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Introduction

Low-frequency electromagnetic scattering from one or more tunnels in a lossy di-
electric half-space is considered. The tunnel radii are assumed small compared to
the wavelength of the electromagnetic field in the surrounding medium; a tunnel
can thus be modeled as a thin scatterer, described by an equivalent impedance per
unit length. We examine the normalized backscattering width for cases in which
the air-ground interface is either smooth or rough.

Tunnel in a Lossy Half-Space

The tunnel is a circular-cylindrical region of free space situated in the half-space
z < 0, of relative permittivity εr. The tunnel is parallel to the y-axis; its axis is
located at (x, z) = (0,−d) and its radius is a, which we assume to be small compared
to the wavelength in the surrounding region. By virtue of this assumption, we can
model the tunnel as a thin scatterer described by an equivalent impedance per unit
length Z ′

w. It can be shown that this equivalent impedance per unit length is

Z ′
w =

jk0Z0

π(k0a)2(εr − 1)
(1)

in which k0 is the free-space wavenumber and Z0 is the intrinsic impedance of free
space. The time dependence exp(jωt) is assumed. At the exterior wall of the tunnel,
the electric field component parallel to the tunnel axis is equal to the impedance per
unit length multiplied by the equivalent current I0 carried by the scatterer. (Because
the tunnel radius is electrically small, the axial electric field is essentially uniform
around the tunnel wall.) Our approach to the scattering problem is to determine
the field incident on the scatterer and the field excited by the (as yet unknown)
equivalent current on it; we then impose the boundary condition at the tunnel wall
to determine the equivalent current, and the solution is complete.

We assume that a perpendicularly-polarized plane electromagnetic wave is incident
on the lower half-space from the free-space region z > 0. The incident electric field
in the free-space region and the electric field transmitted into the lower medium are

Eyi(x, z) = E0e
−jk0(x sin θi−z cos θi) (2)

Eyt(x, z) = T (θi)E0e
−jk0(x sin θi−z

√
εr−sin2 θi ) (3)

with θi denoting the angle of incidence; the transmission coefficient T (θ) is

T (θ) =
2 cos θ

cos θ +
√

εr − sin2 θ
(4)



Next consider the electric field created by a filamentary current I0 at (x, z) = (0,−d).
This field can be expressed in the two regions as the Fourier integrals

Ey>(x, z) =
jk0Z0I0

2π

∫ ∞

−∞
e−jkxx−jkz0z−jkzgd dkx

j(kz0 + kzg)
(5)

Ey<(x, z) =
jk0Z0I0

2π

∫ ∞

−∞
e−jkxx

[
kzg − kz0

kzg + kz0
ejkzg(z−d) − e−jkzg|z+d|

]
dkx

2jkzg
(6)

where kz0 =
√

k2
0 − k2

x and kzg =
√

k2
0εr − k2

x. The second term in the integrand on
the RHS of eq. (6) above yields the electric field directly radiated by the filamentary
current, and the first term yields the field that is reflected back into the ground
by the air-ground interface. The electric field radiated into the free-space region,
evaluated in the far zone, is

Ey>(ρ, θ) ∼ − jk0Z0I0√
8πjk0ρ

T (θ)e−jk0ρ−jk0d
√

εr−sin2 θ (7)

We define the normalized equivalent backscattering width k0� as

k0� = lim
ρ→∞ 2πk0ρ

Sr

Si

∣∣∣∣
θ=θi

=
∣∣∣∣k0I0Z0

2E0

∣∣∣∣
2 ∣∣∣T (θi)e−jk0d

√
εr−sin2 θi

∣∣∣2 (8)

Si and Sr denote the incident and backscattered power densities respectively. Now
imposing the condition Ey(0,−d + a) = Z ′

wI0 and using eqs. (3) and (6), we obtain

I0 =
T (θi)E0e

−jk0d
√

εr−sin2 θi

jk0Z0ζn
(9)

with the normalized impedance ζn given by

ζn =
Z ′

w

jk0Z0
+

1
4j

H
(2)
0 (kga) +

1
2π

∫ ∞

−∞
e−2jkzgd

(
kzg − kz0

kzg + kz0

)
dkx

2jkzg
(10)

with kg = k0
√

εr. The normalized scattering width k0� is

k0� =
|T (θi)|4
|2ζn|2

∣∣∣e−jk0d
√

εr−sin2 θi

∣∣∣4 (11)

The relative permittivity of the ground is expressed in terms of a high-frequency
relative permittivity εr∞ and a low-frequency conductivity σ0 as [1]

εr =
(√

εr∞ +
√

σ0Z0/(jk0)
)2

(12)

Typical values of εr∞ are in the range 6 to 8, and σ0 varies upward from 10−4 S/m
for very dry soils. The value εr∞ = 7 was used in the numerical results shown
here. In Figure 1 we show the normalized scattering width of a tunnel of radius
a = 5 m at depth d = 50 m as a function of frequency for incidence angles of 0◦,
30◦, and 60◦. The low-frequency conductivity σ0 = 10−4 S/m. We note that the
normalized scattering widths tend to increase with increasing frequency, up to a
maximum value that occurs at approximately 6.25 MHz, and then drop off fairly
rapidly as the frequency increases further. The normalized scattering width also
decreases rapidly with increasing ground conductivity.
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Figure 1: Normalized scattering width vs. frequency in very dry soil (σ0 = 10−4

S/m). Depth d = 50 m and radius a = 5 m; incidence angles θi = 0◦, 30◦, and 60◦.

Rough-Surface Effects on Tunnel Backscatter

We model the interface as a random-phase screen. This model is valid only when
the standard deviation of the phase shift imposed by the screen is small, so that
our analysis is valid for a “slightly rough” air-ground interface. The interface is
now taken to be the surface z = ∆(x, y), where the random process ∆(x, y) is
homogeneous and Gaussian, with expected value E{∆(x, y)} = 0 and variance σ2.
Using this model we can show (see, e.g., [2]) that the coherent amplitude of the
electric field of a plane wave transmitted across the screen is reduced by the factor

F = e−q2(kx0,ky0)σ2/2 (13)

in which kx0 and ky0 are the transverse propagation constants of the plane wave and
the function q(·) is given for the present problem by

q(kx0, ky0) = k0�
{√

εr − sin2 θi − cos θi)
}

(14)

In the problem of backscattering from a buried target, the electromagnetic wave
passes through the rough interface twice, so that the coherent backscattered electric-
field amplitude is reduced by the factor F 2 and the backscattering width is reduced
by the factor F 4.

A portion of the equivalent current induced on the buried tunnel results from re-
flection by the air-ground interface of the field that is radiated by the tunnel. The
fact that this surface is rough is accommodated by including the following factor in
the integrand of the integral in eq. (10):

exp
[
−2k2

0σ
2�2

{√
εr − k2

x/k2
0

}]
(15)
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Figure 2: Normalized scattering width vs. σ in very dry soil (σ0 = 10−4 S/m).
Depth d = 50 m and radius a = 5 m; θi = 0◦ and f = 6.25 MHz.

Computations of the backscattering width are performed as before with the mod-
ification described above made in eq. (10) and the overall result multiplied by the
factor F 4. Figure 2 shows the normalized scattering width as a function of the stan-
dard deviation of the surface roughness for normal incidence when the frequency is
6.25 MHz. When the standard deviation reaches 4 m, the normalized backscattering
width is reduced by approximately 10 dB from its value for a smooth interface.

Concluding Remarks

We have investigated the problem of low-frequency electromagnetic backscattering
from a tunnel located in a lossy ground. The fact that the tunnel diameter is assumed
to be small in comparison to the wavelength allows us to model the tunnel as a thin
scatterer described by an equivalent impedance per unit length. We computed the
electric field backscattered from a tunnel for the case of a smooth air-ground interface
as a function of the signal frequency, tunnel depth and radius, incidence angle, and
soil properties. Rough-surface effects were included by using a random phase-screen
model for the rough interface.
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