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Motivation

• Most experiments are performed far from FI conditions
• Electron transport in hot targets is different

Cone guided FI

DT FI
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Two Schemes to Produce Hot Dense Target

• Shock heated
– Long pulse accelerates pusher plate
– Compresses & heats foam
– Short pulse laser interacts with gold
– Hot electrons produced are detected by

copper plate
⇒ Measures electron transport into plasma
⇒ Mimics the cone tip shock interaction

• Thermal electron heated
– Long pulse well absorbed in thin Au layer
– Long pulse driven thermal e- heat front

supersonically heats low-density foam
⇒ Measures transport thru plasma
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Shock driven experiment shows foam compression
to 1 g/cc

Density, g/cc Temperature, eV

• Long pulse accelerates Al/Cu flyer plate
• Compresses foam to ~1 g/cc
• Shock wave penetrates Au foil on opposite side
• Electrons generated in Au cross the Au/interface and are counted in Cu
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Various types of targets were used to understand transport

• Au/Cu/Al - measure electron generation in Au

– short pulse laser, Cu-Kα imager, single hit CCD and spectrometer

• Au/CRF/Cu/Al - measure losses in hot foam

– Long pulse, check timing w backlight
– Long & short pulse, Cu-Kα imager, single hit CCD and spectrometer

• Au/CH/Cu/Al - measure losses in cold CH, same areal density

– Long & short pulse, back-light, Cu-Kα imager and spectrometer

Aim was to produce large enough plasma to diagnose
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Target Schematic

Real target
Is actually
rectangular

glue

for cone

• A variety of diagnostics was used
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Diagnostics

Image
plate

Ti Kα
imager

Cu Kα Single hit

Image
plate

HOPG

CPA

200J @ 2ω,200µm spot,2ns 

CRF Foam

5µm Au

5µm Cu
20µm Al

Targets
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X-ray backlit images show shocked compression of
foam

0ns 3.5ns

5ns 7ns

h2d
5.6nsBremsstrahlung

from long pulse
interaction.

• Radiographs show

shocked compressed

foam between copper

and gold surface

• Good agreement with 2D rad-hydro simulations

#3 18th Sept #5 18th Sept

#4 13th Sept #5 14th Sept

300 LPI mesh

200J @ 2ω,200µm spot,2ns

Resolution 24 microns

gold Shock 55 µm into foam

Shock 90 µm into foam
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Shock heated targets

• Timing of short pulse varied with respect to long
pulse to examine transport through:

- Cold Au/shocked foam
- Cold Au /partially shocked foam
- Shocked Au /shocked foam
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Al/Cu/Au, 1ps
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Shot 2, 7th September, 152J
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Al/Cu/Au 10ps
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Al/Cu/CH/Au, 1ps
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Shot 4, 6th September, 140J
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• Presence of Heα shows heating of copper for both 1 and 10 ps laser pulses

• Heα disappears with an addition of CH in the target

• Transport is significantly different in insulator targets

• More accurate information from a single CCD camera

CPA

5µm Au
5µm Cu

20µm Al

Target composition affects the electron transport
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Fully shocked target shows reduction in Cu Kalpha
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Shot 4, 15th September, 142 J, 1 ps

Fully shocked, Delay : 6.5ns

Kα
Kβ

• Reduction in copper Kalpha counts with shocked targets

• Heα is not observed with both plastic and shocked targets

• More careful analysis with a single hit CCD camera is required
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Emission is dominated by bremsstrahlung

10 ps only (no long
pulse) 25um Cu filter

1ps + Long pulse 
delayed by 6.5ns Be filter

1ps + Long pulse
delayed by 5ns Be filter

WDM package w/
3.9um Au

WDM package w/
3.9um Au

Cold sandwich

Al/Cu/Au (5.1um Au)
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shocked
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SUMMARY

• Experiments have been performed to produce warm dense
matter with shock compression.

• Rad-hydro simulations show compression of foam to 1 g/cc and
temperature of 20-25 eV. The shock timing agrees with
experimental results with 200 J, 2 ns, green long pulse laser.

• Laser with a pulse length 10 ps burns through 3-4 µm gold foils

• Shocked targets show reduction in copper Kalpha counts
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Future Work

• Use of CH as ablator will reduce bremsstrahlung

• More shots are required for 1 and 10 ps laser pulse lengths

• A detailed data analysis will shed light on the physics of
electron transport in warm dense matter




