed
by Pandolfi and Ortiz42, 23], which does not yield the expected outcome.

(a) Original mesh (b) Fracture fromi{] (c) Graph fracture

Figure 7: Two cubes joined by a point.

Next, we investigate the performance of the graph repraentfor problems involving fracture and
fragmentation of tetrahedral finite element meshes. Outementation of the graph representation has
been developed using the Boost Graph Library (BGif][ The BGL applies the principles of generic
programming for the construction of advanced data strast@nd algorithms commonly used in graph
theory. The use of the BGL helps to significantly reduce theeldgment time and offers excellent flexibility
in the handling of various data types and related algorithms

We compare the performance of our BGL-based implement#ébidne reference fracture algorithm of
Pandolfi and Ortiz42, 23]. To this end, we evaluate the computational cost of periiogrtwo distinct oper-
ations: the construction of the initial representation tdteahedral mesh and the separation of all tetrahedra
in the mesh by way of fracture. In Fi§, we plot the time in seconds necessary to build the initiptee
sentation of a mesh as a function of the number of elementsvimty different tetrahedral meshes. The
green color in the plot corresponds to the graph representathereas the red color to the reference im-
plementation, respectively. Clearly, the graph represimt exhibits linear dependence of the initialization
time with respect to the size of the finite element mesh. Byrash the initialization time for the reference

11
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7. \ /4
(c) Graph fracture

(a) Original mesh
Figure 8: Two cubes joined by an edge.
implementation is essentially quadratic. The massivenggvoffered by the graph representation become

fully realized for meshes composed of approximately 200 8l@ments: the initialization time is reduced
from days to mere minutes.

1065 ............... .1 1.8 T ek
L ~— Graph 1, =4.5949x 10° N "7 o N
10° gramm777] ot [T i 5 1 day
E — Reference t;=4.7271x 10 Ny ! 3
T H AT E
s f ]
e T N e =
= E =
& F ]
§ 2 I T
g 10 S———— S T 31 min
g f i : §
T e qmommm oo =
L e e —— E
10-1 I 1 1 1 d 1111 i 1 1 1 1 1 1 LLJ: 1 | 1 11 1 1 ]
10° 10° 10° 10°

Number of Tetrahedra

Figure 9: Initialization time. Comparison of 20 meshes.

Fig. 10 contains a plot of the time required to fracture all intelingtrfaces in a finite element mesh as a
function of the number of such interfaces in the mesh. Thewds obtained using the same set of meshes
as for the initialization study. Again the green color in fllet corresponds to the graph representation, and
the red color to the reference implementation. The Pan@utfz algorithm provides better performance for
relatively small meshes, i.e. containing less than appnaiely 80,000 internal interfaces (corresponding to
approximately the same number of elements). In the casegaflaeneshes, however, an opposite trend is ob-
served as the graph-based fracture algorithm furnishestamtial performance benefits. More importantly,
the cost of the graph-based algorithm appears to be menagrlin the number of interfaces undergoing
fracture, whereas it is nearly quadratic for the PandolfizGigorithm.
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Figure 10: Fracture time. Comparison of 20 meshes.

5 Numerical example

In order to demonstrate the power of the graph-based feelgorithm, we perform a computer simulation
of the fracture and fragmentation of artificial kidney stené.ithotripsy is a medical procedure designed
to induce stresses in renal calculi (kidney stones) thrabghrepeated application of pressure pulses to the
exterior of the human body. The goal of the procedure is talbugp the kidney stones into small fragments
that, subsequently, can exit the kidney through the uretiifee pressure pulses are commonly generated
in a lithotripter. The ability of the lithotripter to fragmekidney stones is customarily investigated experi-
mentally. These experiments, however, employ gypsumasgtimin lieu of renal calculi. The cylinders are
submerged in water as to simulate the effect of live tissuserdes of identical pressure pulses is applied to
the cylinders in the form of a planar front along the cylindgis. The appearance of cracks in the cylinders
depends on both the peak pressure of the pulse and the nuhapgried pulses. Moreover, a salient feature
of the crack pattern is formation of a spall plane at 2/3 ofaylender length.

5.1 Gypsum experiment

Shock wave lithotripsy has become the primary techniguleértieatment of renal calculi. However, much
controversy still remains as to precise mechanisms ledditiee comminution of kidney stones. At present,
brittle fracture is widely believed to be the main mechanisating to fragmentationl]. In view of the
difficulties associated with accurate control and instmiagon of the kidney stone fracture in live tissue,
but also to study lithotripter performance separatelyficiel stones are generally used in the research of the
fragmentation mechanisms. The Ultracal-30 gypsum is mmequently adopted as a model for renal calculi,
as it is suitable for lithotripsy studies in vitro, acute raai experiments in which the stones are implanted
in the kidney, and as a target to compare in vitro performafi@atra-corporeal lithotriptersi[d].

A typical experimental setup involving the Ultracal-30 gym cylinders is shown in Fig.la [18]. The
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cylinders are loaded by a pressure pulse along the cylindgr @he pressure profile of the pulse is plotted

in Fig. 11b.

40

30

water (acoustic medium) § 2
e
pressure £ B
6.5 mm sample 1 pulse I
(Church, 1989)
0 _
-10 1 L L
0 2 6 8 10
—_— Time [ps]
7.5mm
(b)

@)
Figure 11: Gypsum stone experiment setup (a) with pressuse ppplied to the gypsum sample (b).

Recovered gypsum cylinders are presented in ERy. The formation of a spall plane at 2/3 of the
cylinder length is clearly visible. Also, the three-dimiemal surface reconstruction with damage signs due

to cavitation is shown.

P O e A
R

i
i

Interior

Surface

Figure 12: 3D surface reconstruction (left) shows damage ftavitation, and cross-section (right) shows

the characteristic spallation plan&d.
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5.2 Finitedement simulation

In our finite-element simulation of the artificial kidney seolithotripsy we explicitly model both the gypsum
cylinder and the surrounding water. A very fine discretaatf the cylinder is introduced in order to provide
a suitable number of possible fracture paths. Overall, tashpwhich is shown in Fid.3, includes 223,020
tetrahedral elements (130,202 for gypsum and 92,818 fagnvat

@) (b) (©

Figure 13: Finite element mesh used in the simulation. (aghiMer water. (b) Mesh for gypsum cylinder.
(c) Cross section showing the finer gypsum mesh embedded totrser water mesh.

The mechanical response of water is assumed to be well sspteesby an acoustic element that allows
for the propagation of pressure waves only. The finite-age&tion acoustic formulation is displacement-
based in order to simplify the solid—fluid interaction. Gypsis modeled as a neo-hookean finite-deformation
elastic solid. In the simulation, we use composite tetredidthite elements{7].

The material properties employed in the simulation are showTablel, whereFE, v, p,, 0. andG.
denote the Young’s modulus, Poisson’s ratio, mass deffisitsture critical stress and fracture energy of the
gypsum, respectively, anl andp,, are the bulk modulus and mass density of water.

E v Py oc Go || K Puw
[GPa] [kg m™3] | [MPa] | [J m?] [GPa] | [kg m™3]
10.8 | 0.3461 1700 6.0 21.88 | 5.0| 2.25 1000

Table 1: Material parameters used in the simulation

We present the results of our finite-element simulation on E#. The sub-figures show different per-
spectives of the final state of the gypsum sample, with cremsesented by a solid color and the sample
itself as a translucent cylinder. The color correspondagéa@bmponent of the normal stress along the axis of
the cylinder, with blue for lower values and green for high&lues. The simulation is capable of capturing
all of the essential components of the experiments. Thugnwhe pressure wave enters the cylinder, a
network of frontal cracks develops (Fit4a). As the wave proceeds along the axis of the cylinder, arail
cone forms, a typical phenomenon associated with fractndemucompression (Figé4b, 14c, 14d). The
formation of a spall plane at 2/3 length may be observed isuddtfigures in Figl4, in particular in Figl4c.
Finally, exfoliation is best observed in Fifide. The salient feature of these experiments, the formafion o
the spall plane, is evidently captured very well in our siatioin.
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Figure 14: Gypsum fracture simulation results: (a) Froatatks. (b) Surface and internal cracks. (c) Spall
at 2/3 of length. (d) Spall and failure cone. (e) Exfoliatemd spall.
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6 Conclusions

We have developed a graph representation of simpliciakfieiement meshes that is isomorphic to the
original simplicial complex, and therefore preserves @fiaiogical information. By extending the graph
representation to include ordering information, legacitdielement codes can make use of the graph rep-
resentation for complex topological operations, thus mining the changes needed in the legacy code. In
particular, the graph representation is well-suited facture, as demonstrated by the simulation of the brittle
fracture of an artificial kidney stone. The required operaifor fracture in the graph result in simple re-
cursive algorithms capable of handling non-manifold toga@s. In addition, the initialization performance
of the graph fracture is superior to the reference impleat@nt and better suited for fracture for large
meshes. Furthermore, the localized nature of the opegatierded for fracture render the graph represen-
tation specially well-suited for parallel implementatiorhe performance of the parallel implementation of
the method deserves detailed analysis and will be addré@ssesubsequent publication.
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