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Abstract. We calculate X-ray line polarization degrees for cases with axial symmetry
using a collisional-radiative magnetic-sublevel atomic kinetics model and the properties of
multipole radiation fields. This approach is well-suited for problems where the alignment
is determined by the competition between many atomic processes. We benchmark this
method against polarization measurements performed at the Livermore electron beam ion
trap, and we study the 3-to-2 cascade effects on the polarization of 2-to-1 lines in He-like
Fe.

PACS: 34.80.Dp, 34.80.Lx, 32.70.Cs, 32.80.Dz, 52.25.Os, 31.10.+z, 52.70.La, 52.38.Ph

1. Introduction

Polarized line emissions have been recognized as a signature of anisotropy in distributions
of plasma electrons [1].  In particular, beams of plasma electrons can excite upper levels
of line transitions in a non-statistical way, i.e., causing different magnetic sublevels of fine
structure levels to have different populations.  This condition called alignment reveals
itself in partial polarization of emitted radiation.  Beams of electrons occur in plasmas in
several cases; electrons spiral along magnetic fields lines in solar corona [2,3] and electron
beam ion trap (EBIT) experiments [4], in laser-produced plasmas electron beams are
generated via nonlinear absorption of laser radiation [5-7].  Understanding the effects of
the presence of directional electrons in plasmas is of fundamental importance.  Frequently
these electrons are very energetic compared to the thermal plasma electrons and excluding
them from theoretical models may lead to serious overestimates of plasma temperature
[8].  Also, the fast-igniter approach to inertial confinement fusion relies on a beam of fast
electrons that can initiate a fusion burn.  It is therefore desirable to develop diagnostic
tools capable of characterization of non-thermal electrons’ distribution properties in
plasmas.  Analyses of polarized line radiation from plasmas provide a way for doing that.
Polarization-based diagnostics takes advantage of a degree of freedom of electromagnetic
radiation not typically used in plasma spectroscopy in the past.  Fundamental quantum
mechanical studies are necessary in order to provide insights into the mechanism and
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characteristics of polarized line emissions.  Most of this work was done using density-
matrix formalism [9-13].

While polarization-based plasma diagnostics breaks new ground, good quality modeling
for its purposes must face the same issues addressed by the more traditional radiation-
based diagnostic techniques.  Plasma spectroscopy has been a valuable tool for the
determination of plasma characteristics in celestial as well as laboratory plasmas.
Observed spectral line intensity ratios are yardsticks for measuring plasma temperature
and charge balance; Stark-effect-induced broadening of line profiles contains information
about plasma density.  Theoretical reproduction of recorded spectra requires calculation
of populations of the plasma ion species that are in their ground as well as excited states.
In non-LTE plasmas, the populations often strongly deviate from the Boltzmann/Saha-
equilibrium values.  In order to address this issue multi-level collisional-radiative atomic
kinetic models are constructed.  Energy level populations are then calculated as a result of
combined effects of many atomic processes.  Many energy levels may need to be included
in a model for satisfactory reproduction of experimental data, which in turn leads to large
sizes of atomic databases.  The size and complexity of a particular atomic kinetic model is
determined by the level of detail used in the description of energy level structure.  Since
polarized radiation emerges from collections of ions with unequal populations of magnetic
sublevels within individual fine-structure levels, development of fundamental, magnetic-
sublevel atomic kinetic models is warranted. Such models must be complemented with a
way of calculating polarized line emissions based on magnetic sublevel populations.
Work in this direction has been done using density-matrix formalism [10]. We present
another approach based on properties of multipole radiation fields, which agrees with the
work of Inal and Dubau and is consistent with results of another density matrix method
[11].

In this paper we report the results of the application of our technique to several
experiments performed at the Livermore EBIT-II electron beam ion trap. Experimental
conditions in EBIT are under very precise control, which makes EBIT very well suited
for fundamental studies and tests.  To this end we have constructed sublevel kinetics
models (without cascades) for He-like Si, and Be- and B-like Fe and calculated
polarizations of dielectronic satellite line emissions from these ions driven by
monoenergetic electron beams. Having tested our method in these cases we then proceed
to report on our calculations of polarized K-shell emissions from He-like Fe based on a
sublevel kinetics model that includes cascade effects.  Elsewhere we describe the results of
the same procedure applied to a more complex plasma environment aimed at studying the
polarization properties of Ly-a satellites in laser-produced Si plasma [14].

2. Theory
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Previous calculations of polarized line emissions have used various implementations of
density-matrix theory [9-13]. Here, we present a method for the calculation of polarized
line emissions that is based on a collisional-radiative atomic kinetics model of magnetic
sublevel populations.  This technique is well suited for cases with cascade effects because
it eliminates the need of a priori identification of dominant atomic processes.  This
method is also particularly useful for application in transient plasmas where different
atomic processes may become important at different times.  Magnetic sublevels are
quantum states characterized by parity p, energy E, total angular momentum J, and its
projection MJ.  In the absence of hyperfine interaction and external fields these are good
quantum numbers. These quantum numbers are complemented by the dominant
configuration and LS labels. We consider a fundamental collisional-radiative atomic
kinetics model for calculating magnetic sublevel populations and, subsequently,
polarization-dependent line spectra. This is accomplished by setting up a system of
kinetic rate equations for the magnetic sublevels which, in general, is time-dependent.
However, for the cases considered here we can assume steady-state conditions, and
therefore the system of rate equations can be written down in matrix notation as follows,

bgA =                                                                                                                  (1)

where g  is the vector of magnetic sublevel populations, A  is the rate matrix associated

with the atomic processes included in the model, and b  is a vector that depends on
populations not computed by the model and thus considered to be input (e.g., ground
state populations in the applications discussed here). The number of magnetic sublevels
in the model determines the number of rate equations in the system, and the number and
type of atomic processes included determines the level of coupling between the equations.
Implicit in the model is the selection of an axis of quantization with respect to which the
magnetic sublevel quantum number M and the direction of observation are referred to, and
axial symmetry is assumed; we take the z-coordinate axis to be this axis.

In general, to address the problem of calculating polarized line emission one has to
consider the density matrix of the ion and electromagnetic field system. Then, the photon
density matrix can be extracted which contains the Stokes parameters that characterize the
polarization properties of the radiation field. The diagonal elements of the ion density
matrix are the magnetic sublevel populations, and the off-diagonal elements represent
coherences. However, for the case of systems with axial symmetry the ion-density matrix
remains diagonal and the line polarization properties are only characterized by magnetic
sublevel populations [10]. Hence, a line transition is formed as an incoherent collection of
sublevel transitions that are inherently polarized due to angular momentum conservation
of the ion and photon system. Pure multipole radiation emissions from optically thin
sources due to transitions between magnetic sublevels have distinct angular and
polarization characteristics [15].  It is customary to observe polarized emissions in a
direction perpendicular to the chosen quantization axis.  In the case of an electric dipole
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(E1) line whose upper and lower states have the same value of the magnetic quantum
number MJ, the emission is linearly polarized parallel to the axis of quantization.  On the
other hand, if the magnetic quantum number changes by one unit, an E1 emission is
polarized in a direction perpendicular to the quantization axis. The polarization of
emissions from sublevel-to-sublevel transitions is determined by the multipole type of
the transition and the absolute difference in MJ values of the upper and lower levels.  This
is a manifestation of angular momentum conservation of the ion + radiation field system
during the ion’s decay by photon emission.  A fine structure line JiÆJf consists of
sublevel lines polarized in both directions, which overlap due to degeneracy with respect
to M J.  Hence, in the optically thin approximation, we calculate polarization-dependent
fine-structure line intensities by,
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where hn is the transition energy, A(JiÆJf) is the transition’s radiative decay rate, f(Mi)
are populations of upper level’s sublevels, q is the angle between the quantization axis
and the line of sight,  q is the multipolarity of the transition, DM = M f – M i, and
( )iiff MJMMqJ D-  is a Clebsch-Gordan coefficient. The products of

Clebsch-Gordan coefficients and A(JiÆJf) are the spontaneous radiative decay rates of
the constituent magnetic sublevel transitions [16]. MI_^(DM,q)’s are relative multipole
intensities based on wave-zone multipole fields, in particular their angular parts are also
known as vector spherical harmonics [15], and q is the angle between the direction of
observation and the axis of symmetry (same as the polar angle). Their values for dipole
and quadrupole transitions are listed in Tables I and II. The two polarization-dependent
line intensities observed at q = 90°  then yield the polarization degree,
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Under isotropic conditions (LTE plasmas, for instance) populations of magnetic sublevels
within a fine-structure level are the same, which results in unpolarized line emissions.
Polarization may therefore arise only from lines whose upper levels are aligned, i.e., the
population is unequally distributed among their magnetic sublevels. Alignment can be
created by anisotropic processes such as electron collisional excitation or electron capture
driven by electron beams.

Here, all atomic structure, rate and cross section data is calculated with the Los Alamos
atomic structure and scattering codes CATS, ACE, and GIPPER. CATS is a
multiconfiguration Hartree-Fock atomic structure code that computes energy level
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structure characteristics (eigenstates’ wave functions and energies) and transition matrix
elements for spontaneous radiative decay rates [17]. The electron scattering code ACE
uses atomic structure data computed by CATS to calculate electron-impact excitation
scattering amplitudes and cross sections in the Born, Coulomb, or distorted wave
approximation for transitions between magnetic sublevels, fine-structure levels, LS-terms
and configuration-averaged states [18].  In its sublevel mode ACE provides differential
cross sections which we integrated over the scattering angle. The ionization code GIPPER
also uses atomic structure data from CATS to calculate autoionization rates and cross
sections for electron-impact ionization and photoionization [19]. This suite of codes can
efficiently generate large databases for atomic kinetics modeling.  

3. Polarization of dielectronic satellite lines

In this section we discuss the results of our calculations for the polarization degrees of
dielectronic satellite lines in Fe ions, and compared them with measurements at the
Livermore EBIT as well as independent calculations [20-22]. In particular, we consider 1s
2l 2l' 2l'' Æ 1s2 2l 2l' transitions in Be-like Fe and 1s 2l 2l' 2l'' 2l''' Æ 1s2 2l 2l' 2l'' in B-like
Fe where l, l', l'' and l''' can be s or p. An electron beam is capable of creating alignment in
the upper (autoionizing) levels of dielectronic satellite lines by populating them via
resonant electron capture.  The potential anisotropy of this process stems from the
conservation of the z-component of the total angular momentum of the system. The
continuum electron has ml=0 which leads to the selection rule |DM|=1/2 between the two
ionic states involved in the electron capture process [23].  For the low density conditions
at EBIT (Ne ª 1¥1012 cm-3) we can assume that each autoionizing state is populated
solely by electron capture from the ground state of the next higher ionization stage, and
depopulated by autoionization and spontaneous radiative decays. Furthermore, the
energy of the electron beam can be tuned in such a way that only subsets of electron
capture resonances are excited. Hence, the populations of autoionizing magnetic sublevels
can be calculated from a set of de-coupled kinetic rate equations (see Eq. 1) given the rates
of electron capture, autoionization and spontaneous radiative decays, and the population
of the ground state of the next higher ionization stage. Actually, we have normalized this
ground state population to 1 so that all other populations in our model are calculated in
units of the ground state population. Sublevel radiative decay rates for pure multipole
radiative transitions are calculated from the J-level rates by the following formula which is
based on the Wigner-Eckart theorem [16],

( )2
)()( iifffiffii MJMMqJJJAMJMJA D-¥Æ=Æ                  (4)

While this is a general relationship, magnetic sublevel autoionizing and electron capture
rates can also be written in terms of the corresponding J-level rates under the
approximation that this process occurs through a single dominant open channel. A
detailed discussion of the calculation of these rates is given in the Appendix. We note that
each individual magnetic sublevel JM of a given level J decays with the same total
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radiative (as seen from summing over M f in Eq. 4) and autoionization decay rates
(Eq. A12), respectively. This reflects the fact that these processes are isotropic.

Spontaneous radiative decay and autoionization rates for fine structure J-levels were
computed with the codes CATS and GIPPER, and then used to compute magnetic
sublevel JM rates according to Eq. (4) and the method discussed in the Appendix. Next,
magnetic sublevel populations and polarization degrees were computed according to the
model discussed in the theory section. Our results agree with the B- and Be-like Fe
measurements at EBIT, and also with results from independent calculations based on the
photon density matrix [20,22]. The only exception is line #9 in Table I of Ref. [20] (1s 2s
2p2 {1} 3P2 Æ 1s2 2s 2p 3P2) in Be-like Fe.  This line has not one but two open dominant
transition channels from terms 1D and 3D and therefore our single-channel assumptions
about its electron capture rates do not apply.  Even for this line, however, we reproduce
the two limiting values of –1 and –3/7 depending on which LS-term is taken as dominant,
also in accordance with Ref. [20]. Also, polarization degree results for the He-like Si
satellites of the Ly-a agree with those of Ref. [21].

4. Cascade effects on the polarization of lines w, x, y, and z in He-like
Fe

Beiersdorfer et al. measured the polarization of the 1s 2p 1P1 Æ 1s2 1S0 resonance line w
(E1), 1s 2p 3P2 Æ 1s2 1S0 intercombination line x (M2), 1s 2p 3P1 Æ 1s2 1S0

intercombination line y (E1), and 1s 2s 3S1 Æ 1s2 1S0 forbidden line z (M1) from He-like
Fe ions in EBIT experiments [11].  These emissions were driven by an unpolarized,
monoenergetic (6.8 keV) electron beam.  Using Eqs. of (2) and (3) we can express the
polarization of these lines in terms of upper level magnetic sublevel populations f(Mi) as,
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which are consistent with the formulae of Inal and Dubau [10].  Under the steady-state
conditions of an EBIT and the assumption of no cascades, the upper sublevels of these
transitions are populated solely by direct electron-impact excitation from the ground state
characterized by sublevel cross sections sM.  Since radiative decay is isotropic, we have
f(M) µ sM and the polarization formulae (5)-(7) agree with that of Ref. [11] with the
cross sections in place of sublevel populations.  This approximation only holds for such
special cases, and these “2-level-atom” polarization results containing sublevel cross
sections have to be modified in the presence of other feeding channels for the upper level.
Such effects are automatically accounted for in our multilevel atomic kinetic models,
which yield sublevel populations, and therefore require no formal modification of
expressions (5)-(7).

Our atomic kinetic model for He-like Fe consists of a total of 53 magnetic sublevels from
configurations 1s2, 1s 2l, and 1s 3l. In order to address the effects of 1s 3l Æ 1s 2l
radiative decay cascades we calculated polarization of the four lines at electron beam
energies 6.8 and 8.0 keV.  Due to the small energy dispersion of EBIT electron beams
(ª50 eV) the electrons do not excite the 1s 3l 3l’ resonances that lie in the 6.95-7.01 keV
range (see Fig. 1) and whose effects to 1s 2l excitation have been studied by Inal and
Dubau [23].  The 1s 3l excitation threshold is 7.9 keV, hence at 6.8 keV the 1s 3l states
acquire only negligible populations by stepwise excitation via 1s2l states. Therefore only
cascades within the 1s 2l states may play a role at 6.8 keV.  At 8.0 keV the 1s 3l states
become accessible to direct excitation from the ground state which turns on the n=3 to
n=2 cascades.  It is straightforward to exclude any levels from the model and thus identify
dominant feeding channels by looking at the sensitivity of the final result.  Considering
the low electron density of the beam (1012 cm-3) it is sufficient to include only electron-
impact excitation and spontaneous radiative decay processes.  Using the suite of Los
Alamos codes we constructed a database of 50 rates of electric dipole transitions between
J-levels.  Our model also includes the rates of three higher-order transitions, namely those
associated with lines x and z [24] and the two-photon decay 1s 2s 1S0 Æ 1s2 1S0 [25].
Inclusion of these processes is necessary because upper levels of these three transitions
lack dominant electric dipole decay channels

Electron-impact excitations are represented by a database of 1296 sublevel excitation
cross sections created with the Los Alamos code ACE.  (There is some redundancy in the
database because sublevel cross sections are the same if MJ values of the initial and final
states both change sign.)  Since the results of kinetic models depend on the quality of the
employed atomic database, we also obtained another collection of cross sections
independently calculated by a fully relativistic code [26].  This allows us to investigate
the sensitivity of our results with respect to various collections of atomic data produced
under different methods and approximations.  The comparisons between these two
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collections of data representing excitations of the upper levels of lines w, x, y, and z from
the ground state (Table III) show that the relativistic corrections play a small role, as is
expected for a light element such as Fe.  While the excitation data of 1s 2s 3S1 level show
the largest differences between the two calculations, the relative values of individual
sublevel cross sections remain virtually unchanged (see Figs. 2 and 3) even for this level.
Since the degree of polarization is determined by the relative difference of upper level’s
sublevel populations, the “2-level” polarization results are essentially the same regardless
of which cross section database is used in the model.

Our results are summarized in Tables IV and V.  The columns labeled “17-level” represent
the results obtained from our full model, while the “2-level” results refer to separate
calculations involving only the two levels of each transition.  The comparison of the “2-
level” results obtained from the two databases reflects the changes in the relative
magnitudes of the direct-excitation sublevel cross sections.  These differences between the
two databases are illustrated in the form sublevel cross section ratios in Figs. 2 and 3.  For
example, the excitation of the 1s 2s 3S1 level is isotropic in the ACE model while the
relativistic (“Zhang”) calculations predict a tiny alignment creation in this process.  This
translates into the –0.0051 at 6.8 keV and –0.0055 at 8.0 keV “2-level” polarization result
for line z as opposed to the exact 0 in the ACE column.  The line w has a positive degree
of polarization because the M=0 sublevel of the upper (1s 2p 1P1) level has a larger cross
section than the M=±1 sublevels (see Eq. 6).  This difference in sublevel cross sections is
more pronounced in the ACE data which leads to even more positive “2-level”
polarization result than that based on the fully relativistic (“Zhang”) data.

It is the difference between the “2-level” and the corresponding “17-level” results that is
attributable to cascades.  At 6.8 keV the only line whose polarization is noticeably altered
by cascades is the line z.  Direct excitation of the 1s 2s 3S1 level from the ground state is
essentially isotropic as is apparent from the vanishing “2-level” result.  Its noticeable
negative polarization is attributed to alignment transfer from the 1s 2p 3P2 state
(polarization goes back to zero, if this level is excluded from the calculation).  This state is
aligned by anisotropic excitation from the ground state which manifests itself in the
polarization of line x, for which 1s 2p 3P2 is the upper level.  Our results are in agreement
with experimental results of Beiersdorfer et al. (see [11] and Table IV).

For an electron energy of 8.0 keV radiative cascades from n=3 singly excited states turn
on.  Adding more energy levels to our model is not necessary because this energy is still
below the 8.2 keV threshold for the n=4 singly excited states.  Lines w and x do not
undergo any major changes but lines y and z exhibit interesting properties.  New
measurements were performed at the Livermore EBIT-II electron beam ion trap at the
beam energy of 8.0 keV using similar techniques as those reported earlier [11].  The
results are listed in Table V.  These measurements indicate that the polarization of line x
actually does change a bit, to the point that our calculated result falls out of the error bar.
We should note, however, that polarization measurements are generally very challenging,
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and the error bars given are purely statistical.  Unknown systematic effects, possibly due
to inhomogeneous crystal reflectivities or inhomogeneous focusing properties and the like,
may alter the results and are very difficult to detect.  On the other hand, because of the
inherent properties of the two-crystal measurement technique used, the uncertainties are
intrinsically smallest for lines with the most negative polarization (and conversely largest
for those with the most positive polarization).  As a result, the measurement of the
polarization of line x carries the smallest uncertainty.  Good agreement by contrast is
found for lines w, y, and z, albeit near or right at the edge of the respective error bars.  

Since the “2-level” polarization of line z is remains zero at 8.0 keV, and a calculation at
this energy with the n=3 states excluded yields a value around –0.08, the significant
increase of polarization up to –0.15 is caused by cascades from 1s 3l.  We pinpointed the
most significant feeding channels of 1s 2s 3S1 and constructed a 5-level model in which
these effects on line z can be illustrated.  This five-energy-level subset is: 1s2 1S0, 1s 2s
3S1, 1s 2p 3P0, 1s 2p 3P2, and 1s 3p 3P2.  Our results (see Table VI) show that the cascade
from 1s 3p 3P2 further enhances the negative polarization value seen also at 6.8 keV that
was attributed to the cascade from 1s 2p 3P2.  The line emission associated with this
cascade is itself noticeably polarized (P = + 0.29) which demonstrates that alignment
transfer from 1s 3p 3P2 to 1s 2s 3S1 is indeed taking place.  On the other hand, these two
cascades compete with the isotropic cascade from 1s 2p 3P0 level.  These findings are
consistent with earlier calculations of Inal and Dubau [23], who accounted for cascades by
calculating effective collision strengths for the 1s2 _ 1s 2l excitations at several energies, of
which the one closest to our calculations is 7.9 keV (582 Ry).  Most importantly, this
significant enhancement of the polarization of line z at 8.0 keV in comparison to the value
at 6.8 keV is also observed by our newly reported experimental results (see Table V).
Fig. 4 shows the most dominant atomic processes in the kinetics of the upper level of line
z.  The “population¥rate” values are the measure of influence of a particular atomic
process on the population of the 1s 2s 3S1 level.  The fact that several feeding channels are
of comparable importance and that the direct excitation from the ground state is not even
the most dominant among them illustrates the critical importance of considering complex
cascade effect patterns.  Hereby presented magnetic-sublevel kinetic modeling addresses
these issues by definition.  This is an improvement with respect to previous efforts that
start with a “2-level” type modeling and add cascades on a case-by-case basis.

The “2-level” result for line y is considerably smaller at 8.0 keV than the corresponding
value at 6.8 keV.  This is a consequence of sublevel excitation cross section s1 being much
more comparable to s2 at 8.0 keV than at 6.8 keV, making excitation from the ground state
less anisotropic.  Further reduction of polarization seen in the comparison of the “2-level”
and “17-level” models at 8.0 keV is then due to cascades; however, in this case there are
no dominant population channels that would allow us to recover the “full” result with a
small number of included levels.  Therefore, the polarization (or, in this case, the lack
thereof) of line y at  8.0 keV is indeed a product of complex multilevel sublevel atomic
kinetics, which would otherwise be more difficult to calculate with more traditional (“2-
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level-based” with possible cascades) models.  This theoretical result is also supported by
the experimental observation on EBIT-II.

5. Summary and conclusions

We have developed an alternative approach to calculations of polarized line emissions.
Our method is based on collisional-radiative atomic kinetic modeling of magnetic sublevel
populations and line polarization is calculated using the properties of multipole radiation
fields. We have benchmarked our results with EBIT experiments and independent
calculations, and we have discussed in detail the 3-to-2 cascade effects on the 2-to-1 line
transitions in He-like Fe. The highlight of this technique is its capability to include
cascade and other multilevel effects in a straightforward manner.  This makes our
approach a good candidate for modeling of polarized line emissions from plasmas (laser-
produced, for example) where there are many competing feeding channels whose relative
importance will vary with changing plasma conditions.  As an application of the
technique described in this work, we have carried out a modeling study of polarization
effects in Ly-a satellite lines in laser-produced Si plasma, which is presented in another
publication [14].

Appendix

In this Appendix we derive the expressions for magnetic-sublevel autoionization rates.
We also obtain the rate coefficients for magnetic-sublevel electron capture process driven
by beam electrons. [27,28]  We do this in the context of LS coupling [29].

Autoionization

We label the ionic states with the angular momentum quantum numbers L, S, J, and M J.
Because of the spin-orbit interaction L and S are only approximate quantum numbers and
are typically adopted as state labels from the dominant pure LS-coupled angular
momentum eigenstate in the make-up of the ionic state.  The rate of autoionization is
given by the Fermi’s Golden Rule,

        )(||)(
2

..
2

ifff EEfinalHinitialErateia -¢= dr
p
h

                           (A1)

where H’ is the Hamiltonian for the electrostatic repulsion between the ion’s electrons,
rf(Ef) is the density of final states, and the delta function represents the energy
conservation requirement.  H’ is a scalar operator and does not act on electron spin, which
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leads to the following properties and selection rules: (1) the initial and final states must be
of the same parity, (2) the angular momentum quantum numbers L, S, J, and M J must be
the same for both states, and (3) the H’ matrix element in (A1) is independent of J and
M J. [29]

The energy levels in an ion are mixtures of pure LS-coupled states.  For the cases studied
here the degree of mixing is small and thus in the following we represent the final ionic
state by its dominant LS-coupled state JMJSL ¢¢¢¢ . This state has to be further coupled

with a one-electron continuum state in order to form the “final” state in Eq. (A1). The

initial (autoionizing) state can be represented in a similar way by the JJMSL
~~

 LS-

coupled state.  This state is selected as the one that satisfies the parity conservation
requirement in the autoionization process [29].  Therefore this state is not always
identical to the JLSJM  state that forms most of the initial autoionizing state.  In the

following we assume that there is a single dominant open channel associated with the

orbital angular momentum value l
~

of the continuum electron and the (initial) LS-coupled

state JJMSL
~~

 from which the largest part of the rate (A1) comes from.  The possible

values for l
~

 are severely restricted by the simultaneous requirements of: (1) parity
conservation, and (2) total angular momentum conservation with low final-state values of
J’ (typically 0 or _).  Thus, our single-open-channel approximation is valid for almost all
cases that we consider in this work.  Hence, the derivation of the magnetic-sublevel
formula only requires angular-momentum recoupling considerations.  This approximation
allows us to calculate sublevel rates from J-level rates (which we assume to be known)
using the Clebsch-Gordan coefficients instead of calculating them “from scratch.”
Ultimately, this leads to the fact that the polarization degrees of the studied dielectronic
satellite lines are rational numbers [20,22].

We introduce the following notation (only angular momentum quantum numbers are listed
explicitly):

Initial (autoionizing) state: JJMSL
~~

(A2)

Final state (in the next higher ionization stage and the ejected electron):

“uncoupled” representation - slJ mmlMJSL
~

ƒ¢¢¢¢ (A3)

“coupled” representation - )
~

(
~~

lSLJMSL J ¢¢ (A4)

The L, S, J, and MJ quantum numbers for the “coupled” final state are the same as those
for the initial (autoionizing) state due to the selection rules in (A1) described above.  The
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eigenstates in the “uncoupled” and “coupled” representations (A3) and (A4) are related
by,

slJ
mmMJ

JMSL
mmMJJ mmlMJSLlSLClSLJMSL

slJ

J

slJ

~
)

~
()

~
(

~~ ~~
ƒ¢¢¢¢¢¢=¢¢ Â

¢¢
¢¢ (A5)

Â ¢¢¢¢=ƒ¢¢¢¢ ¢¢

J

J

slJ
JMSL

J
JMSL

mmMJslJ lSLJMSLlSLCmmlMJSL
~~

~~
)

~
(

~~
)

~
(

~
(A6)

where,

( )¥¢¢¢-¢¢¢¢=¢¢ Â
¢

¢-=¢
¢¢

L

LM
JLJL

JMSL
mmMJ

L

J

slJ
MJMMMSLlSLC )

~
(

~~

      ( )( )¥-¢-¢¢¢¢¥ Â
-=

LJsLJ

L

LM
LlL MMSmMMSMLmMlL

L

~~~
2
1

~

~

      ( )JLJL MJMMMSL -¥
~~

(A7)

are the matrix elements of the unitary transformation operator associated with the change
of angular momentum representation.  These matrix elements are collections of Clebsch-
Gordan coefficients from which they inherit the unitarity property,

                                1)
~

()
~

(
~~

2~~2~~
=¢¢=¢¢ ÂÂ ¢¢

¢¢
¢¢

J

J

slJ

slJ

J

slJ

JMSL

JMSL
mmMJ

mmMJ

JMSL
mmMJ lSLClSLC (A8)

The sublevel-to-sublevel autoionization rate is given by,

          Â Â
-= ±=

ƒ¢¢¢¢¢µ¢¢¢¢Æ
l

lm m
slJJJJ

l s

mmlMJSLHJMSLMJSLLSJMA
~

~

2

2
1

~~~
)( (A9)

which is related to the rate Aa defined by,

                                       
2

)
~

(
~~~~

lSLJMSLHJMSLA JJa ¢¢¢µ (A10)

through the matrix elements defined in (A7).  The rate (A10) is independent of MJ, hence,

                    Â
¢

¢¢¢Æ=¢¢Æ=¢¢Æ=
J

Ja JSLLSJASLLSJASLLSJMAA )()()( (A11)
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The total sublevel depopulation rate due to autoionization is,

                                      ÂÂ
¢¢¢¢¢

=¢¢¢Æ=
SL

a
JSL

J AJSLLSJALSJMA )()( (A12)

which is isotropic (i.e., independent of MJ).  Sublevel-to-sublevel rates are,

                            )
~~

()( JJaJJ MJSLJMSLFAMJSLLSJMA ¢¢¢¢Æ¥=¢¢¢¢Æ (A13)

where,

                              Â Â
-= ±=

¢¢ ¢¢=¢¢¢¢Æ
l

lm m

JMSL
mmMJJJ

l s

J

slJ
lSLCMJSLJMSLF

~

~

2~~

2
1

)
~

()
~~

( (A14)

By defining,

                        Â Â
-=

¢

¢-=¢

¢¢¢¢Æ
+

=¢¢¢Æ
J

Jm

J

Jm
JJ

J J

mJSLJmSLF
J

JSLJSLFN )
~~

(
12

1
)

~~
( (A15)

we can relate the sublevel and J-level autoionization rates as,

                )(
)

~~
(

)
~~

(
)( JSLLSJA

JSLJSLFN

MJSLJMSLF
MJSLLSJMA JJ

JJ ¢¢¢Æ
¢¢¢Æ

¢¢¢¢Æ
=¢¢¢¢Æ (A16)

Electron capture driven by a unidirectional, unpolarized electron beam

The cross section for the electron capture is given by an expression analogous to (A1) and
(A9) with one important modification.  In the study of the autoionization process the
direction of propagation of the continuum electron was unimportant, while here the
electron is moving along the z-axis.  The z component of its orbital angular momentum is
zero - therefore, instead of summing over ml, we set 0=lm  in (A9) and (A7).  Also, we

average over the continuum electron’s two spin states.  Thus we can define,

=Æ¢¢¢¢ )
~~

( JJ JMSLMJSLG

       ( )( )¥¢¢¢-¢¢= ÂÂ
¢

¢-=±=

),
~

min(

),
~

min(

~
0

~
|

2

1

2
1

LL

LLM
JJ

m

MLMlLMJMMMSL
s
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          ( )( )2
2
1 |

~~~
JJJsJ MJMMMSLMMSmMMS ---¢¢¥ (A17)

and,

                       Â Â
¢

¢-=¢ -=

Æ¢¢¢¢
+¢

=Æ¢¢¢
J

Jm

J

Jm
JJ

J J

JmSLmJSLG
J

JSLJSLGN )
~~

(
12

1
)

~~
( (A18)

The sublevel and J-level electron capture cross sections are related by an expression
analogous to (A16),

            )(
)

~~
(

)
~~

(
)( LSJJSL

JSLJSLGN

JMSLMJSLG
LSJMMJSL JJ

JJ Æ¢¢¢
Æ¢¢¢

Æ¢¢¢¢
=Æ¢¢¢¢ ss (A19)

The sublevel electron capture rate coefficient is then given by sv , i.e., the average of

the electron velocity v and the electron capture cross section (A19) over the beam
distribution function fB(E).  The velocity and kinetic energy of the electron are related by,

                                                             
m

E
v

2
= (A20)

where m is electron mass.

The electron capture is a resonant process.  Thus, if we denote the kinetic energy of the
free electron needed for the capture as Er, we can write [30],

                                                       )()( rEEBE -= ds (A21)

where s(E) represents the dependence of the J-level cross section from the right-hand side
of Equation (A19) on electron energy E.  Like all J-level atomic data, this cross section is
isotropic, i.e., it is independent of the direction of the electron beam.  Therefore, the
magnitude factor B in (A21) can be obtained by evaluating the rate coefficient integral for
a normalized Maxwellian electron distribution function fMaxw(v,T),

                                                kT

mv

Maxw ev
kT

m
Tvf 222

3 2

2
4),(

-

˜
¯

ˆ
Á
Ë

Ê=
p

p (A22)
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and comparing it with the expression based on the detailed-balance principle (see below).

Thus for the rate coefficient we obtain,

                                             Ú
•

=
0

2
2
1 ),()()( dvTvfmvvTK MaxwMaxw s (A23)

After substituting from (A21) and (A22) we evaluate the integral (A23) and obtain,

                                                  kT

E

rMaxw

r

eE
mkT

m
BTK

-
=

2
3

)2(

8
)(

p

p
(A24)

This result must be the same as the Saha-equilibrium-based detailed-balance formula,

                                     kT

E

z

z
Maxw

r

eJSLLSJA
g

g

mkT
TK

-

+

¢¢¢Æ= )(
)2(2

)2(
)(

1

3

2
3

p

ph
(A25)

where,

                                                               12 += Jg z  (A26a)

and

                                                               121 +¢=+ Jg z (A26b)

are the statistical weights of the two J-levels under consideration.  The comparison
between (A24) and (A25) yields the magnitude factor B, which by substituting into (A21)
and (A19) gives the magnetic-sublevel electron capture cross section,

 ¥
Æ¢¢¢

Æ¢¢¢¢
=Æ¢¢¢¢

)
~~

(

)
~~

(
)(

JSLJSLGN

JMSLMJSLG
LSJMMJSL JJ

JJs

                                                            )()(
2 1

32

r
z

z

r

EEJSLLSJA
g

g

mE
-¢¢¢Æ¥

+

d
p h

(A27)

Finally, with (A20), (A26) and (A27), the magnetic-sublevel electron capture rate
coefficient sv  can be evaluated,
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           )(
12

12

2)
~~

(

)
~~

(
)(

3

32

JSLLSJA
J

J

EmJSLJSLGN

JMSLMJSLG
EfK

r

JJ
rB ¢¢¢Æ

+¢
+

Æ¢¢¢

Æ¢¢¢¢
=

hp
(A28)

where fB(E) is the electron beam distribution normalized according to,

                                                               Ú
•

=
0

1)( dEEf B (A29)
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TABLE I: Relative multipole intensities of electric (E1) and magnetic (M1) dipole

transitions. q and j are the polar and azimuth angles of spherical coordinates,

respectively. For q = 90°, q̂  defines the parallel and ĵ  the perpendicular polarization

states.

E1 M1

MIq MI j MI q MI j

DM=0 3 sin2q 0 0 3 sin2q

DM=+/-

1

(3/2) cos2q 3/2 3/2 (3/2) cos2q

TABLE II: Same as in Table I but for electric (E2) and magnetic (M2) quadrupole

transitions.

E2 M2

MI q MI j MI q MI j

DM=0 15 sin2q cos2q 0 0 15 sin2q cos2q

DM=+/-

1

(5/2) (2 cos2q - 1)2 (5/2) cos2q (5/2) cos2q (5/2) (2 cos2q - 1)2

DM=+/-

2

(5/2) sin2q cos2q (5/2) sin2q (5/2) sin2q (5/2) sin2q cos2q
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2

TABLE III: Electron collisional excitation cross sections 1s2 Æ 1s 2l (l=s,p) (values in

units of 10-23 cm2)

6.8 keV 8.0 keVSpectral line and its upper

level characteristics ACE Zhang ACE Zhang

M = 0 1.688 2.088 1.255 1.496z

1s 2s 3S1 M = ±1 1.688 2.067 1.255 1.480

M = 0 3.617 3.644 3.405 3.379y

1s 2p 3P1 M = ±1 5.112 5.261 3.659 3.784

M = 0 6.206 6.113 4.155 4.074

M = ±1 5.026 4.793 3.360 3.175x

1s 2p 3P2 M = ±2 1.484 1.528 0.974 0.994

M = 0 25.59 24.22 28.54 26.85w

1s 2p 1P1 M = ±1 5.982 6.204 6.732 6.876

TABLE IV: Polarization degrees of He-like Fe resonance lines for an electron beam energy
of 6.8 keV
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ACE [16] Zhang [24]Experiment

(EBIT) [11] 2-level 17-level 2-level 17-level

w (E1) + 17.0
08.056.0 +

-
+ 0.62 + 0.62 + 0.59 + 0.59

x (M2) - 05.0
02.053.0 +

-
- 0.54 - 0.54 - 0.52 - 0.52

y (E1) - 05.0
02.022.0 +

-
- 0.17 - 0.17 - 0.18 - 0.18

z (M1) - 007.0
007.0076.0 +

-
0 - 0.087 - 0.0051 - 0.080

TABLE V: Polarization degrees of He-like Fe resonance lines for an electron beam energy
of 8.0 keV

ACE [16] Zhang [24]Experiment

(EBIT) 2-level 17-level 2-level 17-level

w (E1) +0.50 ± 0.10 + 0.62 + 0.59 + 0.59 + 0.57

x (M2) -0.36 ± 0.05 - 0.55 - 0.53 - 0.52 - 0.49

y (E1) +0.02 ± 0.06 - 0.036 - 0.024 - 0.057 - 0.042

z (M1) -0.22 ± 0.07 0 - 0.15 - 0.0055 - 0.14

TABLE VI: Cascade effects on line z for an electron beam energy of 8 keV

kinetic model characteristics polarization of line z

full (17-level) model -0.15
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16 levels (1s 3p 3P2 excluded) -0.08

ground and n=2 levels only -0.08

ground and n=2 levels only, 1s 2p 3P2 excluded 0

ground and n=2 levels only, 1s 2p 3P0 excluded -0.12

16 levels (1s 2p 3P0 excluded) -0.18

5-level model -0.16
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Figure 1: Energy level structure of He- and Li-like Fe.
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Figure 2:  Comparison of magnetic sublevel cross sections from Table III for an electron
beam energy of 6.8 keV.
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Figure 3:  Same as in Fig. 2 but for an electron beam energy of 8.0 keV.
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Figure 4: Dominant feeding channels for upper level of line z (1s 2s 3S1) for the electron
beam energy of 8.0 keV.  Collisional excitation and spontaneous radiative decay rates are
in s-1.  Level populations are normalized to the population of the ground state.


