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Abstract

It turns out that gyrokinetic theory can be geometrically formulated as special cases of a geomet-

rically generalized Vlasov-Maxwell system. It is proposed that the phase space of the spacetime is

a 7-dimensional fiber bundle P over the 4-dimensional spacetime M , and that a Poincaré-Cartan-

Einstein 1-form γ on the 7-dimensional phase space determines particles’ worldlines in the phase

space. Through Liouville 6-form Ω and fiber integral, the 1-form γ also uniquely defines a geo-

metrically generalized Vlasov-Maxwell system as a field theory for the collective electromagnetic

field. The geometric gyrokinetic theory is then developed as a special case of the geometrically

generalized Vlasov-Maxwell system. In its most general form, gyrokinetic theory is about a sym-

metry, called gyro-symmetry, for magnetized plasmas, and the 1-form γ again uniquely defines the

gyro-symmetry. The objective is to decouple the gyro-phase dynamics from the rest of particle

dynamics by finding the gyro-symmetry in γ. Compared with other methods of deriving the gy-

rokinetic equations, the advantage of the geometric approach is that it allows any approximation

based on mathematical simplification or physical intuition to be made at the 1-form level, and yet

the field theories still have the desirable exact conservation properties such as phase space volume

conservation and energy-momentum conservation if the 1-form does not depend on the spacetime

coordinate explicitly. A set of generalized gyrokinetic equations valid for the edge plasmas is

then derived using this geometric method. This formalism allows large-amplitude, time-dependent

background electromagnetic fields to be developed fully nonlinearly in addition to small-amplitude,

short-wavelength electromagnetic perturbations. The fact that we adopted the geometric method

in the present study does not necessarily imply that the major results reported here can not be

achieved using classical methods. What the geometric method offers is a systematic treatment and

simplified calculations.

PACS numbers: 52.20.Dq,52.30.Gz,45.50.-j
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I. INTRODUCTION

The kinetic equation system that is most analytically and algorithmically suitable for

studying the dynamics of edge plasma in magnetic fusion devices is the gyrokinetic equa-

tion system [1–30]. The origin of gyrokinetic theory can be traced back to the early work

of extending the Chew-Goldberger-Low theory [31] to higher orders by Frieman, Davidson,

and Langdon [1, 2]. The introduction of guiding-center coordinates by Catto [5] and the

Lie perturbation methods by Cary [32, 33] and Littlejohn [34] played important role in the

development of gyrokinetic theory. Littlejohn developed the theory of guiding center using

the non-canonical coordinate perturbation method [6, 9, 11, 12]. Lee [35] first realized that

the gyrokinetic Poisson equation is nontrivially different from the regular Poisson equation.

The most important difference is the “polarization drift density”, which surprisingly has

exactly the same form as an “extra” term discovered early by Friedman et al [36] in the

Poisson equation for implicit schemes under different context and motivation. Soon, Dubin

et al [13] applied Hamiltonian Lie perturbation method to the derivation of the gyrokinetic

equation. The Lagrangian Lie perturbation method suitable for plasma kinetic theories us-

ing guiding center coordinates was introduced by Littlejohn [14] and Boghosian [37]. Hahm

[15, 18] and Brizard [16] used the Lagrangian non-canonical perturbation method in their

derivation of gyrokinetic equations. Subsequently, many aspects [17, 19–26, 28, 29] of the

modern gyrokinetic theory, such as the concept of gyro-center gauge [24], high frequency

gyrokinetics [21, 24], and gyro-center pull-back transformation [23, 28] have been worked

out. The variational gyrokinetic formalisms were developed by Sugama [25] and Brizard

[26], and similar work were previously done by Similon [38] and Boghosian [37]. The ter-

minology of “gyrokinetic field theory” was first introduced by Sugama [25]. Gyrokinetic

theory has become the foundation for modern large scale computer simulation studies of

tokamak physics [35, 36, 39–48]. However, it is difficult to apply previously derived gy-

rokinetic system to the edge plasmas due to the unique features of their dynamics. In the

pedestal cycle for H-modes, there exists a long-term dynamics for the pedestal build-up

when the plasma is heated by neutral beam injections. The exact dynamics of the pedestal

build-up is determined by the short time-scale, nonlinearly saturated microturbulence. The

continuous build-up of pedestal eventually will drive edge localized mode (ELM) unstable

[49, 50], which is also short time-scale. The nonlinearly evolved ELM reduce the height of the
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pedestal by a large portion and the pedestal starts to grow again, which marks the beginning

of another pedestal cycle. In the present study, we develop a general gyrokinetic system,

where the long-term pedestal dynamics is described by a time-dependent background, and

the microturbulence and ELMs are described by nonlinear perturbations on the dynamic

background. Such a split between dynamic background and perturbations is also convenient

when studying the physics associated with the electric field in the radial direction Er in the

edge. Because the pedestal width Lp is much smaller than the minor radius, the Er devel-

oped is much bigger than that in the core region. Since the pedestal is time-dependent, so

is Er. It is therefore necessary to allow a large background electric field E0(t) to nonlinearly

evolve in the gyrokinetic equation system. The background magnetic field B0(t) is allowed

to be time-dependent as well, which will conveniently include the change of magnetic equi-

librium during the pedestal cycle or the ramp-up phase of the toroidal current. In previous

gyrokinetic systems, the nonlinear dynamics of the background electromagnetic field was

not treated.

The most important new feature of the present study is that a geometric method is

adopted. We first developed a geometrically generalized Vlasov-Maxwell system which is

valid for any particle-field interaction model and applies to a wide range of kinetic systems

such as gyrokinetic models for magnetized plasmas and kinetic descriptions for high intensity

charged particle beams. We propose that the phase space of the spacetime is a 7-dimensional

fiber bundle P over the 4-dimensional spacetime M , and that a Poincaré-Cartan-Einstein

1-form γ on the 7D phase space determines particles’ worldlines in the phase space. Through

the mathematical constructions of Liouville 6-form Ω and fiber integral, the 1-form γ also

elegantly and uniquely defines the geometrically generalized Vlasov-Maxwell system as a

field theory for the collective electromagnetic field. The geometric gyrokinetic theory is

then developed as a special case of the geometrically generalized Vlasov-Maxwell system.

In its most general form, gyrokinetic theory is about a symmetry, called gyro-symmetry, for

magnetized plasmas. Our objective is to decouple the gyro-phase dynamics from the rest of

particle dynamics by finding the gyro-symmetry. Obviously, this is fundamentally different

from the conventional gyrokinetic concept of “averaging out” the “fast gyro-motion”. This

objective is accomplished by asymptotically constructing a good coordinate system, which

is of course a nontrivial task. The fact that we adopted the geometric method in the present

study does not necessarily imply that the major results reported here can not be achieved
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using classical methods. What the geometric method offers is a systematic treatment and

simplified calculations. Indeed, the perturbative calculation is greatly simplified by using

the Lie coordinate perturbation method [11, 32, 33] enabled by the geometric nature of the

phase space dynamics. Compared with other methods of deriving the gyrokinetic equations,

the advantage of the geometric approach is that it allows any approximation based on

mathematical simplification or physical intuition to be made at the 1-form level, and yet

the equation system still has the desirable exact conservation properties such as phase space

volume conservation and energy-momentum conservation.

II. GEOMETRICALLY GENERALIZED VLASOV-MAXWELL EQUATIONS

Because it turns out that the geometry of the Vlasov-Maxwell equations is best manifested

in the spacetime of relativity, we will start from the phase space for spacetime. The phase

space where the Vlasov-Maxwell equations reside is a 7-dimensional manifold

P = {(x, p) | x ∈M, p ∈ T ∗
xM, g−1(p, p) = −m2c2} , (1)

where M is the 4-dimensional spacetime, T ∗M is the 8-dimensional cotangent bundle of M ,

and g−1 is the inverse of the metric tensor of M defined by

(g−1)αβgβγ = δα
γ . (2)

The phase space is a fiber bundle over spacetime M (see Fig. 1),

π : P −→M . (3)

The worldlines of particles on P are determined by a given Poincaré-Cartan-Einstein 1-form

γ on P through the Hamilton’s equation

iτdγ = 0 , (4)

where τ is a vector field, whose integrals are particles’ worldlines on the 7D phase space P

(including time). Here dγ is the exterior derivative of γ and iτdγ is the inner product between
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FIG. 1: Phase space and fiber integral.

dγ and τ. The collective magnetic field is given by the potential 1-form A (normalized by

c/e) on M. In a Cartesian inertial coordinate system xµ (µ = 0, 1, 2, 3),

x0 = ct , A0 = −φ , and A = (−φ,A) , (5)

where φ and A are the scalar and vector potential of the electromagnetic field. The inter-

action between particles and the field is completely determined by the dependence of γ on

A.

Very elegantly, the Poincaré-Cartan-Einstein 1-form γ also geometrically defines a field

theory for the interaction between particles and the collective electromagnetic field. Define

the Liouville 6-form Ω on the 7D phase space P as

Ω = −
1

3!
dγ ∧ dγ ∧ dγ . (6)

In the 7D phase space, the Liouville Theorem of phase space volume conservation is replaced

by

LτΩ = iτdΩ + d (iτΩ) = 0 , (7)

where Lτ is the Lie derivative along the vector field τ of a particle’s worldline on P. The

geometrically generalized Vlasov equation for the particle distribution function f in the
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phase space is

Lτf = iτdf = 0 . (8)

A simple but important property for f and Ω is

Lτ (fΩ) = (Lτf) Ω + (LτΩ) f = 0 , (9)

from which we can derive the conservative version of the Vlasov equation as

d [iτf (Ω ∧ dt)] = 0 . (10)

The dynamics of the collective electromagnetic field A is described by the classical field

theory specified by the action

S =

∫

x

L , (11)

where the Lagrangian density L is given by

L(x) = −
1

2
dA ∧ ∗dA+ 4π

∫

π−1(x)

fΩ ∧ γ . (12)

Here
∫

π−1(x)
is the fiber integral [51] at the point x on the spacetime M (see Fig. 1), and ∗α is

the Hodge-dual of α on M. We have normalized γ by m, A by mc/e, and φ by m/e. . These

normalizations will be used thereafter, unless it is explicitly stated otherwise. To be more

general, the 1-form γ is allowed to be a function in a different coordinate for M, γ = γ(X) .

Here X = g(x) is a different coordinate system related to x by the transformation gThe field

equation for A is obtained through the variational procedure,

δS

δA
= E (L) = 0 , (13)

where δS/δA is the variational derivative and E (L) is the Euler derivative. Carrying out

the variational derivative, we have

d ∗ dA = 4π ∗ j , (14)

jα(x) =

∫

x′

∫

π−1(x′)

fΩ ∧
δγ(X)

δAα(x)
, (α = 0, 1, 2, 3) , (15)
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δγ(X)

δAα(x)
= δ [x−X(x′)]

{
∂γ(X)

∂Aα(X)
−

∂

∂xβ

[
∂γ(X)

∂Aα,β(X)

]}
, (α, β = 0, 1, 2, 3) . (16)

Here Aα,β(x) represents ∂Aα(x)/∂xβ . When evaluating the 4-current in Eq. (15) by variation

with respect to Aα, the term fΩ is kept fixed. This is because the action in Eq. (11)

has a mixed representation. The field is Eulerian and the particles are Lagrangian, which

is the same as Low’s first variational principle for the Vlasov-Maxwell system [52]. The

action principle given by Eqs. (11)-(13) can be transformed into pure Eulerian through the

reduction associated with the particle re-labeling symmetry. For the current purpose of

deriving governing equations which adopt various physical assumptions and mathematical

simplifications, but still possess good conservation properties, the action principle given by

Eqs. (11)-(13) with mixed representation is easier to work with. The 4-current jα(x) is

therefore

jα(x) =

∫

x′

∫

π−1(x′)

δ [x−X(x′)] fΩ ∧
∂γ(X)

∂Aα(X)

−
∂

∂xβ

[∫

x′

∫

π−1(x′)

δ [x−X(x′)] fΩ ∧
∂γ(X)

∂Aα,β(X)

]
, (α = 0, 1, 2, 3) . (17)

The second term in Eq. (17) is the 4-magnetization-current, whose 0-th component is the

polarization density. If X is same as x, then Eq. (17) reduces to

jα(x) =

∫

π−1(x)

fΩ ∧
∂γ(x)

∂Aα(x)
−

∂

∂xβ

[∫

π−1(x)

fΩ ∧
∂γ(x)

∂Aα,β(x)

]
, (α = 0, 1, 2, 3) .

For example, for a classical particle interacting with the field through the Lorentz force,

we can construct γ as follows. First, take the only two geometric objects related to the

dynamics of charged particles, the momentum 1-form p and the potential 1-form A on M ,

then perform the only nontrivial operation, i.e., addition with the right units, to let particles

interact with fields,

γ̂ = A + p . (18)

γ̂ is what we call Poincaré-Cartan-Einstein 1-form on the spacetime M. The Poincaré-

Cartan-Einstein 1-form on the phase space P is obtained by pulling back γ̂,

γ = π∗γ̂ . (19)

8



Eqs. (15) and (17) reduce to

∗j(x) =

∫

π−1(x)

fΩ , (20)

which implies that the “velocity integrals” in kinetic theory are geometrically fiber integrals.

The fact that ∗j(x) is the conventional 3-form flux can be verified by expressing Ω in a

coordinate system composed of inertial coordinates xµ (µ = 0, 1, 2, 3) for M and three

corresponding coordinate pi with i = 1, 2, and 3 for TxM. In this coordinate system we have

the following expressions in the phase space P ,

p0 = −
√
m2c2 + p2 , (21)

dγ =
e

c
Ai,jdx

j ∧ dxi + dpi ∧ dx
i − eφ,jdx

j ∧ dt− c
∂

∂pi

√
m2c2 + p2dpi ∧ dt , (22)

Ω =

(
dx1 ∧ dx2 ∧ dx3 −

p1

mγr

dt ∧ dx2 ∧ dx3

−
p2

mγr

dx1 ∧ dt ∧ dx3 −
p3

mγr

dx1 ∧ dx2 ∧ dt

)
∧ dp1 ∧ dp2 ∧ dp3 , (23)

where terms in Eq. (23) that vanish upon fiber integration have been dropped, and

γr =

√
1 +

p2

m2c2
. (24)

Overall, the Vlasov-Maxwell equations for classical particles interacting with filed through

Lorentz force on the 7D phase space P can be geometrically written as

df(τ) = 0, iτdγ = 0 , and d ∗ dA = 4π

∫

π−1(x)

fΩ . (25)

As discussed before, the 1-form γ in the geometrically generalized Vlasov-Maxwell system

is completely general. It can take any form based on physical intuition and mathematical

simplification. For particles interact with field through mechanism other than Lorentz force,

γ will assume different form from Eq. (19). For example, a neutron or a charge-neutral virus

interacts with magnetic field through their magnetic moments. In the context of present

study, the particles of interest are the gyrocenters, whose 1-form is different from Eq. (19),

but was derived from Eq. (19) under certain approximations and coordinate transformations.
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One prominent feature in the 1-form for the gyrocenter that does not exist in Eq. (19) is

the dependence of γ on the derivatives of A, which according to Eq. (17) will induces 4-

magnetization-current, whose 0-th component is a polarization density term in the Poisson

equation. It is indeed a new revelation that the well-known polarization density in the

gyrokinetic theory is fundamentally the consequence of the dependence of the gyrocenter

1-form on the field strength, i.e., the first derivatives of A. In the next section, we will

systematically derive the gyrocenter 1-form.

III. GYRO-SYMMETRY AND LIE COORDINATE PERTURBATION METHOD

We start from the Poincaré-Cartan-Einstein 1-form for a classical, non-relativistic charged

particle interacting with electromagnetic field through Lorentz force

γ = A + p = (A + v) · dx −

[
v2

2
+ φ

]
dt . (26)

Here, the bold mathematical symbols A and p represent the i = 1, 2, 3 components of the

1-forms A and p, dx represents dxi (i = 1, 2, 3), and (A+v) ·dx is just a shorthand notation

for
∑

i=1,2,3(Ai + vi)dx
i. Particles’ dynamics is determined by Hamilton’s equation (4).

Gyrokinetic theory is about a symmetry called gyro-symmetry. A symmetry vector field

η (infinitesimal generator) of γ is defined to be a vector field that satisfies

Lηγ = ds (27)

for some function s on the phase space, where Lη is the Lie derivative along η. Vector field

η generates a 1-parameter symmetry group for γ. The symmetry for γ that we are interested

is an approximate one. It is an exact symmetry when the electromagnetic fields are constant

in spacetime, and in this case it is given by

η = vx

(
1

B

∂

∂x
+

∂

∂vy

)
+ vy

(
1

B

∂

∂y
−

∂

∂vx

)
. (28)

For any symmetry vector field η, we can apply Cartan’s formula Lηγ = d(iηγ) + iηdγ to

obtain

d(iηγ) + iηdγ = ds . (29)
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Taking the inner product between the vector field τ of a worldline and Eq. (29) gives

d(γ · η) · τ = ds · τ , (30)

which implies that γ · η − s is an invariant. This is the well-known Noether’s theorem

which links symmetries and invariants. Applying Noether’s theorem, we can verify that the

corresponding invariant is the expected magnetic moment

µ =
v2

x + v2
y

2B
, (31)

as expected. Eq. (28) indicates that the gyro-symmetry η is neither a pure rotation in the

momentum space, nor a pure rotation in the configuration space. It is desirable to construct

a new coordinate such that η is a coordinate base

η =
∂

∂θ
, (32)

where θ is the gyrophase coordinate. When the fields are not constant in spacetime, the

gyro-symmetry η in Eq. (28) is broken. We then assume the spacetime inhomogeneity is

weak and seek an asymptotic symmetry. To achieve this goal, we first construct a non-

canonical phase space coordinate system Z̄ = (X̄, ū, w̄, θ̄) where γ can be expanded into an

asymptotic series

γ = γ̄0 + γ̄1 + γ̄2 + ... , (33)

where γ̄1 ∼ εγ̄0, γ̄2 ∼ εγ̄1, and ε� 1. By the construction of Z̄, γ̄0 admits the gyro-symmetry

η = ∂/∂θ̄, but γ̄1 and γ̄2 do not necessarily. Z̄ is therefore called the zeroth order gyrocenter

coordinate. Then, a coordinate perturbation transformation g : Z̄ → Z = g(Z̄) is introduced

such that in the new coordinates Z = (X, u, w, θ), γ1 and/or γ2 admit the gyro-symmetry

η = ∂/∂θ. In the present study, we seek a stronger and sufficient symmetry condition

∂γ/∂θ = 0 .

Naturally, Z is the called the first and/or second-order gyrocenter coordinate. The small

parameter ε is a measure of the weakness of spacetime inhomogeneity of the fields. The
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coordinate perturbation procedure itself shows that the most relaxed conditions for the

existence of an asymptotic gyro-symmetry is

E≡ E0 + E1, B ≡ B0 + B1, (34)

E0 ∼
v × B0

c
, E1 ∼ ε1

v × B0

c
, B1 ∼ ε1 B0, (35)

(
|ρ|

∇E0

E0

,
1

ΩE0

∂E0

∂t

)
∼

(
|ρ|

∇B0

B0

,
1

ΩB0

∂B0

∂t

)
∼ ε0 , (36)

(
|ρ|

∇E1

E1
,

1

ΩE1

∂E1

∂t

)
∼

(
|ρ|

∇B1

B1
,

1

ΩB1

∂B1

∂t

)
∼ 1 . (37)

Here the fields were split into two parts. The leading order fields (E0,B0) are the time-

dependent background fields with long spacetime scale length compared with the spacetime

gyroradius ρ = (ρ, 1/Ω). The small parameter ε0 measures the weak spacetime inhomo-

geneities of the background fields. For edge plasmas, the background electric field can be

large. The order of E0 implies that the potential drop of background field can be comparable

to the thermal energy of the particles, i.e., eE0 · ρ ∼1. The next order fields (E1,B1) are the

perturbed parts with spacetime scale length comparable to the spacetime gyroradius. The

perturbation amplitude is measured by the small parameter ε1. Both ε0 and ε1 measure the

weak spacetime inhomogeneities of the overall fields. In general, we assume ε ∼ ε0 ∼ ε1.

The coordinate perturbation method adopted here belongs to the class of perturba-

tion techniques generally referred as the Lie perturbation method [11, 32, 33], where the

coordinate transformation g is a continuous group generated by a vector field G with

g : z 7−→ Z = g(z, ε) and G = dg/dε|ε=0. Under the coordinate transformation g, γ is

pulled-back.

Γ(Z) = g−1∗γ(z) = γ
[
g−1(Z)

]
= γ(Z) − LG(Z)γ(Z) +O(ε2)

= γ(Z) − iG(Z)dγ(Z) − d [γ ·G(Z)] +O(ε2) , (38)

where use has been made of −G = dg−1/dε|ε=0. In our case, γ is an asymptotic series as in
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Eq. (33). Let Z = g1(z, ε) and we have

Γ(Z) = Γ0(Z) + Γ1(Z) +O(ε2) , (39)

Γ0(Z) = γ0(Z) , (40)

Γ1(Z) = γ1(Z) − iG1(Z)dγ0(Z) − d [γ0 ·G1(Z)] . (41)

By using another coordinate transformation, the perturbation procedure can be straightfor-

wardly carried out to the second order. Let Z=g2(g1(z, ε), δ) and δ ∼ ε2. The second order

transformed 1-form is

Γ2(Z) = γ2(Z) − LG1(Z)γ1(Z) +

(
1

2
L2

G1(Z) − LG2(Z)

)
γ0(Z) , (42)

where G2 = dg2/dδ|δ=0 .

IV. GYROCENTER COORDINATES

In order to construct the zeroth order gyrocenter coordinate Z̄ = (X̄, ū, w̄, θ̄), we first

define two vector fields on spacetime M,

D(y) ≡
E0(y) × B0(y)

[B0(y)]
2 , b(y) ≡

B0(y)

B0(y)
, (43)

where y ∈ M . To decompose particle’s velocity at the gyrocenter, it is necessary to define,

at every y, the following vector fields which also depend on vx, particle’s velocity at another

spacetime position x ∈M ,

u(y,vx)b(y) ≡ [vx − D(y)] · b(y) b(y) , (44)

w(y,vx)c(y,vx) ≡ [vx − D(y)] × b(y) × b(y) , (45)

c(y,vx) · c(y,vx) = 1 , (46)

a(y,vx) ≡ b(y) × c(y,vx) , (47)

ρ(y,vx) ≡
b(y) × [vx(y) − D(y)]

B0(y)
. (48)
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With these definitions, velocity vx at x has the following partition at y

vx(y) ≡ D(y) + u(y,vx)b(y) + w(y,vx)c(y,vx) . (49)

The zeroth order gyrocenter coordinate transformation

g0 : z = (x,v, t) 7→ Z̄ = (X̄, ū, w̄, θ̄, t) (50)

is given by

x ≡ X̄ + ρ(X̄,v) , ū ≡ u(X̄,v) , w̄ ≡ w(X̄,v) , sin θ̄ ≡ −c(X̄) · e1(X̄) , t ≡ t , (51)

where e1(X̄) is an arbitrary unit vector field in the perpendicular direction, and it can

depend on t as well. Using the Z̄ coordinate, vx can be expressed as

vx = D(X̄) + ūb(X̄) + w̄c(X̄) . (52)

Substituting Eqs. (51) and (52) into Eq. (26), and expanding terms using the ordering in

Eqs. (34)-(37), we have

γ = γ̄0 + γ̄1 + O(ε2) , (53)

γ̄0 = (A0 + ūb + D) · dX̄ + µ̄dθ̄ −

(
ū2 + w̄2 +D2

2
+ φ0

)
dt , (54)

γ̄1 =

[
w̄

B0
∇a ·

(
ūb +

w̄c

2

)
+

1

2
ρ · ∇B0 × ρ−

w̄

B0
∇D · a + A1(X̄ + ρ)

]
· dX̄

+

[
−
w̄3

2B3
0

a · ∇B0 · b+
w̄

B0

A1(X̄ + ρ) · c

]
dθ̄ +

[
1

w̄
A1(X̄ + ρ) · a

]
dµ̄

−

[
φ1(X̄ + ρ) + ρ ·

∂D

∂t
−

1

2
ρ · ∇E0 · ρ−

(
ūb +

w̄c

2

)
·
w̄

B0

∂a

∂t

]
dt . (55)

Here, A0 and φ0 are the leading order vector and scalar potentials corresponding to the

leading order E0 and B0, µ̄ = w̄2/2B0, and every field is evaluated at Z̄ and can depend

on t. Exact terms of the form dα have been discarded because of their insignificance in

Hamilton’s equation (4). It is obvious that ∂γ̄0/∂θ̄ = 0, but ∂γ̄1/∂θ̄ 6= 0. We now introduce
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a coordinate perturbation to the zeroth order gyrocenter coordinates Z̄,

Z = g1(Z̄, ε),
dg1

dε
|ε=0 = G1(Z̄) , (56)

such that ∂γ1/∂θ = 0 in the first order gyrocenter coordinates Z = (X, u, µ, θ). Considering

the fact that an arbitrary exact term is can be added to γ1, we write

γ1(Z) = γ̄1(Z) − iG1(Z)dγ0(Z) + dS1(Z) , (57)

which expands into

γ1(Z) =

[
G1X × B† −G1ub + ∇S1 +

w

B0

∇a ·
(
ub +

wc

2

)
+

1

2
ρ · ∇B0 × ρ

−
w

B0

∇D · a + A1(X + ρ)

]
· dX +

[
G1X · b +

∂S1

∂u

]
du+

[
G1θ +

∂S1

∂µ
+

+
1

w
A1(X + ρ) · a

]
dw +

[
−G1µ +

∂S1

∂θ
−

w3

2B3
0

a · ∇B0 · b

+
w

B0

A1(X + ρ) · c

]
dθ +

[
− E† · G1X + uG1u +B0G1µ +

∂S1

∂t
− φ1(X + ρ)

−ρ ·
∂D

∂t
+

1

2
ρ · ∇E0 · ρ +

(
ub +

wc

2

)
·
w

B0

∂a

∂t

]
dt . (58)

In Eq. (58), we have chosen not to transform the time, i.e., Gt = 0. All the other components

of G1 and S1 are determined from the requirement that ∂γ1/∂θ = 0. The results are listed

as follows without giving the details of the derivation,

G1X = −
∂S1

∂u

(
b+

B
†
⊥

B†
‖

)
+

w2

2B2
0B

†
‖

aa · ∇B0 +
wu

B0B
†
‖

(∇a · b) × b

−
w

B0B
†
‖

(∇D · a) × b +
∇S1 + A1(X + ρ)

B†
‖

× b (59)

G1u =
(
B

†
⊥ × b

)
· G1X

w2

2B2
0

a · ∇B0 · c +
wu

B0
b · ∇a · b

−
w

B0
b · ∇D · a −b· [∇S1 + A1(X + ρ)] , (60)

G1µ =
∂S1

∂θ
−

w2

2B3
0

a · ∇B0·b +
w

B0
c · A1(X + ρ) , (61)

G1θ = −
∂S1

∂µ
−

1

w
a · A1(X + ρ) . (62)
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The determining equation for S1 is

∂S1

∂t
+

(
E

†
0 × b + B

†
⊥u

B†
‖

+ ub

)
· ∇S1 +

(
E†

0‖ +
E†

0‖ · B
†
⊥

B†
‖

)
∂S1

∂u
+B0

∂S1

∂θ
=

(
E

†
0⊥ − B

†
⊥ × ub

)
·

[
w2

2B3
0

ãa · ∇B0 +
wu

B2
0

(∇a · b) × b −
w

B2
0

(∇D · a)×b

]

−
w2u

2B2
0

∇B0:c̃a −
wu2

B0

b · ∇a · b +
wu

B0

b · ∇D · a +
w3

2B2
0

a · ∇B0 · b

+
w

B0
a·
∂D

∂t
−

w2

2B2
0

∇E0:ãa +
uw

B0
a·
∂b

∂t
+ ψ̃1 . (63)

With G1 and S1 taking the forms in Eqs. (59)-(63), the θ-dependence in γ1 is removed,

γ (Z) = γ0(Z) + γ1(Z) , (64)

γ0 = (A0 + ub + D) · dX + µdθ −

(
u2 + w2 +D2

2
+ φ0

)
dt , (65)

γ1(Z) = −µR · dX −H1dt , (66)

H1 =
(
E

†
0⊥ − B

†
⊥ × ub

)
·

w2

4B2
0B

†
‖

∇B0 +
w2u

4B0
b · ∇ × b

−
w2

4B2
0

(∇ ·E0 − bb : ∇E0) −
w2

2B0
R0 + 〈ψ1〉 , (67)

R ≡ ∇c · a , R0 ≡ −
∂c

∂t
· a , (68)

ψ1 ≡ φ1(X + ρ) −

(
E

†
0 × b + B

†
⊥u

B†
‖

+ ub+wc

)
· A1(X + ρ), (69)

〈α〉 ≡
1

2π

∫ 2π

0

αdθ , α̃ ≡ α− 〈α〉 , (70)

φ†
0 ≡ φ0 + µB0 +

D2

2
, A† ≡ A0 + ub + D , (71)

B† ≡ ∇× A†, B†
‖ ≡ B† · b , (72)

E
†
0 ≡ −∇φ†

0 −
∂A†

∂t
= E0 −∇

[
µB0 +

D2

2

]
− u

∂b

∂t
−
∂D

∂t
. (73)

The perturbation procedure has been carried out to the second order by introducing
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another coordinate transformation g2 : g1(Z̄) → Z = g2 ◦ g1(Z̄). The results up to O(ε2
1) are

γ (Z) = γ0(Z) + γ1(Z) + γ1(Z) , (74)

γ2 = −〈ψ2〉 dt , (75)

ψ2 ≡
1

2
E0⊥ ·

[(
G

†
1 × B1

)
× b

]
−

1

2
(ub + wc) ·

(
G

†
1 × B1

)
+ G

†
1 · E

†
1 , (76)

G
†
1 ≡ G1x+G1w

∂

∂µ
+G1θ

∂

∂θ
, (77)

E
†
1 ≡ −∇φ1 −

∂A1

∂t
−∇〈ψ1〉 . (78)

Given γ, a particle’s trajectory (worldline) on the phase space is uniquely determined

by Eq. (4) through its tangent vector τ . The gyrocenter motion equation in terms of Z =

(X, u, µ, θ) can be obtained through

dX

dt
=
τX
τt

,
du

dt
=
τu
τt
,
dw

dt
=
τw
τt

,
dθ

dt
=
τθ
τt
. (79)

The explicit expressions for gyrocenter dynamics are

dX

dt
=

B†

B†
‖

(u+
µ

2
b · ∇ × b) −

b × E†

b · B†
, (80)

du

dt
=

B† · E†

B†
‖

, (81)

dθ

dt
= B0 + R ·

dX

dt
− R0 +

E0 · ∇B0

B2
0

+
u

2
b · ∇ × b

−
1

2B0
[∇ · E0 − bb : ∇E0] +

∂

∂µ
〈ψ1 + ψ2〉 , (82)

dµ

dt
= 0 , µ ≡

w2

2B0
, (83)

E† ≡ E
†
0 −∇〈ψ1 + ψ2〉 . (84)

In the right hand sides of Eqs. (80)-(84), all the fields are evaluated at the gyrocenter coor-

dinate Z and can depend on t. All the terms on the right hand sides of Eqs. (80)-(84) are

gyrophase independent. The spirit of the general gyrokinetic theory is to decouple the gyro-

phase dynamics from the rest of particle dynamics by finding the gyro-symmetry, instead of

“averaging out” the “fast gyro-motion”. This objective was accomplished by asymptotically
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constructing a good coordinate system using the Lie coordinate perturbation method en-

abled by the geometric nature of the phase space dynamics. Note that in Eq. (80) the usual

curvature drift is hidden in the first term on the right hand side, and the second term is the

Banõs drift [53]. The last term is the generalized E×B drift that contains the usual gradi-

ent B drift along with several other “cross-B” drifts, such as that induced by the spacetime

inhomogeneities of E0. Compared with previous gyrokinetic theories, the time-dependence

of the background magnetic field B0 and the spacetime-dependence of the background E0

field and the associated E × B flow are self-consistently and systematically included in our

analysis. These factors are treated on equal footing with the spatial inhomogeneity of the

background magnetic field in the perturbative procedure. The spacetime inhomogeneities

associated with the background E × B flow have important physical consequences. For ex-

ample, the large scale length shear flow can effectively suppress the micro-turbulence and

result in better transport properties in H-modes. This effect enters into the gyrokinetic

equation system through the spatial derivative of D ≡ E0 × B0/B
2
0 in Eq. (73).

It is necessary to note that there are freedoms in defining the gyrocenter coordinates.

For example, in Ref. [12], a different definition of the zeroth order gyrocenter coordinates

are used, which results in more terms in the expression for γ̄1. In addition, the requirement

∂γ/∂θ = 0 does not uniquely determine the coordinate perturbation G and the gauge

function S, and therefore the higher order gyrocenter coordinates. We will call the freedoms

in choosing gyrocenter coordinates gyro-center gauges. One special gyro-center gauge is the

so-called gyro-gauge, a gauge group associated how the gyrophase θ is measured. This gauge

group of transformation is given by

R −→ R′ + ∇δ(X) , θ −→ θ′ + δ(X) , (85)

where R = (R0,R), X = (t,X), ∇ = (−∂/∂t,∇), and δ(X) is an arbitrary scalar function

on M. The γ in Eq. (64) is invariant under this group of transformation

V. GYROKINETIC SYSTEMS

After obtaining the expression of γ in Eq. (74) for gyrocenter, we can apply the geometric

field theory developed in Sec. (II) to derive the corresponding geometric gyrokinetic theory.
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The gyrokinetic equation is given by Eq. (8), which is explicitly

dZj

dt

∂F

∂Zj

= 0 , (0 ≤ j ≤ 6) . (86)

Here, F is the particle distribution function in the gyrocenter coordinates Z = (t,X, u, µ, θ).

Let

F = 〈F 〉 + F̃ , (87)

where 〈F 〉 and F̃ are the gyrophase independent and dependent parts of F. Because

∂

∂θ

(
dZ

dt

)
= 0 , (88)

the gyrokinetic equation can be easily split into gyrophase dependent and independent parts

as well

∂ 〈F 〉

∂t
+
dX

dt
· ∇X 〈F 〉 +

du

dt

∂ 〈F 〉

∂u
= 0 , (89)

∂F̃

∂t
+
dX

dt
· ∇XF̃ +

du

dt

∂F̃

∂u
+
dθ

dt

∂F̃

∂θ
= 0 , (90)

where dX/dt, du/dt, and dθ/dt are given by Eqs. (80)-(82). The gyrophase dependent F̃

can be decoupled from the system by setting F̃ = 0, and Eqs. (89) and (14) form a close

system for 〈F 〉 and A = (−φ,A). However F̃ = 0 does not imply that f̃ = 0. The distribution

function f in the laboratory coordinates becomes gyrophase dependent through the pullback

transformation [28]. Finally, the gyrokinetic system is completed by the Maxwell’s equation

and the 4-current given by Eqs. (14) and (17). We emphasize that by using the geometric

field theory developed in Sec. II, the Maxwell’s equation and the 4-current are uniquely

determined by the 1-form γ as well.

The expression of γ in Eq. (74) is rather complicated. It contains all the physical aspects

of the gyrocenter dynamics in an inhomogeneous, time-dependent electromagnetic fields with

long and short spacetime wavelength. For studies focusing on different physics phenomena,

we can selectively adopting different terms in γ to investigate the corresponding physics. The

value of the geometric field theory developed here is that it allow arbitrary approximations

and simplifications to be made at the level of the 1-form, and the resulting kinetic system

still posses the good geometric properties, such as the conservation of phase space volume
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and energy-momentum if the 1-form does not depend on the spacetime coordinate explicitly.

To look at several special gyrokinetic systems, we pick

γ = A† · dX + µdθ −Hdt (91)

H =
u2 + w2 +D2

2
+ φ0 + 〈ψ1 + ψ2〉 (92)

as a model for gyrocenters. From Eq. (6), the Liouville 6-form corresponding to Eq. (91) is

Ω = B†
‖dx

1 ∧ dx2 ∧ dx3 ∧ du ∧ dµ ∧ dθ

+
[
A†

j,tbi − A†
i,ju− bjH,i

]
dt ∧ dxj ∧ dxi ∧ du ∧ dµ ∧ dθ

+
[
A†

i,jH,l + A†
i,jA

†
l,t

]
dxj ∧ dxi ∧ dxl ∧ dt ∧ dµ ∧ dθ (93)

− A†
i,jblH,µdx

j ∧ dxi ∧ dxl ∧ dt ∧ du ∧ dµ .

The conservative form of the gyrokinetic equation is obtained from the general Vlasov equa-

tion in conservative form Eq. (10). It can be explicitly written as

∂

∂t

[
B†

‖ 〈F 〉
]

+ ∇X ·
[
B†

‖ 〈F 〉 Ẋ
]

+
∂

∂u

[
B†

‖ 〈F 〉 u̇
]

= 0 , (94)

where B†
‖ is allowed to depend on t. Because γ in Eq. (91) does not indeed depend on the

spacetime explicitly, the energy-momentum of the system is conserved. We study three

special cases of the gyrokinetic systems by further simplifying the γ in Eq. (91).

A. Gyrokinetic theory without FLR effect – drift kinetic theory

For physical processes where the finite Lamour radius effect is not important, we can

ignore all the first order terms related to (φ1,A1) in Eq. (91) and identify particle positions

with gyrocenters. This is the drift kinetic limit of the gyrokinetic theory. As a model, we
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will also ignore the background E × B flow in this analysis. Let

γ = A† · dX + µdθ −Hdt , (95)

H =
u2 + w2

2
+ φ0 . (96)

B† ≡ ∇× (A0 + ub) , B†
‖ ≡ B† · b , (97)

E
†
0 ≡ E0 −∇ [µB0] − u

∂b

∂t
. (98)

Using the general 4-current expression in Eq. (17) and the Liouville 6-form in Eq. (93) , we

have

j = jg + jM , (99)

jg =

∫

x′

δ (x− x′)

∫

π−1(x′)

qFΩ ∧
∂γ(x′)

∂Ai(x)
=

∫
qF

(
E† × b + B†u

B†
‖

)
B†

‖du ∧ dµ ∧ dθ .

(100)

jM = −
∂

∂xj

[∫

x′

δ (x− x′)

∫

π−1(x′)

qFΩ ∧
∂γ(x′)

∂Ai,j(x)

]

= −∇×

[∫
qF

(
µb −

uE† × b

BB†
‖

−
u2B

†
⊥

BB†
‖

)
B†

‖du ∧ dµ ∧ dθ

]
. (101)

Here jg is the current associated with the gyrocenter drift and jM is the diamagnetic current.

It is interesting to note that he current jg contains all the particle drift motion except for the

Banõs drift. The first term in jM is the usual diamagnetic current, and the second and third

terms are additional diamagnetic current related to inhomogeneities of the electromagnetic

field. More importantly, the current is self-consistently derived from the first principle. From

∂γ

∂φ0
= −dt , (102)

the density n is simply,

n(x) =

∫
FB†

‖du ∧ dµ ∧ dθ . (103)

We emphasize that the current and density as functions of the gyrocenter distribution func-

tion are self-consistently derived from the geometrically generalized Vlasov-Maxwell equa-

tions. Previously such expressions are obtained using the pullback transformation [28].
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Overall the drift equation and the Maxwell equation can be explicitly written out as

∂F

∂t
+
dX

dt
· ∇XF +

du

dt

∂F

∂u
= 0 , (104)

dX

dt
=

B†

B†
‖

(u+
µ

2
b · ∇ × b) −

b × E†

b · B†
, (105)

du

dt
=

B† · E†

B†
‖

, (106)

A† ≡ A0 + ub, B† ≡ ∇× A†, B†
‖ ≡ B† · b , (107)

E† ≡ −∇φ†
0 −

∂A†

∂t
= E0 −∇ [µB0] − u

∂b

∂t
, (108)

∇2A0 = −
∑

species

4π

c
j , (109)

∇2φ0 = −
∑

species

4πqn , (110)

where j and n are given by Eqs. (99) and (103).

B. Gyrokinetic theory in a time-independent background

The next example that we consider is the gyrokinetic system for electrostatic perturbation

in a given time-independent, inhomogeneous background (B0, E0). We select

γ = A† · dX + µdθ −Hdt , (111)

H =
u2 + w2 +D2

2
+ φ0 + 〈ψ1 + ψ2〉 , (112)

φ†
0 ≡ φ0 + µB0 +

D2

2
, A† ≡ A0 + ub + D , (113)

〈ψ1〉 = 〈φ1(X + ρ)〉 , (114)

S1 =
1

B0

∫
φ̃1(X + ρ)dθ ≡

1

B0
φ̃

(1)
1 , (115)

〈ψ2〉 = −
1

2

〈
∇φ̃1 · ∇φ̃

(1)
1

〉
×

b

B†
‖B̄0

−
1

2B0

〈
∂φ̃2

1

∂µ

〉
, (116)

where we have kept the second order contribution 〈ψ2〉, and B̄0 is a spatially averaged B0.

The expression for S1 and 〈ψ2〉 are obtained from Eqs. (63) and (76) under the electrostatic

and low-frequency approximations. Since these approximations are introduced at the 1-form
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level, the resulting kinetic system will still have the desirable exact conservation properties.

The density response is calculated from δγ/δφ1 according to Eqs. (17) and (111),

n(x) =

∫

x′

∫

π−1(x′)

δ [x− g(x′)]FΩ ∧

[
∂ 〈ψ1〉

∂φ1(x)
+
∂ 〈ψ2〉

∂φ1(x)

]

=

∫ [
F +

∂f

∂µ

φ̃1

B0

+ ∇F ×
∇φ̃

(1)
1

B†
‖B̄0

· b +
∂F

∂u

B† · ∇φ̃
(1)
1

B†
‖B̄0

]
δ
[
x − x′ − ρ(x′)

]
B†

‖d
3xdudµdθ .

(117)

The final gyrokinetic system for this case is

∂F

∂t
+
dX

dt
· ∇XF +

du

dt

∂F

∂u
= 0 , (118)

dX

dt
=

B†

B†
‖

(u+
µ

2
b · ∇ × b) −

b × E†

b · B†
, (119)

du

dt
=

B† · E†

B†
‖

, (120)

A† ≡ A0 + ub + D, B† ≡ ∇× A†, B†
‖ ≡ B† · b , (121)

E† ≡ −∇

[
φ0 + µB0 +

D2

2
+ 〈ψ1 + ψ2〉

]
, (122)

∇2 (φ1 + φ0) = −
∑

species

4πqn , (123)

where n is given by Eq. (117) and (B0, E0) are assumed given. Since γ in Eq. (111) does not

depend on t explicitly, the total energy of the kinetic system is conserved, and this is valid for

inhomogeneous background. In comparison with previous results in Refs. [[13]] and [[15]],

we note that in Eq. (116), the denominator of the first term for 〈ψ2〉 is different from that in

Refs. [[13]] and [[15]], and an additional term proportional to ∂F/∂u is found in Eq. (117) for

the density. These differences are of physical importance in that Eqs. (111)–(123) guarantee

an exact energy conservation in the general inhomogeneous magnetic field.

C. Gyrokinetic theory in a time-dependent background

The last simplified gyrokinetic system that we investigate is the gyrokinetic system that

allows for time-dependent background. To simplify the problem, we only consider the elec-

trostatic case. The 1-form that uniquely determines the equation system is the same as that
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in Eq. (111), except that φ0 is allowed to depend on time. Since gyrokinetic theory treats

the equilibrium field φ0 and the perturbed field φ1 differently, in order to determine both

fields self-consistently from the distribution function F, we need two field equations. Let

φ = φ0 + φ1 . (124)

It is easy to verify that δS/δφ0 = 0 and δS/δφ1 = 0 both give the Poisson equation for φ, but

with different source terms. To calculate the density in terms of the distribution function

from δγ/δφ0, we first calculate

−Ω ∧
∂γ

∂φ0,i

= −Ω ∧
∂D

∂φ0,i

· dX + Ω ∧
∂D2/2

∂φ0,i

dt , (125)

which gives

n(0)(x) =

∫
FB†

‖du ∧ dµ ∧ dθ + ∇ ·

∫ {
E0⊥

B0

(
1 −

B†
‖

B0

)

−
1

B0

ub ×∇× (ub + D) −
E

†
⊥

B0

}
Fdudµdθ . (126)

The calculation of δγ/δφ1 = 0 is the same as that for Eq. (117),

n(1)(x) =

∫ [
F +

∂F

∂µ

φ̃1

B0

+ ∇F ×
∇φ̃

(1)
1

B†
‖B̄0

· b +
∂F

∂u

B† · ∇φ̃
(1)
1

B†
‖B̄0

]
δ
[
x − x′ − ρ(x′)

]
B†

‖d
3xdudµdθ .

(127)
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These two Poisson equations and the gyrokinetic equation form a complete equation systems

for (F, φ0, φ1),

∂F

∂t
+
dX

dt
· ∇XF +

du

dt

∂F

∂u
= 0 , (128)

dX

dt
=

B†

B†
‖

(u+
µ

2
b · ∇ × b) −

b × E†

b · B†
, (129)

du

dt
=

B† · E†

B†
‖

, (130)

A† ≡ A0 + ub + D, B† ≡ ∇× A†, B†
‖ ≡ B† · b , (131)

E† ≡ −∇

[
φ0 + µB0 +

D2

2
+ 〈ψ1 + ψ2〉

]
−
∂D

∂t
, (132)

∇2φ = ∇2 (φ0 + φ1) = −
∑

species

4πqn(0) , (133)

∇2φ = ∇2 (φ0 + φ1) = −
∑

species

4πqn(1) , (134)

where n(0) and n(1) are given by Eqs. (126) and (127). Eqs. (133) and (134) are two inde-

pendent field equations for the two fields of φ0 and φ1, because the source terms dependent

on φ0 and φ1 differently.

VI. CONCLUSIONS

During the pedestal cycle of H-mode edge plasmas in tokamak experiments, large-

amplitude pedestal build-up and destruction coexist with small-amplitude drift wave tur-

bulence. The pedestal dynamics simultaneously includes fast time-scale electromagnetic

instabilities, long time-scale turbulence-induced transport processes, and more interestingly

the interaction between them. To numerically simulate the pedestal dynamics from first

principles, it is desirable to develop an effective algorithm based on the gyrokinetic theory.

However, existing gyrokinetic theories cannot treat fully nonlinear electromagnetic pertur-

bations with multi-scale-length structures in spacetime, and therefore do not apply to edge

plasmas. In this paper, we first constructed a geometrically generalized Vlasov-Maxwell

system using the Poincaré-Cartan-Einstein 1-form. Geometric gyrokinetic theory is then

developed as a special case of the geometrically generalized Vlasov-Maxwell system. Ar-

bitrary approximations based on physical intuition or mathematical simplification can be
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made at the 1-form level and the resulting gyrokinetic systems still possess exact geomet-

ric conservation properties. The construction of the gyrokinetic system is essentially the

construction of the gyro-symmetry using the Lie perturbation method. The gyrokinetic sys-

tem developed allows for time-dependent electromagnetic background coexisting with short

wavelength electromagnetic perturbation, and therefore applicable to the edge plasmas in

magnetic confinement devices.
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