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Abstract 

Bromide and resting-cell bacteria tracer tests carried out in a sand and gravel aquifer at 

the USGS Cape Cod site in 1987 were reinterpreted using a three-dimensional stochastic 

approach and Lagrangian particle tracking numerical methods.  Bacteria transport was 

strongly coupled to colloid filtration through functional dependence of local-scale colloid 

transport parameters on hydraulic conductivity and seepage velocity in a stochastic 

advection-dispersion/attachment-detachment model.  Information on geostatistical 

characterization of the hydraulic conductivity (K) field from a nearby plot was utilized as 

input that was unavailable when the original analysis was carried out.  A finite difference 

model for groundwater flow and a particle-tracking model of conservative solute 

transport was calibrated to the bromide-tracer breakthrough data using the 

aforementioned geostatistical parameters.  An optimization routine was utilized to adjust 

the mean and variance of the lnK field over 100 realizations such that a best fit of a 

simulated, average bromide breakthrough curve is achieved.  Once the optimal bromide 

fit was accomplished (based on adjusting the lnK statistical parameters in unconditional 

simulations), a stochastic particle-tracking model for the bacteria was run without 

adjustments to the local-scale colloid transport parameters.  Good predictions of the mean 

bacteria breakthrough data were achieved using several approaches for modeling 

components of the system.  Simulations incorporating the recent Tufenkji and Elimelech 

[1] equation for estimating single collector efficiency were compared to those using the 

Rajagopalan and Tien [2] model.  Both appeared to work equally well at predicting mean 

bacteria breakthrough using a constant mean bacteria diameter for this set of field 

conditions, with the Rajagopalan and Tien model yielding approximately a 30% lower 
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peak concentration and less tailing than the Tufenkji and Elimelech formulation.  

Simulations using a distribution of bacterial cell diameters available from original field 

notes yielded a slight improvement in the model and data agreement compared to 

simulations using an average bacteria diameter; variable bacterial cell diameters lowered 

the modeled peak concentrations and more significantly diminished the tailing behavior, 

particularly for the Rajagopalan and Tien model of collision frequency.  Spatial 

variability in detachment had little effect on the results.  The Lagrangian particle 

transport model representing the non-idealities of the colloid transport process appears to 

be a robust, grid-free method for modeling field-scale distribution problems where 

incorporation of fine-scale heterogeneity would necessitate large numbers of 

computational cells.  The stochastic approach based on estimates of local-scale 

parameters for the bacteria-transport process both captures the mean field behavior of 

bacteria transport and calculates an envelope of uncertainty that brackets the observations 

in most simulation cases.  
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1.  Introduction  

As waterborne disease outbreaks continue to be reported [3] and detailed field 

surveys reveal the presence of pathogens in groundwater (e.g.,[4-10]), it is clear that there 

is a continuing need to advance our ability to predict the transport of pathogens from their 

sources to drinking water supplies.  Such quantification is necessary for carrying out risk 

assessment of waterborne pathogen transmission to humans, and in development of 

pathogen TMDLs [11].  Implementation of mechanistic mathematical models is one 

approach that can be used, but application is complicated by site-specific geologic 

heterogeneity and uncertainties relating to parameterizing non-ideal transport properties 

of bacteria and viruses in aquifer materials.  Over the past 25 years, controlled laboratory 

studies involving homogeneous media have resulted in considerable progress towards 

quantifying the roles of microbial (size, shape, surface chemistry), mineral, and fluid 

properties on the transport of microorganisms through the terrestrial subsurface (see 

reviews by [12, 13]).  Gains have also been made in the area of field-scale modeling by 

coupling porous-media transport models with a realistic representation of the microbial 

attachment process (e.g. [14, 15]).  Less progress has been made in coupling the known 

non-idealities of microbial transport with a realistic representation of aquifer 

heterogeneity to quantify the effects of heterogeneity on the transport process (e.g. [16-

19]).  However, the latter type of work is needed to produce models that better capture 

the field-scale reality of this complex process.   

Since earlier attempts to couple colloid filtration with the advection-dispersion 

equation to model the movement of indigenous, uncultured bacteria in a controlled field-

scale tracer tests (e.g. [14]), considerable advances have been made in (1) quantifying, 
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statistically, aquifer heterogeneity; (2) capturing heterogeneity using numerical methods 

incorporating finely-gridded systems and grid-free transport algorithms; (3) refining the 

relationship between colloid filtration (sorptive removal) and physical heterogeneity, and 

(4) parameterizing the colloid filtration process.  The purpose of this paper is to utilize 

improvements in these four areas to revisit the data interpretation from the 1991 paper by 

Harvey and Garabedian.  We make use of the geostatistical characterization of the 

hydraulic conductivity heterogeneity that has been carried out for the Cape Cod site, ; 

particle-tracking numerical techniques that allow us to model the tracer test on a very fine 

grid and also allow for consideration of a distribution of bacteria cell size inputs, and 

postulated correlations between colloid filtration and lnK as proposed by Rehmann et al. 

[16].  We also utilize recent improvements in estimations of the collector efficiency 

parameter in colloid filtration by Tufenkji and Elimelech [1], as compared to the 

Rajagopalan and Tien [2] model that is still widely used.  This paper evaluates how these 

improvements affect data interpretation and highlights areas where further work is 

needed. 

2. Methods 

2.1 Field Experiment 

In October 1987, a short-scale (6.8 m) natural-gradient injection test involving 

indigenous bacteria fluorescently labeled with the fluorochrome 4,6-diamidino-2-

phenylindole (DAPI) was conducted in the sand and gravel aquifer at the U.S. Geological 

Survey Toxic Substances Hydrology research site at Cape Cod, Massachusetts.  Details 

of the conditions of the injection test are provided in Harvey and Garabedian [14]; 

information on the site hydrogeology is provided in LeBlanc et al.[20].  In brief, a 90-L 
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volume of bromide solution (150 mg/L) and stained bacteria was injected at a rate of 0.85 

L/m simultaneously at depths of 8.5 and 9.1 m below land surface in the saturated zone; 

breakthrough was measured at these elevations 6.8 m downgradient from point of 

injection.  At about the same time the tracer test was being conducted, an extensive 

characterization of the nature and distribution of the hydraulic conductivity properties of 

aquifer sediments was being carried out at a nearby plot by means of borehole flow meter 

measurements [21].  The location of the two tests relative to one another is shown in plan 

view Figure 1.  The vertical position of the injection points relative to the vertical depth 

over which the aquifer geostatistical information was obtained is shown in Figure 2.  

Two additional data sets that were recorded during the tracer test, but not 

previously reported, were (1) breakthrough observations at two elevations at multilevel 

sampler M7, 5 m downgradient and about 1 m east of the centerline between the injection 

point and observation well M1, and (2) the histogram of the distribution of the sizes of 

the injected bacteria (Figure 3) [22]. 

2.2 Governing equations 

The governing equation for local-scale advection, dispersion, and reversible 

interactions with grain surfaces for resting-cell bacteria in porous media is given by 

∂C j

∂t
+ ∇• vC j( )− ∇• D• ∇C j( )= −k j

attC j + k j
det ρb

ρn
S j     (1) 

For attached bacteria, the mass balance equation is given by 

 ρb

ρn
∂S j

∂t
= k j

attC j − k j
det ρb

ρn
S j  (2) 

where  Cj is the mass fraction [dimensionless] of bacteria in solution of species or 

attribute j, Sj is the mass fraction [dimensionless] of attached bacteria of attribute j, kj
att  
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and kj
det are first-order rate constants for physical/chemical attachment (sorption) and 

detachment of species j, ρ  and   ρb  are densities of the fluid and bulk porous medium 

[M/L3], D is the hydrodynamic dispersion tensor [L2/T], v is the average seepage velocity 

[L/t], and    is effective porosity [dimensionless]. Growth and death terms are not 

included in (1) and (2) because growth of the DAPI-stained bacteria was not observed 

during the test and, in a control suspension and in tracer test samples during a 30-day 

period following collection, growth and death were not significant [14].  Although 

significant advances have been made in understanding the effect of bacterial chemotaxis 

at the pore scale [23], much about the macroscale significance of chemotaxis for bacteria 

is still poorly understood [24].  However, DAPI, which is known to hamper bacterial 

activity [25], has recently been shown to inhibit chemotactic activity in groundwater 

bacteria [26].  Also, the uncultured bacteria were stored in nutrient-depleted water prior 

to injection in order to lessen the formation of temporal gradients in dissolved organic 

carbon.  Consequently, the effects of chemotaxis are assumed to be minor and, therefore 

are not included in equations (1) and (2). 

n

Parameterization of kj
att for subsurface microbial transport in aquifers using a 

colloid filtration theory developed for ideal porous media was first proposed by Harvey 

and Garabedian [14] and has been utilized by a number of other researchers (e.g., 

Rehmann et al.,[16]; Schijven et al. [15]).  This model is popular because it is based on 

fundamental thermodynamic principles, and most of its parameters are published 

constants or can be measured.   A widely-used model for colloid filtration is that of 

Rajagopalan and Tien (R&T) [2], as modified by Martin et al. [27] and clarified by 

Logan et al. [28], which is given as: 
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k j
att =

3
2

(1− n)
d10

αcη
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ v        (3) 

where v is the groundwater velocity magnitude [L/T], η is the collision frequency, or 

single collector efficiency [dimensionless],  αc  is the collision efficiency factor, or 

probability that collision will result in attachment [dimensionless] and  is the sieve 

size [m] for which 90% of grains of the porous medium are retained.  The      is used as 

the representative grain diameter in heterogeneous media based on the work of Martin et 

al. [27]. 

  d10

d10

R&T estimated the collision frequency to be composed of additive factors 

influenced by Brownian motion, interception of the colloids by grains, and gravitational 

settling: 

η = 4As
1/ 3NPe

−2 / 3 + AsNLo
1/ 8NR

15 / 8 + 0.00338AsNG
1.2NR

−0.4

 (4) 

where 

    

As =
2 1 − (1− n)5/3⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

2 − 3(1− n)1/3 + 3(1 − n)5/3 − 2(1− n)2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 

NR =
dp

d10

                                             

Dp =
BzT

3πµdp

 

NPe =
nvd
Dp

=
3πµ
BzT

nvd10dp  

NvdW =
H

BzT
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NG =
2
9

dp
2 ρp − ρ( )g

4µvn
=

dp
2 ρp − ρ( )g
18µvn

 

NA =
NvdW

NRNPe

=
4H

12πµdp
2vn

=
H

3πµdp
2vn

 

and H is the Hamaker constant [M/L2T2],  Bz  is the Boltzmann constant [M/L2T2˚K], T is 

temperature (˚K), µ is dynamic viscosity [M/LT],  is colloid diameter [L], ρ is the 

fluid density [M/L

 d p

3] and ρp, the buoyant density of the colloidal particle [M/L3].  A recent 

alternative formulation of collision frequency has been proposed by Tufenkji and 

Elimelech (T&E) [1], which the authors have shown to have an improved fit to lab data 

compared to the R&T model:   

η = 2.4As
1/ 3NR

−0.081NPe
−0.715NvdW

0.052 + 0.55AsNR
1.675NA

0.125 + 0.22NR
−0.24NG

1.11NvdW
0.053

                                                         
 (5)  

Physical interpretations of the dimensionless parameters in Equations 4 and 5 can be 

found in Table 1 of Tufenkji and Elimelech [1]. 

2.3  Effect of Hydraulic Conductivity Variability on Microbial Transport 

Hess et al. [21] have shown that the three-dimensional distribution of the natural-

logarithm of hydraulic conductivity (lnK) of the aquifer material at the Cape Cod site can 

be represented as a stationary, correlated random field on the scale of tens of meters.  Of 

interest is how this spatial variability in lnK couples with and affects the colloid transport 

process as represented by (1) and (2).  It is well known that lnK affects the fluid velocity 

(v) directly through Darcy’s law.  For the colloid transport case there is additional 

nonlinear dependence on lnK through the expression for attachment.  From (3) it can be 

seen that  

k j
att  = f(v, lnK)        (6) 
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Dependence on v is direct as well as through the expression for η(v) given by (4) or (5). 

 is also dependent on lnK in η through known correlations between dk j
att

10 and lnK, and 

through postulated relationships between αc and lnK.   To obtain a d10-lnK relationship, 

we inverted the Hazen [29] formula  

d10 = [10-4exp(lnK)]0.5         (7)  

where K and d10 are in m/sec and m, respectively.  Good agreement has been shown 

between local-scale K calculated using the Hazen formula from grain-size analysis and K 

measured on the same sample using a constant-head permeameter [30], for the Cape Cod 

data.   

Correlations of the transport parameters αc, and  with lnK have been 

postulated by Rehmann et al. [16] to be: 

k j
det

    αc = a1 + b1 ln K + δ1        (8) 

k j
det = a2 + b2 lnK + δ2        (9)  

where ai and bi are constants, and δi is the zero-mean random fields accounting for the 

portions of αc and  not correlated with ln K [31, 32].  The general forms specified by 

(8) and (9) allow positive (b

k j
det

i > 0), negative (bi < 0), or zero (bi = 0) correlation with the 

lnK field.  The uncorrelated portion δi accounts for spatial variability in conditions not 

related to the hydraulic conductivity of the porous medium (e.g., solution chemistry).  

Numerical values for ai, bi, and δi must be determined experimentally.  An example data 

set showing the linear correlation of αc and lnK is given by Ren et al. [33].   

 In order to prevent αc from going to zero for large values of lnK, we have found 

that an alternative formula for (8) specified as 
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 αc = a3 exp(−b3 lnK) + δ3       (10) 

is computationally advantageous.  Figure 4 shows both the linear fit (Eq. 8) and the 

exponential fit (Eq. 10) to data taken from Ren et al. [33] and Dong et al.[34] (as 

expanded upon in Mailloux et al. [35], Figure 10c) covering a wide range of lnK values. 

2.4 Numerical Solution Using a Particle Tracking Approach 

A Lagrangian, particle-tracking approach was used to simulate both bromide and 

bacterial transport.  Particle-tracking methods have been widely applied in subsurface 

transport problems (e.g. [36-39]).  This approach transforms transport equations (1)-(2) 

into a set of discrete particles that each represents a small portion of the total mass of 

solute.   A modification to the particle-tracking approach for a conservative tracer was 

used to represent the attached bacterial phase and the attachment/detachment kinetics 

presented in Section 2.2.  This modification represents attachment and detachment rates 

as particle probability functions.  For a given particle timestep, an attachment or 

detachment probability is calculated and a random function is used to determine whether 

a given particle attaches to the soil matrix.  This approach is similar to that introduced by 

Valocchi and Quinodoz [40] and Michalak and Kitanidis [41] for modeling kinetic 

chemical sorption and has been used to model matrix diffusion (e.g. Liu et al.[42]).  For 

large problems with heterogeneous physical parameters, this approach of representing 

attachment-detachment interactions as particle probabilities facilitates rapid solution of 

Equations (1)-(2) with mass conservation and no numerical dispersion.  Also, each 

particle is moved according to a locally calculated, optimal time step, and particles may 

be split into two particles of equal mass if a single particle occupies a computational cell.  

These techniques further improve the efficiency and accuracy of the particle transport 
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model, particularly to very accurately resolve low concentrations [43]. Details of this 

model are provided in the Supporting Information provided with this manuscript. 

2.5 Generation of Hydraulic Conductivity Random Field 

The two alluvial layers identified in Harvey and Garabedian [14] were 

conceptualized as having small-scale hydraulic conductivity (K) heterogeneity following 

a correlated, Gaussian random field, each with independent statistical parameters.   The 

lnK variance (σlnK
2) and correlation scales (λx=λy, λz) were taken as those reported by 

Hess et al. [21] from a nearby plot, and information reported by Harvey and Garabedian 

[14] was used to estimate initial values of the geometric mean K values for the two layers 

(Table 1). Using these statistical parameters, the small-scale variability in hydraulic 

conductivity of each layer was generated numerically using the turning bands approach of 

Tompson et al. [44].  Because measurements made by Hess et al. [21] were not located 

directly in the Harvey and Garabedian [14] study plot, realizations of the hydraulic 

conductivity random field were not conditioned on the field data; i.e., unconditional 

simulations were utilized. 

 Adjustment of the initial hydraulic conductivity field to obtain the best fit of 

simulated bromide transport to that measured by Harvey and Garabedian was carried out 

as follows.  A flow model, 17.0 x 10.2 x 3.8 m in the x, y and z dimensions, respectively, 

was constructed with a 0.34 m and 0.038 m lateral and vertical spatial discretization 

(dx=dy, dz), respectively, creating 50 x 30 x 100 finite difference cells (nx, ny and nz). 

The finite-difference flow code ParFlow [45-47] was run for 100 realizations of the 

hydraulic conductivity field.  The model was simulated as steady-state flow and 

constructed with constant head boundaries on the X0 and Xmax faces and no-flow on all 
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others to provide the observed gradient listed in Table 1.  A bromide tracer was 

introduced as a pulse source of particles in a 0.464 m x 0.56 m  x 1 m volume centered on 

M02 (6.8 m upgradient of M01) to achieve approximately the same injection conditions 

as the Harvey and Garabedian [14] field experiment.  This is shown in Figure 2 along 

with other schematic details of the simulation domain.  The average of the breakthrough 

curves generated by forward simulation over the 100 geostatistical realizations was 

compared to breakthrough field data for all four locations (wells M01 and M07, two 

upper, two lower).  The parameter estimation code, PEST [48] was used to adjust the 

geometric mean K and lnK variance for the two layers using the difference between 

calculated average (over all 100 realizations) and observed bromide concentrations for all 

four monitoring locations as the objective function.  (The correlation scales were not 

adjusted.) This process was run iteratively until the objective functions converged.  At 

this point, a best fit to the bromide data was achieved and the lnK statistical parameters 

used to generate the optimal set of 100 realizations of the lnK field and the resulting 100 

lnK realizations and flow fields were saved and used for the bacteria simulations.  Table 

2 provides the numerical parameters used in the flow and transport models. 

2.6 Bacteria Transport Simulations 

Bacteria injection and downgradient transport was simulated using the flow fields 

resulting from the 100 hydraulic conductivity realizations generated by the bromide 

calibration.   Bacteria transport was modeled using several options: (1) the R&T vs. T&E 

formulations for attachment; (2) average vs. particle size distribution for the bacteria 

sizes, and (3) constant vs. variable detachment rates.  This resulted in seven different 

bacterial transport cases, each of which was run over all 100 realizations of hydraulic 
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conductivity.  Although the community of unattached bacteria comprising the injectate 

included many rod-shaped cells, this model assumes uniform spherical morphology.  In 

all bacterial transport runs, η was spatially variable, with grain diameter related to ln(K) 

(using the Hazen formula, Equation 7), the velocity taken to be the magnitude of the local 

cell velocities, and αc related to ln(K) using Equation 10 as described in Section 2.3.  

This overall approach for relating filtration parameters to hydraulic conductivity is 

similar to that presented in Maxwell et al. [19].  Using the same initial condition as the 

bromide runs, the bacteria were introduced as a pulse source of particles in a 0.464 m x 

0.560 m x 1.00 m volume centered on M02.  For each of the aforementioned seven cases, 

the average of the bacteria breakthrough curves generated by simulation over the 100 

geostatistical realizations was compared to the field data for all four locations (upper and 

lower sampled ports of wells M01 and M07,). Table 1 provides the physical input data 

used in the bacteria transport simulations.  For all simulations, the estimated value of 

local dispersivity (0.0005 m) had little effect compared to mixing due to heterogeneity, 

and therefore all runs were carried out with this parameter set equal to zero for 

computational efficiency. 

 

3.  Results  

The results of the bromide calibration are given in Figure 5.  The model results 

are depicted as the arithmetic mean over 100 realizations (heavy solid line) with the mean 

plus one standard deviation (over 100 realizations), plotted as a thin dashed line. The 

mean minus one standard deviation was zero for all tracer results.  Table 2 lists the 
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physical parameters that characterize the Gaussian random field resulting from the 

bromide calibration.    

 Plotted in Figure 6 are the observed and simulated bacterial transport 

concentrations at the upper and lower ports for well M01 and the lower port for well 

M07.  (No bacteria were recovered from the upper port of M07 in the field experiment). 

The simulations in Figure 6 depict the attachment correlations parameterized using either 

the T&E expression (Figures 6 a, b, c) or the R&T equation (Figures 6 d,e,f) for a single, 

averaged bacteria particle size of 0.63 um.  As for the bromide runs, the bacteria 

simulations are also plotted as the arithmetic mean (solid line) and +/- one standard 

deviation (dashed line) calculated over 100 realizations of the hydraulic conductivity 

random field.  A constant detachment rate of kj
det = 0.02 d-1 was used for all simulations. 

Figure 7 shows the observed and simulated bacterial transport concentrations 

again use the T&E (Figure 7 a,b, c) and R&T Figures 7 d, e, f) expressions for bacterial 

attachment but instead of a constant bacteria diameter, the distribution of 10 bacteria 

diameters shown in Figure 3 was utilized.  These simulations are also plotted as the 

arithmetic mean (solid line) and +/- one standard deviation (dashed line) calculated over 

100 realizations of the hydraulic conductivity random field.  Again a constant detachment 

rate of kj
det= 0.02 d-1 was used for all simulations.  

Figure 8 shows plots of simulations versus observations at all wells for the 

bromide and bacteria cases presented in Figures 5 - 7, with a linear regression through the 

data points and a 1:1 line (which would be a perfect fit) superimposed for comparison.   

 
4.   Discussion 
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The Figure 5 plots show a remarkably good agreement between observed and mean 

simulated peak bromide concentrations at the M01 upper and lower wells and the M07 

lower well. Although simulation of peak bromide concentration at the M07 upper well is 

not as good as the three others – it is a factor of four higher than the observation -- the 

simulated breakthrough curve does capture the approximately correct width of the 

observed bromide breakthrough at this location, and falls within the +/- one standard 

deviation of the mean simulation.  For all wells other than M01 lower, the mean model 

first appearance of bromide precedes the observed data, indicating some error in the 

modeled lnK field compared to the in-situ field.   Nonetheless, the overall good 

agreement is borne out by the plot in Figure 8a – the slope of the best fit line through the 

observation versus simulation of all points at all wells is 0.96, with an R2 of 0.88. 

All of the simulated mean bromide concentrations fall within the envelope 

encompassed by +/- one model standard deviation.  While this envelope may visually 

appear to be quite large for all wells, it should be recognized that this is due to the nature 

of the simulations, which were unconditional.  However, if K data were available within 

the model domain on which the random fields could be conditioned, the standard 

deviation would be tighter.   Given the overall good match of the simulated mean 

bromide to the breakthrough data, we have confidence that the heterogeneity of the test 

site is fairly well represented by the model results.  We also point out that by using the 

numerical technique, where the heterogeneity is specified explicitly, we are not restricted 

from modeling transport over small distances, whereas this would be a problem using a 

small-perturbation stochastic analytical approach (e.g., Rehmann et al. [16]) that requires 
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transport over many correlation scales of a heterogeneous K field in order to satisfy 

ergodicity requirements.  

 Figure 6 shows the simulations of resting cell bacteria assuming a mean, constant 

bacteria diameter as input, for both the T&E and R&T models. All local-scale bacteria 

transport parameters were approximated from literature values and input to the model 

before running; there was no parameter fitting involved and the same 100 lnK 

realizations and flow fields were used from the bromide calibrations.  For all wells, the 

simulated mean bacteria concentrations agree with the observations, and generally the 

observed data fall within +/- one standard deviation of the simulated mean.  The 

simulated fist arrival times of the bacteria at the M01 upper and M07 lower wells precede 

the first arrival of the observed data by several days, which is to be expected given the 

bromide results.  Both the R&T and T&E colloid transport models appear to do an equal 

job in the model predictions using the constant bacteria diameter.  This is confirmed by 

the plots in Figures 8b and 8c – the slopes of the linear regressions to the simulated 

versus observed data are 0.86 and 1.37 for the R&T and T&E cases, respectively, 

compared to a perfect fit of 1.0.  Both models consistently overpredict the tailing 

behavior compared to the observations.  Observed concentrations past 25 days do not fall 

within +/- one standard deviation of the simulated mean for well M01 upper or lower 

port.  

 Incorporation of the distribution of bacteria diameters in the numerical model, as 

illustrated by Figure 7, yields a slight improvement in model and data agreement, 

compared to Figure 6, most noticeably in the breakthrough after 25 days.  In this case, the 

peak simulated breakthrough values of mean bacteria concentration are lower than for the 
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constant-mean bacteria-diameter case and the widths of the breakthrough curves are also 

in better agreement. The slopes of the linear regressions in Figure 8 show about a 10% 

improvement for the T&E formulation (1.37 in Figure 8c compared to 1.24 in Figure 8e) 

while linear regression slopes do not change as much in the R&T formulation.   The 

bacteria diameter affects the transport process in the expression for single collector 

efficiency (η), where the relative effects of van der Waals forces, interception, and 

gravity are incorporated into the local-scale expression as given by Equations 4 or 5.  

Figure 7 also indicates that incorporation of the new T&E model into the expression for 

local-scale single collector efficiency results in larger bacteria concentrations than the 

R&T model.  The overall difference in these two models corresponds to the lower single 

collector efficiency (η) predicted by the T&E formulation.  This is also shown by Figures 

8d and 8e – the slopes of the linear regression of the simulated versus observed data are 

0.79 for the R&T and 1.24 for the T&E models.  Figures 2 and 3 in Tufenkji and 

Elimelech [1] compare the single collector efficiencies calculated for a range of particle 

diameters for the R&T and T&E formulations.  The range of particle diameters simulated 

in this current study correspond to the region of largest difference between the two 

models.   

Figures 5 and 6 show model results utilizing a constant detachment rate.  The 

model was also run for the T&E case using a detachment rate correlated to hydraulic 

conductivity, thereby rendering a spatially variable detachment rate.  These model runs 

showed that spatial variability of detachment had little effect on breakthrough compared 

to the constant mean detachment case, i.e., the model results appeared to be virtually 

identical to Figure 7 and therefore are not shown.  Figure 8f shows the results of the 
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simulated vs. observed data for this case for all wells and it can be seen is virtually 

identical to Figure 8e.  The value of the detachment rate affects the tailing behavior of the 

breakthrough curves, and this was not captured well either using a constant or spatially-

variable detachment rate. 

5. Summary 

We have reinterpreted breakthrough data for bromide and resting-cell bacteria 

injection tests carried out in 1987 at the USGS Cape Cod site as reported in Harvey and 

Garabedian [14] using computational tools and theoretical frameworks in large part 

unavailable when the first analysis of the 1987 tracer test was conducted.  The purpose of 

conducting the simulations and analysis of the data was to illustrate the applications of 

these advancements.  This work may have implications for those intending to use the 

Harvey and Garabedian model in engineering applications (e.g., Mutsvangwa et al. [49]).  

Our analysis differs from that reported in 1991 in the following aspects.  First, we 

utilized a fully-three dimensional transport model of the tracer tests, to better match the 

field conditions of the pulse injection in a three-dimensional flow field, whereas a one 

dimensional analysis was previously employed.  Second, we explicitly incorporated 

information on the physical heterogeneity of the hydraulic conductivity field as 

conditioned by information on observations of conservative tracer breakthrough.  Use of 

the methods in this paper is therefore predicated upon information on the physical 

heterogeneity of the field site, i.e., the hydraulic conductivity distribution, being 

available.  This can be an expensive undertaking and is still an active area of research in 

the field of hydrogeology (e.g., [50, 51]).  Although we modeled the hydraulic 

conductivity field as being stationary (constant mean and variance) based on nearby field 
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data, stationarity of the lnK field is not required for the numerical methods such as those 

used here, whereas this would be a restriction on using approaches that rely on this 

assumption (e.g. [16]).  This method is also not restricted in applications to near-field 

problems where it would be expected that macroscopic behavior may be non-Fickian at 

such scales.  Also, we utilized unconditional simulations because K data were not 

available in the test plot on which to condition the simulations; availability of this data 

would have significantly reduced the standard deviation around the mean for the 

simulated breakthrough curves.   

Third, we were successful at simulating bacteria transport using a stochastic 

numerical approach with no parameter fitting of the bacteria transport and filtration 

parameters.  After calibrating 100 unconditional K random field realizations based on 

optimization of the mean and standard deviation of the lnK field to provide a best fit of 

the bromide breakthrough curves, we were able to show very good simulation of bacteria 

transport/filtration where the local scale parameters – collision efficiency factor and 

single collector efficiency – are spatially variable owing to postulated correlation with 

hydraulic conductivity variability.  The prediction of the bacteria breakthrough was 

improved in the T&E formulation through incorporation of the distribution of bacteria 

diameters in the injectate, as opposed to utilizing a mean, constant bacterial diameter for 

the simulations.  This attribute is simple to incorporate using the particle-tracking 

approach, where particles can be assigned variable properties such as diameter.  

Apparently, the dependence of the single collector efficiency on bacteria diameter is 

significant even for field applications owing to the relative importance of van der Waals 

forces vs. interception vs. gravity being dependent upon bacteria diameter in Equations 4 
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or 5. 

Fourth, the stochastic framework utilized here, as postulated by Rehmann et al. 

[16], is dependent upon the assumption of correlation of the colloid filtration parameters 

(single collector efficiency and collision efficiency factor) and detachment with the 

spatial variability of hydraulic conductivity, and the availability of data to parameterize 

this correlation.  However, such experimental data are scarce.  This type of correlation 

data can be generated by fairly simple laboratory experiments (see e.g., Ren et al. [33]) 

and is expected to be fairly site specific.  This type of information is needed in order to be 

able to determine the range of correlation parameters physically feasible.  As 

demonstrated by hypothetical simulations in Maxwell et al. [19], the model is quite 

sensitive to values of the correlation parameters.  Improvements can be made as 

published data become available on correlations between colloid transport parameters and 

lnK for the sedimentary materials from this field site. 

We assumed a constant porosity value for these simulations, because in general 

porosity variability has a secondary effect on macrodispersion compared to hydraulic 

conductivity variability [52], owing to porosity typically varying by about +/-0.15 in 

granular media, whereas hydraulic conductivity typically varies over several orders of 

magnitude. The Hazen formula used in this paper relating grain size to the square root of 

hydraulic conductivity for parameterizing local-scale variability assumes a monotonic 

relation and positive correlation between these two variables.  Recent geophysical work 

by Morin [53] at the Cape Cod site contributes significantly to the understanding of the 

relations between hydraulic conductivity, grain size and packing, and porosity, including 

documentation of a negative correlation between porosity and hydraulic conductivity at 
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this site.   These findings could be quantitatively refined by obtaining sediment cores and 

sectioning them to determine the relationship among hydraulic conductivity, grain size, 

and porosity as a function of core length.  Results could be used to parameterize a 

relation among the variables that may be more appropriate than the Hazen formula.  An 

improved formulation could easily be incorporated into the model presented in this paper, 

and sensitivity of the transport process to a revised formulation could be explored. 

Finally, we have only addressed the effect of physical heterogeneity on the 

microbial transport process in this paper.  Chemical heterogeneity (e.g., iron oxide 

coatings) can also have a significant influence on the transport process (e.g., Tompson 

and Jackson [54]) and this effect can be incorporated into the model so that the 

interaction between physical and chemical heterogeneity can be assessed.  Further work 

is underway to address this effect.
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Table 1.  Input Data for Particle Simulations 

Parameter Value Reference 
ρb 1720 kg/m3 Harvey and Garabedian 1991 
ρ 999 kg/m3 Harvey and Garabedian 1991 
ρp 1010 kg/m3 Harvey et al., 1997                         
n 0.39 LeBlanc et al. 1991 
H  3 x 10-21 kg m2/s2 Tufenkji and Elimelech, 2004 
Bz  1.38 x 10 –23  kg-m2/s2K  
T 288˚K Harvey and Garabedian 1991 
µ 1.14 x 10-3 kg/m-sec Harvey and Garabedian 1991 
dp (average) 6.0 x 10-7 m Harvey and Garabedian 1991 
J (hydraulic gradient) 0.0015 LeBlanc et al. 1991 
K  at 9.1 m BLS1 78 m/d Calculated from reported v, n, 

assumed J 
K  (fast zone) at 8.5 m 
BLS1

77 m/d Calculated from reported v, n, 
assumed J 

K  (slow zone) at 8.5 
m BLS1

58 m/d Calculated from reported v, n, 
assumed J 

αL, αT 0.0 m 

Taken as zero in simulations, 
since effect of finite value was 
not discernable via test runs. 

a3 3.4 x 10-10 From exponential fit to local-
scale αc –lnK data (Figure 4) 

b3 2.1 From exponential fit to local-
scale  αc –lnK data (Figure 4)   

δ3 0  
a2 9.46 10 -7 sec -1 From linear regression of 

detachment data in Schijven et al 
1999 

b2 1.03 10-7 sec-1 From linear regression of 
detachment data in Schijven et al 
1999 

δ2 0  
σlnK

2 0.24 Hess et al., 1992 
λx,y 3.5 m Hess et al., 1992 
λz 0.20 m Hess et al., 1992 
1 used to assign initial values in parameter estimation procedure. 
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Table 2. Input and Final Calibration Parameters for Flow and Particle Models 

Parameter Value Unit 
dx 0.34 m 
dy 0.34 m 
dz 0.038 m 
nx 50  
ny 30  
nz 100  
Kg_upper1 83 m/d 
σlnk

2 _upper1 0.31  
Kg_lower1 87.5 m/d 
σlnk

2 _lower1 0.22  
λx,y 3.60 m 
λz 0.19 m 
upper/lower domain 
split 8.91 m bls 

domain size (x,y,z)  

17.0 x 
10.2 x 
3.8 m 

bottom of domain   10.41 m bls 
Upper zone thickness 2.3 m 
Lower zone thickness 1.5 m 
Number of initial 
particles 75,000  
Maximum number of 
particles allowed after 
splitting  250,000  

 

1Final calibration values. 
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Figure 1.  Location of the 1987 bacteria injection test [Harvey and Garabedian, 1991] in 
relation to the sample plot where characterization of the geostatistical distribution of 
aquifer properties [Hess et al., 1992] was carried out and to the trajectory of the bromide 
cloud created during an earlier large-scale conservative tracer study [LeBlanc et al ., 
1991]. 
 

 

 

 

 

30 



 

land surface

z = 0 (mean sea level)

18.29 m

water table

3.7-4 m

14.3 - 14.6 m

zone of flowmeter measurements   6 - 13 m asl

••

injection points

9.1 m bls
8.5 m bls ••

observation points

6.8 m

••

5 m

M07 M01M02

8.9 m bls

fast zone

slow zone

modeled domain

flow direction

 
  
Figure 2. Location of injection and observation points for tracer test.  Vertical extent of 
nearby Hess et al. [1992] flowmeter measurements used to calculate hydraulic 
conductivity is shown in gray.  Fast and slow zones described by Harvey and Garabedian 
[1991] are depicted. 
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Figure 3.  Distribution of diameters of indigenous bacteria injected in the 1987 tracer test 
[Field notes, R. W. Harvey]. 
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Figure 4. αc vs. lnK data from Ren et al. (2000) and Dong et al. (2002) (as supplemented 
by Mailloux et al. 2003, Figure 10c) with linear and exponential fits to the data.  The 
exponential fit was used in the model runs in this paper. 
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Figure 5. Plot of observed (symbols) and simulated (lines) bromide concentrations 
(normalized by initial concentration, C0) with time for both wells at both monitoring 
ports for the calibrated ensemble of realizations.  Average simulated bromide plotted as a 
solid line with one standard deviation plotted as a dashed line. 
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Figure 6. Plot of observed (symbols) and simulated (lines) bacterial concentrations 
(normalized by initial concentration, C0) with time for both wells for the T&E (left, A-C) 
and R&T (right, D-F) attachment formulation for an averaged particle size.  Average 
simulated bacterial concentrations plotted as a solid line with plus/minus one standard 
deviation plotted as a dashed line. 
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Figure 7. Plot of observed (symbols) and simulated (lines) bacterial concentrations 
(normalized by initial concentration, C0) with time for both wells for the T&E (left, A-C) 
and R&T (right, D-F) attachment formulation for the particle size distribution given in 
Figure 3.  Average simulated bacterial concentrations plotted as a solid line with 
plus/minus one standard deviation plotted as a dashed line. 
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Figure 8. Plot of observed versus simulated averaged (arithmetic mean over all 100 
realizations of hydraulic conductivity) concentrations for bromide and bacteria for all 
wells with 1 to 1 line (dotted) and linear fit noted on figure, for (a) bromide for all four 
monitoring locations;  bacteria for the three non-zero monitoring locations for (b) 
constant diameter and R&T expression for η; (c) constant diameter with the T&E 
expression for η; (d) distribution of diameters and R&T expression for η; (e) distribution 
of diameters and T&E expression for η; and (f) distribution of diameters and R&T 
expression for η, with variable detachment. 
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Supplementary Information to “Revisiting the Cape Cod Bacteria Injection Experiment 

Using a Stochastic Modeling Approach” 

Particle Transport Model Details 
 

Particle-based numerical techniques have been widely utilized in solving 

equations for conservative and reactive chemical transport in porous media (e.g., 

Ahlstrom et al., 1977; Kinzelbach, 1988; Uffink, 1988, Tompson and Gelhar, 1990; 

Tompson and Dougherty, 1992; Tompson, 1993; Tompson, et al., 1996; Maxwell and 

Kastenberg, 1999; Abulaban and Nieber, 2000; Liu et al., 2000; Michalak and Kitanidis, 

2000).  Their performance is superior to many grid-based approaches at large grid-

Peclet numbers in terms of numerical dispersion, spurious oscillations, and mass 

balance.  The model utilized in this work and presented here is an adaptation of an 

algorithm developed by Lawrence Livermore National Lab for radionuclide transport 

(Maxwell and Tompson, 2006).  The particle model is based on a version of the total 

mass balance equation in which physical and geochemical processes are simplified by 

assuming that the pH and groundwater composition are constant. The mass balance 

equations for the aqueous and attached phases are given by: 

∂C j

∂t
+ ∇• vC j( )− ∇• D• ∇C j( )= −k j

attC j + k j
det ρb

ρn
S j     (1a) 

ρb

ρn
∂S j

∂t
= k j

attC j − k j
det ρb

ρn
S j        (1b) 

where Cj represents the mass fraction of species j in solution, Sj is the mass fraction of 

attached species j, v is the average seepage velocity (L/t), n is the effective porosity, 

1 
 



k j
att is the attachment rate of species j, is the detachment rate of species j, and D is the 

hydrodynamic dispersion tensor.  The hydrodynamic dispersion tensor D is defined as 

k j
det

 
      
D(x) = (αTV + De )I + (α L −αT )

vv
V

 (2) 

where αL and αT are the longitudinal and transverse medium dispersivities (L), V is the 

magnitude of the seepage velocity, De is an effective molecular diffusivity (L2/t) for the 

porous medium, and I is the identity matrix.  

 The spatial distribution of aqueous and attached microbial mass is 

approximated by a finite system of Nj particles  

 C j (x,t) = m p
Cδ x − X p(t)( )

p=1

N j
C

∑  (3a) 

 S j (x,t) = m p
Sδ x − X p(t)( )

p=1

N j
S

∑  (3b) 

N j = N j
C + N j

S             (3c) 

where is the number of particles in the aqueous phase, is the number of attached 

particles, and δ is a Dirac function.  The particles may be associated with different 

attributes such as mass ( , mass of particles in the aqueous phase; , mass of 

attached particles), position (X

N j
C N j

S

m p
C m p

S

p), type (j) (e.g., microbial species or attribute within a 
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species such as diameter), age (t – t0) and phase of existence (e.g., free or attached) 

which is how particles are exchanged between Cj and Sj.  

A simulation is initialized by mapping specified distributions of Cj, Sj and other 

relevant attributes onto a field of particles in a manner consistent with (3). The number 

of particles used to represent a unit of mass is defined as the particle resolution, Nr, and 

may be controlled to improve the quality of the solution. The simulation proceeds over 

discrete time steps by changing the various particle attributes. This involves moving the 

particles according to a known background velocity field and other medium 

characteristics associated with dispersion forces.  The particle model is inherently mass 

conservative in the sense that the total mass between the free and attached states is 

conserved.   

The movement of particles is based on an explicit random walk algorithm 

(Kinzelbach, 1988; Uffink, 1988, Tompson and Gelhar, 1990; Tompson, 1993; Maxwell 

and Kastenberg, 1999; Abulaban and Nieber, 2000), 

 ( ) ttnftt pp ∆•+∆∇•+•∇++=∆+ ZBDDv ))(ln()(X)(X  (4) 

In this expression, the second term on the right accounts for particle displacement along 

flow streamlines and includes two factors to correct for nonuniform distributions of n or 

D. The porosity correction is usually a small quantity and is typically neglected. The 

third (random walk) term on the right accounts for the dispersive flux, where B•BT = 2D 

and Z is a random vector whose independent components have zero mean and unit 
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variance.  The particle mass density evolved through repeated use of (3) on all particles 

will satisfy a conservative (e.g., zero right-hand side) form of the simplified mass 

balance equation (1) in the limit as   N p  or  Nr → ∞  (Tompson and Gelhar, 1990). 

The time step, ∆t, used in this algorithm is chosen uniquely for each individual 

particle as a function of accuracy limits imposed by the velocity field, in conjunction 

with other limits associated with the dispersion and attachment steps. This differs from 

the use of a uniform time step that may be used to advance the position of all particles 

simultaneously (e.g., as in Tompson and Gelhar, 1990). Typically, provisional values are 

chosen with respect to the constraints associated with each process, with the lowest 

value ultimately being selected for use. For example, the provisional time step 

associated with the displacement equation (4) is selected for each particle to advance it 

via advection along an interpolated streamline within each grid block, at most from one 

edge to the next (Pollock, 1988; Schafer-Perini and Wilson, 1991), but potentially over 

shorter distances if a change in the velocity field or constraints from other mechanisms 

dictate.  

The advective substep is followed by other substeps that address the 

correction and random portions of the displacement shown in Equation 4. Provisional 

time steps are chosen independently for these steps as well, each limited by the 

magnitude of the velocity gradient or the largest dispersion coefficient.  Because 

different time steps are used for different particles, periodic rendezvous times, T, may 

be identified to collect the position and state of all particles for visualization and other 
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interrogation purposes (Tompson et al., 1988; Maxwell, 1998; Maxwell and Kastenberg, 

1999).  

The effects of attachment and detachment (i.e. exchange of mass between Eq. 

3a and 3b) is implemented into the particle model using a transitional probability 

approach, similar to that used by Liu et al. (2000) for approximating matrix diffusion 

and similar to Valocchi and Quinodoz (1989) for chemical sorption. During each time 

step, particles representing free bacteria, (3a) advected and dispersed using (4) may be 

transferred into stationary particles representing attached bacteria, (3b) and vice versa, 

as a probabilistic function of the time step.  Particles that are attached to the soil matrix 

are not advected or diffused; their position remains fixed until they are probabilistically 

returned to the free regime. 

For species j, the probability of a free bacteria attaching to the soil matrix is given by  

   (5) tkP att
jfaj ∆=,

and the probability of an attached bacteria moving back into solution is given by 

  (6) tkP jafj ∆= det
,

Comparison of this method with the streamline approach used in Maxwell, et al. (2003) 

determined that the provisional time step associated with these transitional terms 

should be chosen such that  Pj,fa and Pj,af  are less than 0.02. 
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