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Abstract

We present the one-step theory of neutron-pickup transfer reactions with 3He projectiles on 235U
and 238U. We find all the neutron eigenstates in a deformed potential, and use those in a given energy
range for (3He,α) DWBA pickup calculations to find the spin and parity distributions of the residual
target nuclei. A simple smoothing convolution is used to take into account the spreading width of the
single-neutron hole states into the more complicated compound nuclear states. We assume that the
initial target is an even-even rotor, but can take into account spectator neutrons outside such a rotor
by recombining their spin and parity at the end of the calculations.

1 Introduction

Results from recent Surrogate experiments, aimed at determining (n,f) cross sections for actinide targets,
have shown reasonable agreement with direct measurements, where available. Discrepancies between the
extracted and expected cross sections are, to a large extent, due to differences in the spins (and parities)
of the compound nuclear states populated in the n-induced and Surrogate (direct) reactions, respectively
[1]. This “Jπ mismatch” has been the motivation for some recent experiments at LBNL [2] that focus
on transfer reactions with 3He projectiles on 235U and 238U. Here, we perform some calculations that will
aid the interpretation of these experiments and allow us to assess the feasibility of adapting the Surrogate
technique to situations where the Jπ mismatch becomes non-negligible. Specifically, we provide calculations
of (3He,α) transfer reactions on 235U and 238U. We summarize and classify the single-particle and collective
levels of each core nucleus, and show how to simplify the calculations using spectator approximations. We
present absolute σ(Jπ) distributions for the 234U∗ and 237U∗ systems, as will be needed in the future to
compare this calculation of (3He, α) surrogate reaction cross sections to data from the experiments carried
out at LBNL.

2 Theory

We first have to calculate all the neutron states in 235U and 238U using a deformed mean field for these
nuclei. We will assume that the neutron pickup in the (3He, α) surrogate reaction simply removes one
of the neutrons from an occupied level in the target, leaving a hole in one of the neutron states. If the
targets were spherical, then the neutron eigenstates lisji in the spherical mean field would all be filled up
to the Fermi level, and occupied with 2ji + 1 nucleons. We are now however, considering a more general
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model in which the mean field is deformed, so that states of a given total angular momentum may contain
superpositions of different orbital l values.

Axial deformations are described by allowing the nuclear surface and its potentials to vary according
to the body-fixed intrinsic coordinates (θ′, φ′) as

R(θ
′
, φ

′
) = R0

[
1 +

∑
k

βkYk0(θ
′
, φ

′
)

]
. (1)

where the βk are the fractional deformations. The deformation lengths are δk = βkR0.

There are two methods for calculating these deformed neutron eigenstates. The first is to use a body-
fixed coordinate system to describe an axially deformed potential, and then find eigenstates in this potential
for fixed projection K along the axis of symmetry. This method is described by Bang et al [3], and used
in several programs [4, 5, 6]. To be used in a transfer calculation, these K-labelled eigenstates have still to
be rotated into the space-fixed coordinate system, by the method of [7]. Coriolis couplings may also mix
different K eigenstates, and the energy of rotational motion has to be added by hand.

The second method is to use a particle-rotor model, in which the motion of neutron is explicitly
coupled to a set of core states (0+, 2+, 4+ · · · Imax) in their rotational band. The couplings between states
are calculated using a rotational model, in which the potential depends on the distance r−R(θ

′
, φ

′
) of the

neutron to the deformed surface. The couplings, not yet the wave functions, are rotated into space fixed
coordinates. In this method the rotational energies easily enter via the core energies, and Coriolis effects
are automatically included since we use directly the space-fixed coordinate system. The disadvantage is
that we have to expand on many core states up to Imax, but with suitable numerical methods this may be
easily accomplished. We adopt this second method here.

We expand the wave functions for state |JπM ;Ei〉 at energy Ei in terms of core states φI(ξ), with
ξ = (θ

′
, φ

′
) representing the internal core structure, as

|JπM ;Ei〉 =
∑
ljI

χJEi
ljI (r){[Yl(r̂)⊗X1/2]

j ⊗ φI(ξ))}JM . (2)

The unknown radial wave functions χJEi
ljI (r) ≡ χJEi

γ (r) satisfy the coupled equations(
− ~2

2µ

[
d2

dr2
− l(l + 1)

r2

]
+ V J

γγ(r)− E + εI

)
χJEi

γ (r) = −
∑
γ

′ 6=γ

V J
γγ′ (r)χJ

γ′ (r), (3)

where V J
γγ′ (r) = 〈[Yl(r̂)X1/2]

jφI(ξ)|Vnc(r, θ′, φ′)|[Yl′(r̂)X1/2]
j′
φI′(ξ)〉

and Vnc is the potential between the neutron and the deformed core that depends on the distance r −
R(θ

′
, φ

′
).

To solve this set of coupled equations we use the Lagrange mesh method of Baye et al [9, 10, 11].

2.1 Calculation of 235,238U eigenstates

For the potential Vnc between the neutron and the uranium core we use the Woods-Saxon parameters from
[12], namely radii of r0 = 1.25 fm and diffusenesses of a = 0.65 fm for central and spin-orbit parts. We
choose a spin-orbit strength of 9.543 MeV, and a central depth adjusted to reproduce the correct Fermi
level in a simple filling approximation. The sensitivity to these parameters could be used to portray the
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uncertainties in the final predictions. For the quadrupole deformation, we start by using β2 = 0.240 for
235U and β2 = 0.242 for 238U, from [13]. The Fermi levels EF are −5.30 MeV for 235U and −6.15 MeV for
238U.

After diagonalisation, there are many more deformed states than in a spherical potential, as here the
single-particle strength is fragmented by the core couplings. Furthermore, each intrinsic state (if described
in the body-fixed coordinate system) will now have all its rotational excitations included in our model.

Each particular ljI part of a neutron state is fractionally occupied, and these fractions have to be
multiplied by 2J + 1 and added cumulatively to see how N neutrons occupy all the levels up to the Fermi
level. Since each deformed neutron eigenstate |JπM ;Ei〉 is a superposition of core states I = 0 · · · Imax, to
find the cumulative occupation in (for example) the I=0 ground state of the system, we have to accumulate
the norms P (E) of the overlaps of each deformed superposition with core state I, namely the norms of

〈φ0|JπM ;Ei〉 = χJEi
lJ (r)[Yl(r̂)⊗X1/2]

J , (4)

as
P (E) =

∑
Ei<E

N0(Ei) where N0(Ei) = |〈φ0|JπM ;Ei〉|2 . (5)

We adjust the central potential so that P (EF ) ' 146 for 238U and 143 for 235U.

2.2 Spectator spins for odd targets

For an even target such as 238U that is not rotationally excited, when a hole is created by a pickup reaction
the spin of the resulting nucleus is simply the spin of the hole state, namely the angular momentum of
the neutron before it was removed. A rotationally unexcited 238U is in its I=0 state, so the spin of the
resulting 237U∗ nucleus will be just j if a neutron is removed from component lj0 of state |JπM ;Ei〉, with
J = j.

For an odd target such as 235U which has a ground state spin of s = 7/2−, strictly speaking this spin
should be coupled with the spins of all removed-neutron hole states in order to give the total spin of 234U∗.
However, if the g.s. spin is entirely from an f7/2 neutron, then this neutron does not have any significant
effects on the dynamics of the pickup reaction. Because that neutron makes only very small contributions
to the energy, deformation and moment of inertia of 235U, it should be a good approximation to neglect all
such contributions. Thus it should be sufficiently accurate to treat that s = 7/2− as a spectator spin, and
ignore it for calculating the deeper hole states and for calculating the initial pickup cross section. What we
have to do is to recouple s to final nuclear spins after the transfer reaction to spin state J , and distribute
the cross sections according to the number of m-substates. That is, we introduce the factor

f(J ′, J, s) =
2J ′ + 1∑J+s

I=|J−s|(2I + 1)
=

2J ′ + 1
(J+s)(J+s+2)− (|J−s|−1)(|J−s|+1)

, (6)

that gives the weight with which a calculated cross section for the removal of a J = j neutron contributes
to the production of a final spin-J ′ state, where ~J ′ = ~J + ~s includes the spectator spin.

2.3 U(3He,4He) neutron pickup calculations

For the (3He,4He) overlap we use a zero-range vertex with coupling constant D0 ∼ −300 MeV fm3/2 (finite
range effects can easily be included, but take much longer to calculate). Our initial approach in this project
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Figure 1: Left: N0(Ei) for the neutron eigenstates in 235U. A central potential gives the black single-particle
states, and deformed models give red, blue, and green with 0-4, 0-8, and 0-12 core states respectively. Right:
corresponding cumulative occupation numbers near the Fermi surface.

is to begin with the one-step Distorted Wave Born Approximation (DWBA) for the reaction. That is, we
neglect any rotational excitation of the target by the incoming 3He, and any rotational or single-particle
excitation or de-excitation by the outgoing 4He. So, for a one-step calculation with initial target state of
0+, we only need overlaps of deformed states with the 0+ core state, namely the 〈φ0|JπM ;Ei〉 overlap
wave functions of Eq. (4).

2.4 Spreading widths

The DWBA pickup calculations determine the cross sections σ(Jπ, Ei) at the discrete energies Ei of the
hole states. In fact, these hole energies are not the true states of the compound nucleus, but are only the
‘doorway states’ through which the statistical process begin, which lead to the compound states. This is
a ‘spreading’ process, and the strength of this process is described by a ‘spreading width’ Γs such that
the lifetime of the doorway state is ~/Γs. The effect of this spreading on our cross sections is described
by convoluting our discrete Ei peaks with a Lorentzian L(E − Ei,Γs(E − EF )) of width Γs(E − EF ).
The spreading width is a function of the distance from the Fermi level EF . Brown and Rho [14] have
parameterized the spreading width as Γs(e) = 24e2/(e2 + 500) for Γ and e in MeV. We use the Lorentzian
spreading function

L(E − Ei,Γs) =
1
π

Γs/2
(E − Ei)2 + Γ2

s/4
. (7)

3 Results

The neutron eigenstates were found with Pluto [8] in the deformed Woods-Saxon potential well with
parameters given above, and the overlaps of these eigenstates with the non-excited core state are shown
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Figure 2: Cross sections σ(Jπ, Ei) for all hole states at −Ei, for all possible spin/parities Jπ in the
235U(3He,α) reaction. The black histogram shows the results for spherical nuclei, and the red bars for the
deformed case.
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Figure 3: Spin distributions after pickup reactions for E = 11 MeV, just above the neutron emission
threshold. Left: Spin distributions of 237U∗ produced in the 238U(3He,α) reaction, with the strong 13/2−

cross section in the central case. Right: Similarly for 234U∗ after the 235U(3He,α) reaction, for which the
7/2− gs spin smears out the distributions according to Eq. (6) and changes the parity.
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Pair V r0 a W ri ai

MeV fm fm MeV fm fm
3He 154.00 1.20 0.72 36.00 1.40 0.88
4He 159.26 1.245 0.771 14.437 1.57 0.584

Table 1: Optical potentials used for the (3He,α) DWBA transfer calculation.

on the left side of Fig. 1. On the right side of this figure are portrayed the cumulative neutron numbers in
the region of the Fermi surface of the two Uranium isotopes. We conclude that for the overlap with just
the ground state of the rotor, Eq. (4), the calculations are sufficiently accurate once rotor states up to 8+

are included.

Using these one-channel overlaps with the gs of the rotor, (3He,α) DWBA pickup calculations were
performed with Fresco [15] for incident 3He at 42 MeV (lab), using the entrance and exit optical potentials
given in Table 1. The resulting cross sections to the discrete hole states – the σ(Jπ, Ei) – are shown in
Fig. 2.

Folding with the spreading width using the kernel function of Brown and Rho given by Eq. (7) gives
the spin and parity distributions shown on the left side of Fig. 3, for 238U, an even target. As expected, the
deformed case gives a smoother distribution of cross sections, without the very strong 13/2− cross section
peak seen in the spherical case.

For the odd target of 235U, there is a non-zero ground state spin (7/2−). In our spectator approximation
for this spin, its effect is to broaden the J distribution around s=7/2 according to the kernel function of
Eq. (6). The resulting distributions are shown on the right hand side of Fig. 3, and would be symmetrical
around s=7/2 except that Eq. (6) gives greater cross sections for the larger J values.

4 Conclusion

We have demonstrated how to systematically find neutron eigenstates in a deformed potential, and use these
for (3He,α) DWBA pickup calculations to find the spin and parity distributions of the residual target nuclei.
A simple smoothing convolution was used to take into account the spreading width of the single-neutron
hole states into the more complicated compound nuclear states. We proceed by assuming the initial target
is an even-even rotor, but can take into account spectator neutrons outside such a rotor by recombining
their spin and parity at the end of the calculations. It should be the subject of another project to use our
final spin and parity distributions to calculate the gamma-decay or fission probabilities of interest, so that
our modeling of this (3He,α) surrogate reaction can be compared with what is experimentally observed.
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