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Abstract We consider the properties of Ω graphs (Ω vs f(z)) obtained from Gouy 
interferometry on multicomponent systems with constant diffusion coefficients.  We show that 
they must have (a) either a maximum or else a minimum between f(z)=0 and f(z)=1 and (b) an 
inflection point between the f(z) value at the extremum and f(z)=1.  Consequently, an Ω graph 
cannot have both positive and negative Ω values. 
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1.  Introduction 
 
Optical methods are the most precise methods of obtaining diffusion coefficients in liquid 
mixtures [1].  Of these, Gouy and Rayleigh interferometry with "free diffusion" boundaries have 
been developed the most.  In the past, groups at Lawrence Livermore National Laboratory, Texas 
Christian University, and the University of Naples have reached a precision of 0.05 to 0.1 % for 
binary systems.  Ternary and quaternary system diffusion coefficients can also be obtained but 
with lesser precision.  The experimental techniques for such measurements, including 
illustrations of the optical arrangements and typical interference patterns, have been detailed in 
references [1,2]. 
 
 The most precise optical interferometer, the Gosting Diffusiometer [3], now at Texas 
Christian University, has both Gouy and Rayleigh optics.  When it was at Lawrence Livermore 
National Laboratory from 1981 to 1991, comparisons showed essentially the same diffusion 
coefficients were obtained from using both methods after alternately applying both optical 
systems to each experiment [2,4,5]. 
 
 At present, the University of Naples group is using Gouy interferometry, and the Texas 
Christian University group is using Rayleigh interferometry.  Since the 1990s, both groups have 
automated their data collection, which has significantly improved the precision and statistics. 
 
 The Gouy method was the first precision optical method developed for binary systems 
[6].  Its first application to 3-component systems was by Fujita and Gosting [7,8].  Fujita and 
Gosting [8] extracted the ternary diffusion coefficients Dij from the fringe pattern data of several 
experiments, using from each experiment the quantity DA and a quantity Q0 that is the integral of 
the Ω graph.  The quantity Ω was originally defined by Gosting and collaborators [7-9], and the 
Ω graph is a plot of Ω  versus f(z), both defined below.  Experimental examples of the Ω graph 
can be seen in early papers [7,9-11].  Unfortunately, the FG method, while excellent for ternary 
systems, is not suited to 4 or more component systems [12]. 
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 During our ternary Gouy measurements at LLNL in Livermore, the appearance of Ω 
graphs came into question.  Gosting and Fujita [13] had shown earlier that all Ω  values should 
be 0 for a binary system without a concentration dependence of the diffusion coefficient.  
Consequently, a non-zero Q0 implied a concentration-dependent diffusion coefficient.  They also 
analyzed a binary system with a polynomial dependence of D on concentration C.  They showed 
that if the concentration differences across the boundary are small enough, then D will 
correspond to the mean concentration at the boundary, Ω will also be zero everywhere, and thus 
Q0 will be 0. 
 
 However, it was an open question whether Q0 could be zero for a system where Ω was 
positive part way between f(z)=0 and f(z)=1, and balanced by being negative the rest of the way.  
We shall show here that this cannot be the case. 
 
 For 3 or more components, Ω in general should be non-zero, except for special 
concentration-difference ratios.  In our ternary experiments, the Ω values seemed to be either all 
zero, all positive, or else all negative.  However, occasionally there seemed to be cases where Ω 
values sometimes came below the horizontal line of Ω=0.  When Ω was small, frequently the 
scatter of Ω from the different fringe patterns seemed to be responsible.  When Ω values were 
large, there seemed to be some other error, usually an error in the measured total number of 
fringes J.  Furthermore, there seemed to be a possible inflection point, also indicated in some of 
the early Ω graphs obtained by others [9,11,14]. 
 
 Simplified algebraic simulations of possible shapes for the Ω graph are shown in Fig. 1.  
Case 1 has a maximum without any inflection points.  Case 2 has a maximum with an inflection 
point (here, after the maximum).  Case 3 has Ω above and below the line of Ω=0, and thus a 
maximum and a minimum.  These oversimplified drawings also include the equally 
oversimplified first and second derivatives of Ω with respect to f(z). 
 
 Other variants are possible, for example with minimums instead of maximums or with 
multiple extrema, but Cases 1-3 are closest to the observed Ω graphs.  Although Case 3 is shown 
as being symmetric, it is also conceivable to have variants of Cases 1 and 2 that dip below the 
f(z)=0 line closer to the ends, giving rise to an unsymmetric Case 3.  However, we shall show 
below that this is not possible, and such cases when encountered must involve some type of 
experimental error. 
 
 Consequently it seemed desirable to investigate the detailed properties of the Ω graph.  
Fujita and Gosting [8] defined the quantity Ωj for a particular interference fringe j as 
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or alternatively 
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where DA is an experimental quantity called the "height-area ratio" [8], i is the index for the 
(n - 1) solutes, and j is the fringe number index. 
 
 The quantities si are related to the eigenvalues of the diffusion coefficient matrix 
[7,12,15], and are functions only of the volume-fixed diffusion coefficients Dkl, where here k and 
l are the solute indexes.  The Γi are functions of the Dkl, refractive index increments Ri, and 
refractive index fractions αi.  These quantities are described in Ref. [1,2,7,12,15].  The refractive 
index fractions depend on the solute concentration differences across the diffusion boundary, so 
are different for each experiment.  Consequently, the Γi and in turn DA are also different for each 
experiment.  Thus the shape of the Ω graph depends on the Γi, as will be seen in Fig. 2 below. 
 
 The f(zj) mentioned above is given for each fringe j by [8,10] 
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and also by [8,10] 
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It is related to experimental quantities by 
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where the + in the numerator includes an improved approximation [8-10].  The numerical value 
of f(zj) is obtained from Eq. (5) for each fringe using the fringe number j and the total number of 
fringes J.  Then zj is determined from f(zj) by iteration of Eq. (3), and yj are in turn obtained by 
iteration from Eq. (4). 
 
 The quantities zj, yj, f(zj), and Ωj are usually obtained from experimental data at round 
values of the measured fringe numbers j but all are actually continuous functions.  The values of 
f(zj) run from 0 to 1 as zj and yj run from 0 to infinity. 
 
 We note in passing that the ternary data analysis method for Rayleigh interferometry was 
developed later [2,16,17] than for Gouy, and the Dkl are obtained from parameters extracted 
directly from fringe position data using least squares methods.  An analogous Rayleigh Ω graph 
and Q0 are not useful.  This type of Rayleigh analysis is easily extended to any number of 
components [12], and has been applied to a 4-component system [18].  It can also be adapted to 
non-interferometric solid-state measurements [19].  An analogy to the Rayleigh analysis has also 
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been adapted to 3 or more component Gouy measurements [12], and has also been applied to a 4-
component system [20].  In this case, the Gouy Ω graph and Q0 are not used to obtain the Dkl, but 
become useful diagnostic tools.  In particular, if Q0 is large for any of the concentration-
difference ratios, that implies a large cross-term diffusion coefficient. 
 
2.  Examination of possible shapes of the Ω  graph 
 
We consider the Ω graph for an arbitrary but specific experiment. 
 
 We treat Ω as a continuous function and examine its first and second derivatives with 
respect to f(z).  The following analysis depends on the diffusion coefficients being constant.  This 
will be the case if the concentration differences across the free-diffusion boundary are small, as 
is usual in both Gouy and Rayleigh measurements.  (See ref. [19] for a brief discussion.) 
 
 The first derivative of Ω with respect to f(z) is found implicitly by differentiating the first 
term of Eq. (2) with dz and the second term with dy.  Then dz and dy are eliminated in terms of 
df(z) by the derivatives of Eq. (3) and (4).  The desired derivative Ω' is 
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 Maxima and minima occur where Ω'=0.  There are only two roots, one at 
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The other is approached asymptotically as y and z go to infinity (together), i.e., where f(z)=1.0: 
 
 y=z=∞;   f(z)=1.0      (8) 
 
 For certain values of Γi, it is possible for Ω to be 0 everywhere, and thus Ω' =0 
everywhere. 
 
 Equation (7) shows that there can only be a single maximum or minimum between f(z) 
values of 0.0 and 1.0 whenever Ω≠0 everywhere.  Since the equations above apply to a system of 
any number of components, case 3, symmetric or otherwise, is impossible. 
 
 On the other hand, the Ω' root at f(z)=1.0 requires that as f(z) increases, Ω' must pass 
through 0 at the f(z) point corresponding to Eq. (7), and then turn back, itself going through a 
maximum or minimum, and returning to zero at f(z)=1.0.  Consequently the second derivative Ω'' 
must have a root (i.e., be 0) between the maximum or minimum of Ω and f(z)=1.0.  But this 
means that there must be an inflection point in the plot of Ω versus f(z) after its maximum or 
minimum and before f(z)=1.0.  Consequently case 1 is also impossible, and this conclusion also 
applies to a system of any number of components. 
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 We have now shown that only case 2 is possible.  Furthermore, either Ω must be zero 
everywhere or else must (a) have an extremum, (b) be either positive or else negative 
everywhere, and (c) have an inflection point between the extremum and f(z)=1.0.  Consequently, 
if any Ω graph crosses the Ω=0 line, there must be a calculational or experimental error. 
 
 Whether the extremum is a maximum or minimum depends on the sign of the second 
derivative of Ω at the root of Ω'.  We get this second derivative by differentiating Eq. (6), and 
eliminating its resulting dy and dz terms using Eq. (3) and (4) to get everything in terms of df(z), 
just as we did in getting Ω'.  The result is  
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 At the extremum of Ω, the value of Ω'' is given by substituting Eq. (7) in Eq. (9), which 
gives 
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The values of y and z are those at the extremum, and so one or the other can be eliminated by 
using Eq. (7).  If Eq. (10) is negative then Ω has a maximum, and if positive then Ω has a 
minimum.  Experience shows that both cases exist. 
 
 We note that at the other root of Ω', y=z= ± ∞.  The sign depends on the sign of the 
bracket in Eq. (10) at high values of z and y. 
 
 Let's turn to the inflection point, which is located at Ω''=0.  From Eq. (9), this point is at 
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 Numerical examples show that values of y and z exist such that there is an f(z) between 
the Ω extremum and f(z)=1.0.  Typically it is close to f(z)=1.0. 
 
3.  Examples of the Case 2 shapes 
 
Fig. 2 shows three calculated Ω graphs for a ternary system with choices of si and three choices 
of Γ1 modeled on experimental data for raffinose-KCl-H2O [4]. (There is only one independent 
Γi for a ternary system, because it has been shown [7,8] that the sum of the Γi =1.0.)  We note 
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that DA is a function of both si and Γ1 [7,8].  We have also calculated the Q0 and Q1 associated 
with the three graphs. (Q1 is another integral that was once proposed for Gouy analyses by Fujita 
[21], but has not actually been used.)  Note that the 1st and 2nd derivatives for the model of a 
real system are far more complicated than the oversimplified illustration of Case 2 in Fig. 1. 
 
 We notice that the graph shapes depend on Γ1, and the locations of the extremum and 
inflection point for each change with Γ1.  The inflection point is sufficiently slight for the third 
drawing that only the second derivative makes it clear that it exists. 
 
4.  Conclusions 
 
We have shown for a multicomponent system that the Ω graph must have (a) either a maximum 
or else a minimum between f(z)=0 and f(z)=1 and (b) an inflection point between the f(z) value at 
the extremum and f(z)=1.  Consequently Case 1 and Case 3 cannot occur.  If Ω changes sign with 
f(z), there must be an error in the measurements or a wrong value of the total number of fringes 
J.  Indeed, our experience with the highly accurate Gosting diffusiometer has always been that 
when an Ω graph has values both above and below the horizontal Ω=0 line, typically near f(z)=1, 
a wrong value of J had been used in the data analysis. 
 
 We note that it is possible for certain values of the Γi to have Ω=0 everywhere (and thus 
Ω'=0 everywhere), in which case the multicomponent diffusing system appears to act like a 
binary system. 
 
 Two final comments. 
 
 If the Dij values for multicomponent systems have a concentration dependence, will small 
enough concentration differences across the boundary give effectively constant diffusion 
coefficients so our analysis will apply?  The general case of a linear concentration dependence is 
not yet available.  However, theoretical results for ternary systems, discussed in Ref. [19], 
strongly suggest that this is true. 
 
 Three or more component systems can have both gravitational and dynamic instabilities 
for some refractive index fractions.  Will those give rise to unusual Ω graphs?  In these 
circumstances, the Gouy fringes are distorted [22].  Consequently, the experiment will be 
rejected, and the issue does not arise.  
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Fig. 1.  Simplified algebraic simulations of possible shapes for the Ω graph.  Case 1 (left 
column) has a maximum without any inflection points.  Case 2 (center column) has a maximum 
with an inflection point (here, after the maximum).  Case 3 (right column) has Ω values above 
and below the line of Ω=0, and thus a maximum and a minimum.  The first row is Ω, the second 
is the first derivative Ω', and the third is Ω''. 
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Fig. 2.  Three calculated Ω graphs for a ternary system modeled on experimental data for 
raffinose-KCl-H2O [4], with its values of si and three choices of Γ1.  We note that DA is a 
function of both si and Γ1 [7,8].  We have also calculated the Q0 and Q1 associated with the three 
graphs (Q1 is not used here.)  Column 1 has Γ1=0.2 with a corresponding Q0=239.2.  Column 2 
has Γ1=0.5 and Q0=296.3.  Column 3 has Γ1=0.8 with a corresponding Q0=157.1.  Rows 1-3 are 
Ω, Ω', and Ω'', respectively.  Note the complicated forms of Ω' and Ω'' when based on 
experiment. 
 
 




