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Abstract 

Immobilization of proteins onto surfaces is of great importance in numerous applications, 

including protein analysis, drug screening, and medical diagnostics, among others. The 

success of all these technologies relies on the immobilization technique employed to 

attach a protein to the corresponding surface. Non-specific physical adsorption or 

chemical cross-linking with appropriate surfaces results in the immobilization of the 

protein in random orientations. Site-specific covalent attachment, on the other hand, leads 

to molecules being arranged in a definite, orderly fashion and allows the use of spacers 

and linkers to help minimize steric hindrances between the protein and the surface. The 

present work reviews the latest chemical and biochemical developments for the site-

specific covalent attachment of proteins onto solid supports. 
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Introduction  

Many experimental approaches in biology and biophysics as well as applications in 

diagnosis and drug discovery require proteins to be immobilized on solid substrates.1-6 

Immobilized proteins are instrumental in identifying protein–protein,3 protein–DNA,7 and 

protein–small molecule interactions;8 they can also be used for a variety of diagnostic and 

profiling purposes.9,10  

Enormous progress has been made in immobilizing DNA biomolecules onto different 

types of solid supports.11 But the immobilization of proteins has been a particularly 

challenging task, mainly due to the heterogeneous chemical nature of protein surfaces 

and the marginal stability of the native, active tertiary structure over the denatured, 

inactive random coil structure. 

Most of the available methods for immobilizing proteins onto solid supports have 

traditionally relied on non-specific adsorption12,13 or on the reaction of naturally 

occurring chemical groups within proteins (mainly amines and carboxylic acids) with 

complementary reactive groups chemically introduced onto the solid support.13-15 In both 

cases, the corresponding proteins are attached to the surface in random orientation which 

may cause the loss of the protein’s biological activity.3 The use of recombinant affinity 

tags addresses the orientation issue.2,16-23 However, in most cases the interactions of the 

tags are reversible and not stable over time.22,24-27 Site-specific covalent immobilization, 

on the other hand, allows the proteins to be arranged in a definite, controlled fashion. 

This process requires the presence of two unique and mutually reactive groups on the 

protein and the support surface. The reaction between these two groups should be highly 

chemoselective, thus behaving like a molecular “velcro.”28,29 Also, the reaction should 
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work efficiently under physiological conditions (i.e., in aqueous buffers around neutral 

pH) to avoid the denaturation of the protein during the coupling step. Finally, it is 

desirable that the reactive group on the protein be obtained using recombinant protein 

expression techniques. The present mini-review examines the latest developments for the 

site-specific immobilization of functional proteins onto solid supports. 

Chemoselective immobilization of functional proteins onto solid supports 

Most of the methods suitable for the chemoselective attachment of proteins to surfaces 

are based on ligation methods originally developed for the synthesis, semi-synthesis, and 

selective derivatization of proteins by chemical or biochemical means.30-36 All of these 

methods involve derivatizing a protein with a unique chemical group at a defined 

position, which will later react chemoselectively with a complementary group previously 

introduced into the surface (see Fig. 1).  

Surface modification  

Silicon, metals (mainly Au and Ag), and semiconductor (i.e., Ag2S, CdS, and CdSe)-

based substrates are among the most common materials used to immobilize proteins in 

micro- and nano-biotechnology. Si-based substrates are usually modified using 

derivatized trialkoxysilanes such as (3-aminopropyl)-trialkoxysilane (APS) or (3-

mercaptopropyl)-trialkoxysilane, which are able to introduce an amino or thiol group, 

respectively. These functionalities can be further chemically modified to introduce 

appropriate linkers where the proteins can be covalently attached in a chemoselective 

fashion.  

Sulfur- and selenium-containing compounds can also be used for the modification of 

substrates based on several transition metals (Au, Ag and Pt)37,38 or semiconductor 
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materials (e.g., Ag2S, CdS and CdSe).14 The most studied system, however, uses 

alkanethiols on gold surfaces. Chemisorption of alkanethiols as well as alkyl disulfides 

on clean gold gives rise to similar levels of surface coverage, although thiols react faster 

than disulfides.37,39 Our group has developed a new efficient solid-phase synthetic 

scheme (see Fig. 2) for the rapid generation of modified alkanethiols.40,41 Our group and 

others have used this approach for the chemical synthesis of different modified alkane 

thiols that have been successfully used to immobilize different biological functional 

proteins onto Si-based and Au surfaces.40-43 

Protein immobilization using Expressed Protein Ligation 

Our group has pioneered the use of Expressed Protein Ligation (EPL) for the 

chemoselective attachment of biologically active proteins to produce protein 

microarrays41 (Fig. 3). Key to this approach is the use of recombinantly produced protein 

α-thioesters, which can be efficiently attached to surfaces containing N-terminal Cys 

residues through Native Chemical Ligation (NCL, Fig. 3). In this reaction, independently 

developed by Kent 44 and Tam,45 two fully unprotected polypeptides, one containing a C-

terminal α-thioester group and the other a N-terminal Cys residue, react chemoselectively 

under neutral aqueous conditions to form a native peptide bond at the ligation site. The 

initial step in this ligation involves the formation of a thioester-linked intermediate, 

which is generated by a transthioesterification reaction involving the C-terminal thioester 

moiety of one fragment and the N-terminal Cys thiol group of the other. This 

intermediate then spontaneously rearranges to produce a native peptide bond at the 

ligation site.  
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We have recently used this process to immobilize several biologically active proteins 

onto modified glass surfaces through their C-termini.41 In this work, two fluorescent 

proteins (EGFP and DsRed) and a SH3 domain protein C-terminal α-thioesters were 

readily expressed in E. coli, using an intein expression system.46 The α-thioester proteins 

were then immobilized onto a N-terminal Cys-coated glass slide. The chemical 

modification of the glass slide was accomplished first by silanization with (3-

acryloxypropyl)-trimethoxysilane and then reacting with a mixture of PEGylated thiol 

linkers 1 and 2, shown in Fig. 3B, in a molar ratio of 1:5, respectively. Linker 1 contained 

a protected N-terminal Cys residue for the selective attachment of the α-thioester 

proteins. Linker 2 was used as a diluent to control the number of reactive sites on the 

surface. Linker 1 contains a longer PEG moiety than linker 2 to ensure that the reactive 

Cys groups were readily available to react with the corresponding protein α-thioester in 

solution. When the derivatization was complete, the corresponding protecting groups of 

the Cys residue from linker 1 were removed by a brief treatment with trifluoroacetic acid. 

Typically, the ligation reactions were kept in the dark at room temperature for 36 h, and 

the minimal protein concentration required for acceptable level of immobilization was 

found to be ≈50 µM. 

Yao and co-workers have also used NCL and EPL, for the selective immobilization of 

N-terminal Cys-containing polypeptide47 and proteins48 onto α-thioester-coated glass 

slides. In this case, the polypeptide–proteins are site-specifically immobilized through 

their N-termini, which may be convenient in cases where the C-terminal immobilization, 

described earlier, affects the activity of the protein. 

Protein immobilization using the Staudinger ligation reaction 
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Azido-containing proteins can be chemoselectively immobilized onto solid supports 

modified with a suitable phosphine via a modified version of the Staudinger ligation 

reaction.30,34,49-52 This reaction allows the formation of an amide bond between an 

arylphosphine moiety and azide group (Fig. 4). This ligation reaction is highly 

chemoselective and works with better yields when Z is –CH2- and X is sulfur (i.e., a 

thioester function). The reactive arylphosphine derivative can be easily introduced onto 

carboxylic- or amine-containing containing surfaces.24,51  

The azido function is not present in any naturally occurring protein. Tirrell, Bertozzi, and 

co-workers, however, have reported a novel method for incorporation of azido groups 

into recombinant proteins.53,54 Unnatural azido-containing aminoacids were incorporated 

in recombinantly expressed proteins using engineered methionyl-tRNA synthetases in 

combination with auxotroph E. coli strains. This approach, however, is not site specific 

for proteins containing more than one methionine residue. 

An elegant way to overcome this limitation was recently developed by Waldmann and 

co-workers51 using in vitro EPL for the site-specific introduction of an azido group at the 

C-terminus of a protein. This approach also allows the incorporation of other functional 

tags, labels, or reporter groups. More recently, Raines and co-workers55 have shown that 

the thioester linkage between a target protein and intein can also be efficiently cleaved by 

bifunctional hydrazides bearing an azido group. This procedure appends an azido group 

to the target protein in a single step without the need to use strong reducing conditions. 

Protein immobilization using “click” chemistry 

The Cu(I)-catalized Huisgen 1,3-dipolar azide-alkyne cycloaddition, also known as 

“click” chemistry,35 has also been successfully used to immobilize azido- or alkyne-
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containing proteins onto alkyne- or azido-coated surfaces, respectively.56-58 (see Fig. 5) 

This cycloaddition reaction appears to be very forgiving and does not require any special 

precautions. In the presence of Cu(I) as catalyst, the reaction proceeds to completion in 6 

to 36 h at ambient temperature in aqueous buffers at pH 7-8. Under these conditions, the 

cycloaddition is highly regioslective producing the corresponding 1,4-disubstituted 

tetrazole as the only product (Fig. 5A).  It has been found that meanwhile a number of 

Cu(I) sources can be used directly, the catalyst is better prepared in situ by reduction of 

Cu(II) salts, such as CuSO4•5H2O. Among the different reducing agents that can be used 

in this cycloaddition, TCEP is one of the most competent reagents for the in situ 

reduction of Cu(II) and has been shown to react only very slowly with aliphatic azides.36  

The site-specific incorporation of an alkyne group at the C-terminus of proteins has also 

been accomplished using in vitro EPL56 or nucleophilic cleavage of intein fusion proteins 

with derivatized hydrazines.55 More recently, Poulter and Distefano have independently 

reported the use of protein farnesyltransferases (PFTase) for the selective alkylation of C-

terminal Cys residues of proteins with farnesyl analogues containing the alkyne 

function.57,58 PFTases catalize the alkylation of the thiol function in the Cys located in C-

terminal CaaX motifs, where X = Ala, Ser by farnesyl diphosphate. This reaction is 

general for any soluble protein bearing a C-terminal CaaX motif and works very well for 

the chemoenzymatic incorporation of alkyne and azido groups in the C-terminus of 

proteins. 

Although this cycloaddition reaction can in principle be used for the chemoselective 

immobilization of alkyne- or azide-modified proteins onto azide- or alkyne-coated 

surfaces, respectively, Lin and co-workers56 have found that alkyne-modified proteins 
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react more efficiently with azide-coated surfaces. This effect has been attributed to the 

fact that Cu(I) coordinates with alkynes in solution more rapidly and with higher affinity 

than with the azide group, thereby enhancing the rate of the cycloaddition reaction with 

the surface azido group. Using these conditions, the minimal concentration of protein 

required for acceptable level of immobilization was found to be in the low µM range.56,57  

Chemoenzymatic methods for the site-specific immobilization of proteins 

All the methods described so far rely on pure chemoselective reactions with little or no 

activation at all. That means that the efficiency of these reactions depends on the 

concentration of the reagents (i.e., on the concentration of the protein to be attached to the 

corresponding surface) to bring both reactants close enough to allow them to react in an 

efficient way. 

One way to overcome this intrinsic barrier and make ligation reactions more efficient is 

to introduce complementary moieties in the protein and the surface, which can form a 

stable and specific intermolecular complex. Once formed, this complex brings both 

reactive groups in close proximity, thus increasing the local effective concentration of 

both reactants. 

Protein immobilization using active site-directed capture ligands 

The idea of using reactive ligands to capture proteins has been used by Meares and co-

workers59 for creating antibodies with infinite affinity. In this interesting work, the 

authors created an antibody against a metal-complex ligand, which contained a reactive 

electrophile close to the binding site. When the antibody and the ligand are apart, their 

complementary groups do not react, mainly due to the dilution effect. However, when the 



  10 

antibody specifically binds the ligand, the effective concentration of their complementary 

groups is greatly increased, leading to the irreversible formation of a covalent bond. 

Mrksich and co-workers60 have used this same principle for the selective attachment of 

proteins onto surfaces with total control over the orientation. They used the protein 

calmodulin fused with the enzyme cutinase as a capture protein. Cutinase is a 22 kDa 

serine esterase that is able to form a site-specific covalent adduct with chlorophosphonate 

ligands.61 The chlorophosphonate group mimics the tetrahedral transition state of an ester 

hydrolysis. When it binds specifically to the active site of the enzyme, the hydroxyl group 

of the catalytic serine residue reacts covalently with the chlorophosphonate to yield a 

stable covalent adduct that is resistant to hydrolysis. 

In this case, the authors use a gold surface to immobilize the cutinase inhibitor. The 

attachment is extremely selective and can be carried with the whole crude E. coli 

periplasmic lysate containing the cutinase fusion protein.60 This approach has also been 

used to prepare antibody arrays on self-assembled monolayers presenting a phosphonate 

capture ligand. 62 

Walsh and co-workers26 have also recently reported a very elegant scheme for the 

chemoenzymatic site-specific modification of proteins. In their approach, the target 

proteins are expressed as fusions to a peptide-carrier protein (PCP) excised from a 

nonribosomal peptide synthetase (NRPS). NRPS PCPs are relatively small (8-10 kDa), 

autonomously folded, compact, and stable domains. These domains contain one specific 

Ser residue that can be catalytically phosphorylated by the phosphopantetheinyl (Ppant) 

transferase SFP using CoA (Coenzyme A) as a substrate. Using the Ppant transferase SFP 

from B. subtilis, the authors were able to specifically label proteins with Ppant-biotin 
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using biotin-CoA as substrate. These biotin-labeled proteins were used to produce protein 

microarrays onto an avidin-coated glass slide. Johnsson and co-workers63 have used a 

similar approach involving the transfer of phosphopantetheine derivatives to a peptide-

acyl carrier protein fused to the protein of interest. In a similar way, this approach could 

be used for the site-specific immobilization of PCP-fusion proteins onto surfaces 

derivatized by CoA. 

Johnsson and co-workers64 have also developed a novel approach for the site-specific 

labeling of recombinant proteins using a mutant of human O6-alkylguanine-DNA 

alkyltransferase (AGT). This modified enzyme can efficiently transfer a benzyl group to 

itself when presented with O6-benzylguanine (BG) derivatives. The mutant enzyme is 

promiscuous with respect to the substituents appended to the benzyl group, enabling a 

range of probes to be used for site-specific labeling. The same group has recently 

reported the use of this active site-directed capture approach for the selective 

immobilization of different AGT-fusion proteins onto O6-benzylguanine-coated slides.65 

The fact that the AGTs from E. coli and yeast do not react with BG derivatives allows 

direct immobilization without purification of AGT-fusion proteins expressed in the above 

microorganisms. It should be noted, however, that for AGT-fusion proteins expressed in 

mammalian cells, the use of specific inhibitors is required to prevent the unwanted 

attachment of cognate AGTs. These inhibitors have been designed to inhibit endogenous 

AGTs without affecting the engineered AGT used for the site-specific attachment.66 

Protein immobilization by protein trans-splicing 

One of the main limitations of site-specific capture methods for site-specific 

immobilization of proteins is that the linker between the protein of interest and the 
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surface is always another protein or protein domain. In some cases, the presence of such a 

large linker could give rise to problems, especially in those applications where the 

immobilized proteins will be involved in studying protein–protein interactions with 

complex protein mixtures.2,67  

To address this problem, our group has developed a new traceless capture ligand 

approach for the selective immobilization of proteins to surfaces based on the protein 

trans-splicing process.42 (Fig. 6) This process is similar to protein splicing68,69 with the 

only difference being the intein self-processing domain is split in two fragments (called 

N-intein and C-intein, respectively).70,71 

In our approach, the C-intein fragment is covalently immobilized onto a glass surface 

through a PEGylated-peptide linker while the N-intein fragment is fused to the 

C-terminus of the protein to be attached to the surface. When both intein fragments 

interact, they form an active intein domain, which ligates the protein of interest to the 

surface at the same time the split intein is spliced out into solution (see Fig. 7). 

Key to our approach is the use of the naturally split DnaE intein from Synechocystis sp. 

PCC6803.72 The C- and N-intein fragments of the DnaE intein are able to self-assemble 

spontaneously (Kd = 0.1-0.2 µM), not requiring any refolding step.42,73 The DnaE intein-

mediated trans-splicing reaction is also very efficient under physiological-like conditions 

(τ1/2 ≈ 4 h and trans-splicing yields ranging from 85% to almost quantitative).42 

Using this strategy, we have successfully immobilized several proteins to chemically 

modified SiO2-based substrates. Immobilizing the proteins using protein trans-splicing is 

highly specific and efficient. It allows the use of protein mixtures and eliminates the need 

for the purification and/or reconcentration of the proteins prior to the immobilization 
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step. The required minimum protein concentration for efficient immobilization was 

estimated to be sub-micromolar.42 More importantly, once the protein is immobilized to 

the surface, both intein fragments are spliced out into solution, providing a completely 

traceless method of attachment. All these features allow this methodology to be easily 

interfaced with cell-free protein expression systems with rapid access to the high-

throughput production of protein chips and other types of biosensors. 

Summary 

We have reviewed some of the latest developments for the covalent site-specific 

immobilization of active proteins onto solid supports. The ability to interface active 

biomolecules such as proteins with solid supports is of great importance for the 

development of new technologies in biotechnology and biophysics. For example, 

functional protein microarrays are starting to become a key research tool in proteomics 

research.3,4,41,42,74,75 Like DNA microarrays, protein microarrays allow for high-

throughput analysis of thousand of proteins simultaneously for rapid characterization of 

new protein–protein, protein–nucleic acid, and protein–small molecule interactions as 

well as enzymatic activity and post-translational modifications.74,76,77 

Other potential applications for site-specific immobilization of protein onto surfaces 

involve the creation of optimized biosensors.78,79 An ordered protein film will have a 

higher activity density that a random protein film, where a significant percentage of the 

protein molecules may be bound to the surface in potentially inactive conformations. 

With ordered proteins, biosensors can be miniaturized without losing sensitivity. Also, 

the combination of recent advances in nano-lithography technique 80 combined with the 

ability to bind proteins in an extremely ordered fashion allows for the creation of 
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molecular nanopatterns that can be used to better understand the processes involved in 

macromolecular assembly.40,81  
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Figures and Figure Legends 

 

Figure 1. General concept of a chemoselective reaction between a protein and an 

appropriately modified surface. 
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Figure 2. Synthetic scheme for the rapid and efficient preparation of chemically modified 

thioalkanes.40-42,81 The solid ellipsoid represents the different molecular functionalities 

that can be incorporated in the thioalkane for surface modification. 
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Figure 3. (A) Site-specific attachment of a protein α-thioester through its C-terminus. 

(B) Pegylated thiol linkers used to attach C-terminal α-thioester proteins onto acryloxy-

modified glass surfaces.41 
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Figure 4. Chemoselective attachment of proteins to surfaces using a modified version of 

the Staudinger reaction. (A) Proposed mechanism for the Staudinger reaction. (B) Site-

specific immobilization of an azide-containing protein onto a solid support using a 

traceless version of the Staudinger reaction. 
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Figure 5.  Site-specific immobilization of proteins onto surfaces using the Cu(I) 

catalyzed Huisgen 1,3-dipolar cycloaddition or “click” chemistry. (A) Mechanism and 

regiospecificity of the Huisgen 1,3-dipolar cycloaddition. In the absence of Cu(I), the 

reaction requires high temperatures and usually results in a mixture of the 1,4- and 1,5-

disubstituted tetrazoles. The addition of Cu(I) as catalyst produces only the 1,5-

regiosomer in very mild conditions.35 (B) Immobilization of azide- and alkyne-containing 

proteins using catalyzed Huisgen cycloaddition.56-58 
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Figure 6. Proposed mechanism for protein splicing in cis (left) and in trans (right).46,69,82 
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Figure 7. Site-specific immobilization of proteins onto a solid support through protein 

trans-splicing.42 
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