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Laser “skunkworks” activities have been undertaken to 
develop low cost, high-efficiency laser drivers

Our work builds upon experience building large flashlamp-pumped laser 
systems and smaller diode-pumped systems

- NIF, Mercury and SSHCL

We have concentrated first on opening up the design space 
- blue-sky ideas, application of developing technologies

Significant reductions in costs and increases in efficiency appear feasible
- only tens of beamlines, > 20% efficiency

We plan to undertake more detailed performance calculations and design 
development in coming months



IFE laser driver requirements flow down from 
power-plant requirements and design choices

Power generating capacity:   1 GW

Liquid-Wall 
Target 

Chamber

IFE Power 
Plant Fusion power:  2 GW

Repetition Rate:  5 Hz

First wall: Long lifetime, maintainable
ηG > 10 to limit recirculating power

Target Yield:  400 MJ
2-sided illumination

Indirect 
Drive  

Affordable laser driver,

Compression 
Laser

so target gain G = 200

Fast Ignition 
Target

2 MJ / 20 ns compression pulse
Wall-plug efficiency η > 5%
Optics lifetime of 109 – 1010 shots

so ~0.5 µm wavelength 

Compression and Ignition Laser Pulses

Ignition 
Laser

300 kJ / 10 ps ignition pulse
0.5 – 1 µm wavelength

Design Choices Requirements



NIF’s driver laser produces 1.8 MJ and is comparable 
to the IFE compression laser in size and energy 

5 Hz1 shot / 
2 hours

Repetition 
rate

< $500 /J~ $500 / JCost

> 5%0.75%Wall-plug 
efficiency

0.5 µm0.35 µmWavelength
2 MJ1.8 MJ Energy

IFE 
Compression 

Laser

NIF

• NIF uses passively-cooled, flashlamp-pumped laser slabs 
• The IFE compression laser uses diode-pumped, actively-cooled slabs 

to meet efficiency and repetition rate requirements
• Nonetheless, NIF provides much useful information to designers 

- costs, learning curves, and “lessons learned”
- importance of using optics that have good manufacturing characteristics      
- analysis tools, work-breakdown structure, requirements documents

215 m

-192 laser beams
- 9.4 kJ per beam



Mercury is a test-bed for developing high-average-power 
diode-pumped solid-state laser technology for IFE 
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• Mercury addresses issues 
important to IFE drivers:
- high-power laser diodes
- thermal management for optics
- optics lifetime
- growth of Yb:S-FAP, a high-gain 

slab material



Diodes are becoming cheaper, more 
powerful, and more efficient

• Several companies supported by the DARPA Super-High-Efficiency Diode 
Sources (SHEDS) Program have developed diodes with electrical-to-optical 
efficiency > 70%

• Goal of quantum-dot diode program at the University of Central Florida is 
> 90% efficiency
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High saturation-fluence, long-storage-lifetime 
materials have both advantages and disadvantages

Lower diode cost and/or
higher storage efficiency – good !

Higher stored energy density,
fewer laser slabs needed,
higher storage efficiency – good !

Lower extraction efficiency,
greater damage risk, or
greater wavefront distortion  – bad !
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A Nd:glass laser with a NIF-like beamline design is a 
viable low-risk option – when diodes are cheap  

Brewster-angle slabs are 
stacked in groups of four 
and are gas cooled

Diode 
Arrays

beam

He flow
between
slabs

• 20 kJ / beamline requires high-damage-
threshold optics
• Overall wall-plug efficiency ~ 13%
• 100 beamlines are needed for a 2-MJ laser

harmonic
converter

 20 kJ 

44-slab 
amplifier

20-slab 
amplifier
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0.1  J

Front 
End

G0 = 15,      4 passes

2 passes 

Pockels
Cell

Polarizer

$260 M$2600 M2-MJ 
system

$2.6 M$26 M20-kJ 
beamline

@1¢ / W@10¢ / WUnit 
costs

Diode costs 

260 MW, 360 µsDiodes

 φsat = 4.6 J/cm3

 τstorage = 360 µs
 α = 5%/cm
 ρ = 0.24 J/cm3



High saturation-fluence, long-storage-lifetime 
materials have advantages and disadvantages

Higher stored energy density,
fewer laser slabs needed,
higher storage efficiency – good !

Lower extraction efficiency,
greater damage risk, or
greater wavefront distortion  – bad !
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Transparent ceramics are likely to revolutionize the 
manufacture of crystalline laser-gain media

• Strengths
–Crystalline material but can be made in 
large sizes, like glass

–Optical quality comparable to glass
–Rapid development path due to many 
users

• Limitations

– Currently require development in pulsed 
laser operation damage threshold

–Today only applicable to cubic structures 
– YAG, Y2O3, SrF2, 



A Yb:SrF2 multipass design would  be 
attractive even when diodes are expensive

Issues
• Optical loss reduces extraction efficiency
• Optical damage risk
• Spatial-filter pinhole closure
• Heating of the Pockels Cell by absorbed light
• Wavefront distortion from many passes

24 MW, 3.7 ms

G0 = 2.3 , 40 passes

3-slab 
amplifier

15 JDiodes
Front 
End

polarizer

23 k J

harmonic
converter

20 k J

• 20 kJ / beamline
• Overall wall-plug efficiency ~ 13%
• 100 beamlines are needed for a 2-MJ laser

$24 M$240 M2-MJ 
system

$0.24 M$2.4 M20-kJ 
beamline

@1¢ / W@10¢ / WUnit 
costs

Diode costs 

 φsat = 115 J/cm3

 τstorage = 9.2 ms

α = 5%/cm
ρ = 5.75 J/cm3

Pockels
Cell



• Wall-plug efficiency is ~14%

Pulse-stacking methods can reduce beamline counts

harmonic 
converters

Only 25 beamlines are 
needed for a 2-MJ laser

time

Issues
• Multipass issues from previous slide
• High-damage-threshold gratings
• Gain bandwidth, reduced gain in wings

?
 4 x 
 20 kJ 

Grating

?
 4 x 
 20 kJ 

Grating

96 MW, 
3.7 ms 

G0 = 5.3           16 passes

15 JFront 
End

6-slab 
amplifier

Diodes

100 k J
6-slab 

amplifier

Diodes

Gratings

4 x
20 kJ

G0 = 5.3

• Four pulses of different wavelengths are 
separated by gratings
• Pulses arrive at target chamber simultaneously

 Yb:SrF2 amplifiers

Grating



But what if
- diodes stay expensive
- damage thresholds stay low
- wavelength-division multiplexing doesn’t 
work out 

?



A possible solution is a laser-pumped laser

Drive 
Laser

Target 
Chamber

Front End 
Laser

Diodes

Pump laser

diodes

pump laser

drive laser

~ many ms

~ 0.1 – 1 µs

~ 10-20 ns

• Optimize pump laser for storage
- use gain medium with a long storage lifetime, high saturation fluence
- extracting at high fluence is OK when pulselengths are 100s of ns long

• Optimize the drive laser for producing 10-20 ns-long pulses
- use gain medium with low saturation fluence, short storage lifetime
- short storage lifetime is OK since energy is extracted 
< 1µs after pumping

Idea:
Separate the two main amplifier functions so that each may be 
better optimized, separately

- a pump laser stores energy and pumps a drive laser
- the drive laser produces 10-20-ns compression pulses



A pump-laser design using Yb:SrF2 produces 
200 kJ per beamline at 0.5µm

Damage fluences are 100s of J/cm2 at pulselengths of 100s of ns
- damage fluences scale as ~ τ½

• Only ~15-20 beamlines are needed to pump the driver beam lines
of a 2-MJ compression laser

• With internal harmonic converter, ~70% of stored energy can be 
converted and output at ~0.5 µm over several 10s of passes

- no Pockels Cell switch needed for switching, but gain must be 
held off during pumping, possibly with a saturable absorber 
- 0.5-µm light can pump titanium-doped sapphire lasers
- converter requires development 

• Poor beam quality is OK

215 MW, 
3.7 ms 

G0 =21           

1 JFront 
End

11-slab 
amplifier

Diodes

11-slab 
amplifier

Diodes

G0 =21
 harmonic 
converter

 dichroic
 mirror

200 k J



Pump light is delivered through the 
sides of the active-mirror arrays

Front End

output

output

Plan view

diverging lens
diffractive 
optics

two-
dimensional 
active-mirror 
arrays

Pump Laser

Pump Laser

Front End



Amplifier cavities can be set up around the active-
mirror arrays by using mirrors and spatial filters 

active mirror

mirrors

spatial filters

• Only one pair of beamlines are shown here, for clarity

• Not shown are:
- beam lines that are parallel to the illustrated beamlines
- beam lines that are orthogonal to the illustrated beamlines

input

input

output

output



Pump light for each array is delivered 
through openings in the facing array

active mirrors

pump light



A side view shows how beamlines 
enter and exit the array

end 
mirrors

side view
beam output, end view

- Amplifiers are compact

-Each laser slabs helps to 
amplifier 4 laser beams

- In this example, 36 active mirrors 
produce 12 laser beams

- Larger arrays with each beam 
encountering more slabs is 
probably desirable2D active-

mirror arrays

spatial filters
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Significant increases in laser efficiency 
appear to be possible

• There are tradeoffs between capital costs and efficiency
• It is our job to study tradeoffs for practical systems



Laser “skunkworks” activities have been undertaken to 
develop low cost, high-efficiency laser drivers

Our work builds upon experience building large flashlamp-pumped laser 
systems and smaller diode-pumped systems

- NIF, Mercury and SSHCL

We have concentrated first on opening up the design space 
- blue-sky ideas, application of developing technologies

Significant reductions in costs and increases in efficiency appear feasible
- only tens of beamlines, > 20% efficiency

We plan to undertake more detailed performance calculations and design 
development in coming months




