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Parallel auxiliary space AMG for definite Maxwell problems
Tzanio V. Kolev

(joint work with Panayot S. Vassilevski)

Motivated by the needs of large mullti-physics simulation codes, we are interested
in algebraic solvers for the linear systems arising in time-domain electromagnetic
simulations. Our focus is on finite element discretizations, and we are developing
scalable parallel preconditioners which employ only fine-grid information, simi-
lar to algebraic multigrid (AMG) for diffusion problems. In the last few years,
the search for efficient algebraic preconditioners for H(curl) bilinear forms has
intensified. The attempts to directly construct AMG methods had some success,
see [12, 1, 7]. Exploiting available multilevel methods on auxiliary mesh for the
same bilinear form led to efficient auxiliary mesh preconditioners to unstructured
problems as shown in [4, 8]. A computationally more attractive approach was
recently proposed by Hiptmair and Xu [5]. In contrast to the auxiliary mesh idea,
the method in [5] uses a nodal H1-conforming auxiliary space on the same mesh.
This significantly simplifies the computation of the corresponding interpolation
operator.

In the present talk, we consider several options for constructing unstructured
mesh AMG preconditioners for H(curl) problems and report a summary of com-
putational results from [10, 9]. Our approach is slightly different than the one
from [5], since we apply AMG directly to variationally constructed coarse-grid
operators, and therefore no additional Poisson matrices are needed on input. We
also consider variable coefficient problems, including some that lead to a singu-
lar matrix. Both type of problems are of great practical importance and are not
covered by the theory of [5].

We are interested in solving the following variational problem stemming from
the definite Maxwell equations:

(1) Find u ∈ Vh : (α curlu, curlv) + (β u,v) = (f ,v) , for all v ∈ Vh .

Here we consider α > 0 and β ≥ 0 which are scalar coefficients, but extensions
to (semi)definite tensors are possible. We allow β to be zero in part or the whole
domain (in which case the resulting matrix is only semidefinite and for solvability,
the right-hand side should be chosen to satisfy compatibility conditions). Let Ah

be the stiffness matrix corresponding to (1), where Vh is the (lowest order) Nédélec
space associated with a triangulation Th.

Let Sh be the space of continuous piecewise linear finite elements associated
with the same mesh Th as Vh, and Sh be its vector counterpart. Let Gh and Πh

be the matrix representations of the mapping ϕ ∈ Sh 7→ ∇ϕ ∈ Vh and the nodal
interpolation from Sh to Vh, respectively. Note that Gh has as many rows as the
number of edges in the mesh, with each row having two nonzero entries: +1 and
−1 in the columns corresponding to the edge vertices. The sign depends on the
orientation of the edge. Furthermore, Πh can be computed based only on Gh and
on the coordinates of the vertices of the mesh.

1



The auxiliary space AMG preconditioner for Ah is a subspace correction method
utilizing the subspaces Vh, GhSh, and ΠhSh. Its additive form reads (cf. [13])

(2) Λ−1
h + GhB−1

h GT
h + ΠhB−1

h ΠT
h ,

where Λh is a smoother for Ah, while Bh and Bh are efficient preconditioners
for GT

h AhGh and ΠT
h AhΠh respectively. Since these matrices come from elliptic

forms, the preconditioner of choice is AMG (especially for unstructured meshes).
If β is identically zero, one can skip the subspace correction associated with Gh,

in which case we get a two-level method.
The motivation for (2) is that any finite element function uh ∈ Vh allows for

decomposition of the form (cf., [5]) uh = vh +Πhzh +∇ϕh with vh ∈ Vh, zh ∈ Sh

and ϕh ∈ Sh such that the following stability estimates hold,

(3) h−1‖vh‖0 + ‖zh‖1 ≤ C ‖ curluh‖0 and ‖∇ϕh‖0 ≤ C ‖uh‖0.

A parallel solution algorithm based on (2) was implemented in the hypre li-
brary [6], under the name AMS (Auxiliary space Maxwell Solver). The internal
AMG V-cycles employ hypre’s algebraic multigrid solver BoomerAMG [2]. Our
results on unstructured meshes in two and three dimensions, including problems
with variable coefficients and zero conductivity, clearly demonstrate the scalabil-
ity of this preconditioner on hundreds of processors. A sample of the numerical
experiments to be presented is shown in Table 1, using the following notation: np
is the number of processors in the run, N is the global size of the problem, and t
denotes the average time to solution (in seconds) on a machine with 2.4GHz Xeon
processors.
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np N p t
−8 −4 −2 −1 0 1 2 4 8

1 83,278 9 9 9 9 9 9 10 11 11 5s
2 161,056 10 10 10 10 10 10 10 11 11 9s
4 296,032 11 12 12 12 11 11 12 13 13 9s
8 622,030 13 13 13 12 12 12 13 15 14 12s

16 1,249,272 13 13 13 13 13 13 13 15 14 13s
32 2,330,816 15 15 15 15 15 15 15 16 15 14s
64 4,810,140 16 16 16 16 16 15 16 18 17 17s

128 9,710,856 16 16 16 16 16 16 16 17 17 23s
256 18,497,920 19 19 19 19 19 19 19 21 20 27s
512 37,864,880 21 20 20 20 20 20 20 23 22 32s

1024 76,343,920 20 20 20 20 20 20 20 21 21 56s

Table 1. Number of AMS-PCG iterations with tolerance 10−6,
for the problem (1) on the unit cube with α = 1, and β ∈ {1, 10p}
having different values in the shown regions (cf. [3]).
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