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Abstract:

It is a common practice to estimate site desorption rate from crystal surfaces with an Arrhenius 

expression of the form νeff exp(-∆E/kBT), where ∆E is an activation barrier to desorb and νeff is an effective 

vibrational frequency ~ 1012 sec-1. However, such a formula can lead to several to many orders of 

magnitude underestimation of sublimation rates in molecular crystals due to internal degrees of freedom. 

We carry out a quantitative comparison of two energetic molecular crystals with crystals of smaller entities 

like ice and Argon (solid) and uncover the errors involved as a function of molecule size. In the process, we 

also develop a formal definition of νeff  and an accurate working expression for equilibrium vapor pressure.
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Kinetics of atoms and molecules at surfaces involving adsorption, desorption and diffusion is an 

important phenomenon that govern many physical processes. These include sublimation, evaporation and 

condensation, growth and long-term stability of crystals and thin-films, crystal morphology evolution, 

action of chemical/molecular sensors, rate of establishing solid-vapor and liquid-vapor equilibrium, among 

others. Such processes are directly relevant to diverse disciplines including materials science, chemical 

engineering, molecular biology and medicine, meteorology, geochemistry, and planetary science. 

Equilibrium between the condensed phase (solid, liquid) and the gas phase (vapor) is established when the 

rate of sublimation/evaporation from the condensed phase surface is equal to the rate of condensation from 

the vapor phase. Computing either of these quantities accurately is challenging. While the rate of influx of 

vapor-phase atoms/molecules onto the condensed surface is given simply by the Knudsen’s formula [1, 2]

Tmkp Bπ2/ , where p is the vapor pressure and m the mass of the atomic/molecular species, the 

probability of incorporation into the surface, known as the sticking coefficient depends on the atomic 

details of the surface, as well as the energy, orientation and impingement direction of the incoming particle. 

Similarly, desorption rate from individual sites depend on the local environment (coordination) of the site, 

and can involve either direct evaporation into the vapor phase or a multistep process involving surface 

migration to different sites followed finally by detachment.

With specific interest in the rate of mass loss of energetic materials through sublimation, we attempted 

to estimate the desorption rate of such molecules from various crystal faces. Assuming that all desorption 

processes effectively start from “kink” sites [1] on any exposed face, one can estimate a net evaporation 

rate by the equation [3]:

)/exp( TkE Beffsimple ∆−=↑ θνϕ& , (1)

where θ is the surface density of kink sites, νeff is an effective vibrational frequency, and ∆E the desorption 

energy from the kink site, which is related to the heat of sublimation ∆H by the equation ∆E = ∆H – pV =

∆H - kBT (since the ideal gas law is applicable for such typical low-vapor-pressure systems). The physical 

reasoning behind Eq. (1) is that the molecular/atomic species vibrates with a frequency νeff and during each 

of those oscillations it has a probability exp(-∆E/kBT) to desorb from the surface. However, for most 
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molecular crystals Eq. (1) severely underestimates the rate of sublimation. Thus, for concreteness, let us 

consider two energetic materials, i.e., Pentaerythritol Tetranitrate (PETN) and the β-polymorph of 

Tetrahexamine Tetranitramine (β-HMX), which consist of 29 and 28 atoms, respectively (Fig. 1). PETN in 

its common form (PETN-I) crystallizes in a body-centered tetragonal structure [4] with a heat of 

sublimation of ∆H of ~ 35.1 kcal/mol [5], while β-HMX crystallizes in a monoclinic structure [6] with a 

heat of sublimation of ~ 44.2 kcal/mol [7]. Assuming a νeff ~ 1012 sec-1 and a maximum kink density of θ = 

1, Eq. (1) yields sublimation rates lower by 8-10 orders of magnitude as compared to experimentally 

measured value for either PETN [5] or HMX [8]. The above problem of sublimation rate could be 

equivalently stated in terms of equilibrium vapor pressure. Thus, equating the incoming flux (given by 

Knudsen’s formula) with the outgoing flux estimated by Eq. (1), one obtains the following formula for the 

equilibrium vapor pressure p:

)/exp(2 TkHTmk
e

p BB
eff

simple ∆−= π
ακ

θν
, (2)

where κ is an average sticking coefficient and α the area per surface site. As will be shown below, the 

above formula (assuming κ and θ of the order of unity) underestimates the equilibrium pressure of PETN 

and HMX by 10 orders of magnitude as compared to experiments.

As a remedy to the large discrepancies mentioned above, one needs to replace Eq. (1) with one derived 

from the reaction rate theory [3, 9], which has previously been used to compute the sublimation rate of 

molecular crystals [10]. However, the rate of mass loss (i.e. sublimation) depends significantly on the 

details of the experimental conditions (e.g., the presence of a carrier gas, boundary layer, etc.), particle

morphology (i.e., fraction of different exposed facets), surface roughness, and so on. So, we focus instead 

on deriving an accurate formula for the equilibrium vapor pressure p, a data that is widely available for 

many crystals as a function of temperature. To this end, we use the harmonic approximation to express the 

chemical potential of the solid and the vapor phase as [11]:

)}(ln{)( νννεµ vibphBss ZgdTk ∫−= , (3)
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In Eq. (3) and (4) subscripts “s” and “v” denote solid and vapor phase, εs, εv are the reference potential 

energies of the two phases, NM the number of atoms in a molecule, gph(ν) the phonon density of states 

(DOS) for the solid with a normalization of ∫ = Mph Ngd 3)(νν , Tmkh Bπ2/=Λ the thermal (or de 

Broglie) wavelength, and the vibrational and rotational partition functions are given by:
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where I1, I2, and I3 are the principal moments of inertia, and σ is a symmetry factor given by the number of 

proper rotational symmetry operations for an isolated molecule [11, 12]. At thermodynamic equilibrium the 

chemical potentials µs and µv must be equal, leading to the following expression for p:
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where we have defined an effective frequency νeff through the equation:
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Eq. (8) allows Eq. (7) to be written in the form:
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a form closely related to site-desorption rates derived from reaction rate theory [3, 9]. For practicality of 

computation, however, we re-write Eq. (7) as:

)/exp(0 TkHpp B∆−= , (10)

where the prefactor is given by:
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The quantity in the exponent of Eq. (11) can be evaluated using the Clasius-Clapeyron equation 

H
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where, 
1)/exp(2

)(
−

+=
Tkh

hhf
B

vib ν
ννν is the vibrational free energy associated with a mode of frequency 

ν, including the zero-point contribution.

With the availability of accurate class II force fields, especially for systems with organic functional 

groups, we attempted to compute the effective frequency νeff through Eq. (8). To this end, both the phonon 

DOS gph(ν) and the (3NM-6) molecular vibration frequencies νj of PETN were computed using the Accelrys 

module IR/Raman [13] and three different force fields: Universal (UFF) [14], CVFF [15], and COMPASS

[16]. Although the individual mode frequencies computed by the force fields are in good agreement with 

each other (within 3-4 %), the computed values of νeff for PETN using the three force fields are quite 

different, being 7.15 x 1012, 2.25 x 1013, and 3.44 x 1012 sec-1 for UFF, CVFF, and COMPASS respectively.

This large variation of νeff stems from the difficulty in accurately modeling the phonon-vibron coupling, 

which is usually not a criterion on which development of force fields are based. Assuming that the true νeff
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lies somewhere within the range of the three computed values, a value of νeff ~ 1013 sec-1 seems to be a 

reasonable choice for PETN. In addition, we also find that the variation of νeff with T, i.e., Teff ln/ln ∂∂ ν is 

small, with an absolute value < 0.1 for all three force fields. Considering our aim of accuracy to within an 

order of magnitude, this term could therefore be safely dropped from Eq. (12).  

Table 1 displays the computed values of equilibrium pressure using both the simple equation (2) and 

the more accurate equations (10)-(12) and compare with experimental values for the temperature range of 

300-400K [5]. Several results are worth noting: (i) pressure computed with Eq. (10)-(12) is in excellent 

agreement with experiment over the entire 100 K temperature range; (ii) pressure computed by the simple 

formula (Eq. (2)) is underestimated by 10 orders of magnitude over the entire temperature range; and (iii) 

the product of Zrot and {Zvib(νeff)}-6 (see Eq. (11)) account for almost 8 orders of magnitude of this 

discrepancy. 

To illustrate that the previous results are true not just for PETN as a special case, but rather generic for 

molecules of such size, we list in table 2 similar results for β-HMX. Here we chose νeff so as to yield the 

best fit of computed p to the experimental values over the entire temperature range. A comparison between 

tables 1 and 2 makes it clear that the results are not only qualitatively but also quantitatively similar. Given 

that psimple underestimates vapor pressure by 10 orders of magnitude in either case, the question arises as to 

whether Eqs. (1) and (2) are at all applicable in any situation. To address this point, we compare in Table 3 

results for PETN and β-HMX with a smaller molecule, i.e., water frozen in the ice-Ih structure [17], and an 

atomic system, i.e., Argon (Ar) crystallized in a cubic close-packed structure [18]. We chose a specific 

temperature for each system, i.e., room temperature (300 K) for PETN, the lower limit of published data

(350 K) for HMX [7], the melting point of ice (273 K), and the melting point of Ar (84 K) under ambient 

conditions. Two observations are evident. First, the smaller the molecule, the smaller the νeff. Thus, as 

compared to PETN, νeff is reduced by roughly 36% for ice, and 89% for Ar. Second, relative to PETN and 

HMX, psimple yields a much better vapor pressure for ice, although it is still underestimated by 3 orders of 

magnitude. For Ar, on the other hand, psimple gets the pressure correct to within a factor of 2. The result 

correlates well with the product of Zrot and {Zvib(νeff)}-6, which are much smaller than for PETN or HMX.
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In summary, we find that for non-covalently bonded solids the simple and oft-used Eq. (1) is a 

reasonable approximation only when the molecular entities are very small, consisting of one or just a few 

atoms (i.e. possess only a few degrees of freedom). For larger molecules both Zrot and {Zvib(νeff)}-6, 

especially the former can become large leading to the failure of Eq. (1) and (2) by many orders of 

magnitude. Physically, the large value of Zrot can be interpreted as a large number of independent 

rotational states or channels the molecule from the surface can desorb into. The effect is magnified when 

dealing with the adsorption and desorption of biomolecules like antigens and proteins. In the course of this 

exercise, we have derived an appropriate definition of the effective vibrational frequency νeff, and an 

accurate working expression for the equilibrium pressure p. Recognition of the limitations of Eq. (1) (and 

Eq. (2)) has important ramifications for many application areas, including surface density of adsorbates 

(Langmuir isotherms) [22], residency times of analytes on sensor surfaces [23, 24], interpretation of 

binding energy from thermal desorption spectroscopy (TDS) data, molecular (antigen, drug) binding 

efficiency at intra- and extra-cellular receptor sites, and so on.

Acknowledgement: This work was performed under the auspices of the U.S. Department of Energy by the 

University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
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Table 1. Computed and experimental vapor pressure for PETN. Relevant parameters: m=316.2 a.u., NM = 

29,νeff = 1.0x1013 sec-1, ∆H = 35.1 kcal/mol. For psimple we assume κ, θ = 1, and use an average (face-

independent) α = vs
2/3, where vs = volume per molecule in the crystal. Experimental data from ref. [5].

T (K) {Zvib(νeff)}-6 Zrot

psimple (erg/cm3)

(Eq. (2))

p (erg/cm3)

(Eq. (10)-(12))

p (erg/cm3)

(experimental)

300 31.47 4.64x106 1.90x10-15 3.48x10-5 2.99x10-5

325 17.77 5.23x106 1.83x10-13 2.99x10-3 2.78x10-3

350 10.59 5.85x106 9.24x10-12 1.34x10-1 1.35x10-1

375 6.60 6.48x106 2.77x10-10 3.58x100 3.91x100

400 4.27 7.14x106 5.43x10-9 6.25x101 7.42x101
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Table 2. Table 1 re-computed for β-HMX. Relevant parameters are: m=296.2 a.u., NM = 28,νeff = 9.2x1012

sec-1, and ∆H = 44.2 kcal/mol. Experimental data from ref. [7].

T (K) {Zvib(νeff)}-6 Zrot

psimple (erg/cm3)

(Eq. (2))

p (erg/cm3)

(Eq. (9)-(11))

p (erg/cm3)

(experimental)

350 5.99 5.56x106 1.97x10-17 1.65x10-7 1.39x10-7

375 3.76 6.17x106 1.40x10-15 1.04x10-5 0.96x10-5

400 2.45 6.80x106 5.89x10-14 3.85x10-4 3.90x10-4

425 1.65 7.44x106 1.60x10-12 9.27x10-2 1.03x10-2

450 1.14 8.11x106 3.00x10-11 1.55x10-1 1.87x10-1
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Table 3. Comparison of computed and experimental vapor pressure for different systems: β-HMX, PETN, 

ice (Ih), and Argon (cubic close-packed). Each system is chosen at a different temperature to accommodate 

different phase stabilities and the availability of vapor pressure data. For computing psimple, we assumed θ, κ

= 1 [19].

System → β-HMX PETN Ice (Ih) Argon

T (K) 350 300 273 84

M (a.u.) 244 316 18 39.9

NM 28 29 3 1

α (Å2)* 40.7 44.3 10.2 11.0

∆H (kcal/mol) 44.2 [ref. 7] 35.1 [ref. 5] 12.2 [ref. 20] 1.6 [ref. 21]

νeff  (sec-1) 1.0 x 1013 9.2 x 1012 6.4 x 1012 1.1 x 1012

{Zvib(νeff)}-6 10.59 31.47 2.78 0.07

Zrot 5.56 x 106 4.64 x 106 7.26 x 101 1.0

psimple (erg/cm3)

(Eq. (2))

1.97 x 10-17 1.90 x 10-15 7.46 x 100 4.06 x 105

p (erg/cm3)

(Eq. (9)-(11))

1.65 x 10-7 3.48 x 10-5 5.91 x 103 8.33 x 105

p (erg/cm3)

(experimental)

1.39 x 10-7 [ref. 7] 2.99 x 10-5 [ref. 5] 6.03 x 103 [ref. 20] 7.16 x 105 [ref. 21]

*Estimated by vs
2/3, where vs is volume per molecule in the crystal phase
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(a)                    (b)

  

(c) (d)

Fig. 1. Molecular models of: (a) PETN (C5H8N4O12, NM = 29); (b) β-HMX (C4H8N8O8, NM = 28); (c) water 
(H2O, NM = 3); (d) Argon (Ar, NM = 1). Color scheme (online only): C (grey), H (white), N (blue), O (red).




