
UCRL-CONF-228878

Intelligent Classification and
Visualization of Network Scans

L. Chen, C. Muelder, K. Ma, A. Bartoletti

March 9, 2007

ACM SIGKDD 2007
San Jose, CA, United States
August 12, 2007 through August 15, 2007

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

bledsoe2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Intelligent Classification and Visualization
of Network Scans

Lei Chen Chris Muelder
University of California, Davis

Kwan-Liu Ma

Tony Bartoletti
Lawrence Livermore National Laboratory

ABSTRACT
Network scans are a common first step in a network intru-
sion attempt. In order to gain information about a potential
network intrusion, it is beneficial to analyze these network
scans. Statistical methods such as wavelet scalogram anal-
ysis have been used along with visualization techniques in
previous methods. However, applying these statistical meth-
ods to reduce the data causes a substantial amount of data
loss. This paper presents a study of using associative mem-
ory learning techniques to directly compare network scans
in order to create a classification which can be used by itself
or in conjunction with existing visualization techniques to
better characterize the sources of these scans. This produces
an integrated system of visual and intelligent analysis which
is applicable to real world data.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General; I.3.8 [Computer
Graphics]: Applications; I.5.2 [Pattern Recognition]:
Design Methodology—pattern analysis

General Terms
Design, Performance, Security

Keywords
Associative Memory, Classification, Computer Security, In-
formation Visualization, Machine Learning, Network Scans,
Pattern Reconstruction

1. INTRODUCTION
This paper presents an intelligent system approach to vi-
sual characterization of network scans. This characteriza-
tion process is a useful tool for analysts in counterintelli-
gence efforts against potential network intruders. Scanning
a network is a common first step in a network intrusion
attempt. The process of scanning a network is usually per-
formed to determine what exists on a network. For example,
if an attacker is looking for exploitable web servers, then he

or she would attempt to connect on TCP/UDP port 80 to
every possible IP address within a certain range. If there
is a web server using port 80 at any of these IP address, it
will probably respond. However, for addresses where there
is nothing, or where there is a computer that is not running
a web server, there will be no response. Detecting these
scans is fairly easy, but mining them for information about
the attacker can be relatively difficult.

An attacker can do several things in an attempt to make
such a scan anonymous; for instance, coming from different
source addresses or scanning destination addresses in a ran-
dom order. In fact, it is even possible to perform a scan in-
directly by using a fake source address so the scan looks like
it is coming from a different computer. Denial of service and
worm propagation attacks can also produce scan-like behav-
ior, and since they do not need the target to respond, they
often fake their source addresses as well. The port number is
also not sufficient for categorizing scans, because both ma-
licious and benign scans can often be run on the same port
number. For example, both a web crawler and a worm that
targets webservers would target port 80. Therefore, some
other metric must be used for categorization purposes.

Experimental results have shown that variations in arrival
time of the scanning connections often have a high correla-
tion with particular sources [17]. That is, the timing infor-
mation produces a digital ‘fingerprint’ that correlates to a
particular source. It is surmised that this correlation is due
to a combination of factors, including the connection ap-
plication software employed, the supporting hardware plat-
form, operating system characteristics, and regular interfer-
ence from other processes on the source system that compete
for these resources. Network location based factors such as
number of hops and nature of intervening routers are cer-
tainly responsible for some degree of the timing structure as
well, and make this a particularly interesting and challeng-
ing problem in network traffic forensics.

The critical question analysts seek to answer is whether the
same source ensemble run in an entirely different network
(hence, different source IP address), would exhibit a timing
structure that is sufficiently similar. This would uniquely
identify the environment, and, by extension, the actor be-
hind the observed activity. Alternatively, the analysts would
like to know the degree to which the effects of intervening
routers produce characteristic packet timing irregularities
for different activities conducted from a constant network

Figure 1: The overall methodology. Known and un-
known scans are collected off the network. The
known scans are used to train the associative mem-
ory in order to create a weight matrix which can
then be used to classify the unknown network scans.
All of these scans can be visualized, with the overall
goal of gaining information about the sources of the
scans.

location. This latter capability would provide a means to
determine the veracity of a given source IP address when
faced with potential address-spoofing.

To answer this question, analysts must first be able to cor-
relate scans from different source addresses based on timing
information. To accomplish this, the analysts need to com-
pare the timing information of very large quantities of net-
work scans quickly and efficiently. Previous methods have
used statistical reduction and visualization to compare these
scans. However, the statistical reduction has an inherent
data loss and can be susceptible to noise problems; and the
direct visualization techniques can become quite unwieldy
as the number of scans increases. Intelligent pattern recog-
nition algorithms are quite good at dealing with these issues.
They are good at reconstructing distorted or incomplete
data, and they scale well to large numbers of inputs. So, an
artificial intelligence based classification methodology was
developed that can be used both alone and in conjunction
with existing visualization techniques to better characterize
potentially hostile scan sources.

1.1 Methodology
The methods used in this paper cover a wide variety of tech-
niques, including statistical analysis, visualization, and ar-
tificial intelligence, with the ultimate goal of aiding in coun-
terintelligence efforts by characterizing potential adversaries
through their scanning activity. An overview of these tech-

niques is shown in Figure 1. In order to analyze and char-
acterize network scans, they must first be detected and ex-
tracted from the raw network data. This is currently being
done though the use of some fairly simple statistical data
mining techniques. These techniques consist of statistically
detecting a scan in progress, then extrapolating backwards
and forwards in time in order to find when the scan starts
and stops. Most of the scans that are detected and extracted
in this manner are caused by unknown sources, and so they
form a set of unknown scans. But some of the extracted
scans originated from known sources, where the parameters
of the scans were carefully controlled. That is, properties
such as the source hardware, software, scanning tool, and
location on the internet are known. This creates a set of
controlled scans, which can then be used as a ground truth
to compare against the unknown scans. Due to the con-
stant scanning activity occurring all the time on the inter-
net, these sets of scans can rapidly grow to be quite large, so
it is infeasible to compare them against each other by hand.
The visualization techniques of [16] are one set of methods
being used to deal with the scalability issues through statis-
tical analysis and visual presentation of both the controlled
and unknown scans. These scans can also be used as inputs
to an artificial intelligence algorithm, which is the focus of
the approach presented here. The controlled scans are used
as training data for an associative memory learning process
which generates a weight matrix. This weight matrix can
then be used in an associative memory reconstruction pro-
cess to take the unknown scans and classify them. These
classified scans can then either be used directly to charac-
terize their sources, or they can be used in the visualization
system to improve its effectiveness at scanner characteriza-
tion.

1.2 Previous Work
The study of network security has been popular for the last
decade. Visualization systems have been developed to vi-
sualize and compare the network scan pattern in order to
detect the potential for attacks. Muelder et al. [16] present
a means of facilitating the process of characterization by us-
ing visual and statistical techniques to analyze the patterns
found in the timing of network scans. The system allows
large numbers of network scans to be rapidly compared and
subsequently identified. Conti et al. [1] use a parallel co-
ordinates system to display scan details and characterize
attacks. Other network visualization tools that show scans
exist, such as PortVis [15], but these tools generally focus on
the detection of suspicious activity and not on the analysis
of such activity. Also, all these systems present the original
scan data, which contain noise and distortion.

Machine learning methods - associative memory models in
particular - have been widely applied in the pattern recog-
nition and classification area. Tavan et al. [21] extend the
neural concepts of topological feature maps towards self-
organization of auto-associative memory and hierarchical
pattern classification in 1990. Stafylopatis et al. [20] pro-
posed a technique based on the use of a neural network
model for performing information retrieval in a pictorial
information system. The neural network provides auto-
associative memory operation and allows the retrieval or
stored symbolic images using erroneous or incomplete infor-
mation as input. In Y. Dai et al’s paper[5] [4], an associate

memory model is proposed which utilizes the facial action
feature rate of occurrence on happiness, easiness, uneasiness,
disgust, suffering, and surprise.

Machine learning algorithms have also been directly applied
to computer security problems in the past. [6] uses a ma-
chine learning technique to analyze log files and look for
anomalies. These techniques have also been applied to in-
trusion detection systems in several approaches [11, 18, 19].
However, all these approaches focus on using the machine
learning to aid in the detection of malicious activity, rather
than the analysis of it, as is done in this paper.

2. SCAN DATA AND VISUALIZATION
The scan data used in this paper was generated and collected
by the Computer Incident Advisory Capability (CIAC) group
from the network at Lawrence Livermore National Lab. The
visualization techniques used are introduced in [16].

2.1 Network Scan Data
Each scan consists of timing information of a scan over
a class B network, which contains 65,536 destination ad-
dresses. The scan data in its most raw form consists of
pairs of destination addresses and times, one for each probe
in the scan. In this form, the data is not very easy to work
with directly, so various transformations were performed to
create a set of modes to visualize different aspects of the
data. For example, mode 20 is used to visualize the number
of connections per unique address and mode 21 is to visual-
ize the time span between the first connection attempt and
the last connection attempt to each address. Some selected
modes are listed below:

• mode-20 : f(a) = N(v), number of visits per unique
address

• mode-21 : f(a) = tFirst - tLast, the revisit-span for
each address

• mode-22 : f(a) = tFirst - E(tFirst), time deviance for
first probes

• mode-23 : f(a) = tLast - E(tLast), time deviance for
last probes

• mode-24 : f(a) = d(tFirst), time delta on sequential
addresses, first probe

• mode-25 : f(a) = d(tLast), time delta on sequence

2.2 Wavelet Analysis
While each of these data modes transform the scans into
a regular form, a direct comparison would not yield useful
results. For instance, if an attacker scanned every other
network address one day, then came back the next day and
scanned the addresses that were skipped, then a direct com-
parison would reveal no similarity, even though the patterns
would be nearly identical; they would just be out of phase
from each other. However, there are several algorithms uti-
lizing frequency analysis that are useful for handling this
kind of data, such as Fourier transforms and wavelet analy-
sis. Although network scan patterns can exhibit periodic or
quasi-periodic structure, they often contain gaps, aperiodic

(a) Similar patterns (b) Dissimilar patterns

Figure 2: Applying wavelet scalograms creates a
representation that is directly comparable, at the
cost of data loss.

aberrations, and regions where the relative phase of the pe-
riodic structures has shifted. These are things that Fourier
analysis has been found to handle poorly [7].

So wavelets are used because they are relatively resistant
to phase shifts and noise. This means that similar patterns
will have similar wavelet scalograms, even if the patterns
are shifted slightly or different parts of the pattern are miss-
ing, as can be seen in Figure 2(a). But dissimilar patterns
will still produce different scalograms, as can be seen in Fig-
ure 2(b). There are several variations on the wavelets used,
the simplest of which is as follows. Given a series of N = 2n

items D0 = (d0,1, d0,2, ..., d0,N), we can calculate recursively:

•
Dk = (dk,1, dk,2, ...dk,2n−k)

= (
dk−1,1+dk−1,2

2
, ...,

d
k−1,2n−k

−1
+d

k−1,2n−k

2
)

•
Sk = (sk,1, sk,2, ...sk,2n−k)

= (
|dk−1,1−dk−1,2|

2
, ...,

|d
k−1,2n−k

−1
−d

k−1,2n−k |

2
)

• σk =
P Sk

2n−k

for 0 < k < n. At each recursion the σ values are the mean
of the corresponding data series, which estimates the vari-
ance at each resolution. More complicated wavelets can be
calculated by changing the functions used to calculate Dk

and Sk, and are described in [16]. Once these wavelet scalo-
grams are calculated, they can be directly compared to one
another. The downside to using these wavelets is that they
lose fine details in the data, such as where a particular fea-
ture occurs in the pattern. Still, they can be used to create
a good approximate overview from which other information
can be shown.

2.3 Visual Representation
The visual representations of these scans use essentially the
same techniques that have been presented in [16]. Namely,
individual scans are presented in detail in a 256x256 grid,
where the x and y axes represent the third and fourth bytes
of the address respectively. Two examples of scans presented
in this way are shown in Figure 3. Also, in order to represent
large numbers of these scans at once, a graph representation
of the scans was used. In this view, each scan is a node in
a complete graph, where edges are weighted by how similar
the scans are according to the wavelet analysis. A force-
directed layout is then applied to this graph, and clusters of

Figure 3: Sample network scan data patterns of
mode 22

similar scans are grouped together. Edges that are below a
threshold are dropped for clarity. This creates an overview
in which large scale trends, such as clusters, can be seen.
It also provides an interface for selecting and viewing scans
of interest in more detail. An example of such a graph is
shown in Figure 4.

2.4 Binary Coding
For the purposes of this paper, data mode 22 is used and
the data is binary encoded. This is necessary because the
bidirectional associative memory algorithm only works on
binary patterns. In order to extend this algorithm to non-
binary patterns, more than one bit must be used per element
in the pattern. In the simplest encoding used in this paper,
two bits are used for each IP address in the scan. If the
captured time of the first probe is earlier than the expected
time, we give the neuron value “11;” if it is later than the
expected time we give the value “00;” otherwise it is as-
signed “10.” Figure 3 gives an example of two network scan
patterns of mode 22. The blue pixels are neurons with value
“11,” red pixels are neurons with value “00,” and black pix-
els are neurons with value “10.” More bits can be used to
break down the continuous range of possible values into a
finer set of discrete ranges, but this would increase the com-
putational cost and memory usage. The system has two
stages: encoding stage and decoding stage. In the encod-
ing stage, we input all the controlled patterns and encode
them in one weight matrix. In the decoding stage, we input
the deviant patterns and the system will return the recon-
structed patterns using the weight matrix we created in the
encoding stage.

3. APPROACH
There are two main categories of machine learning algo-
rithms: unsupervised and supervised. An unsupervised al-
gorithm approaches a data set with little to no pre-conceived
notions about the classes of items that it contains; it at-
tempts to separate the items into statistically distinct groups
on its own. Examples of unsupervised algorithms include k-
means clustering and self- organizing maps [13, 10]. But, un-
supervised algorithms cannot effectively use controlled data.
Since there is controlled scan data available, a supervised
algorithm is more readily applicable to the task presented
here. A supervised algorithm is given a large number of
examples of items in each class it is to detect; each is la-
beled with the class to which it belongs. Then, when new
items are presented, it puts them into the class they are

Figure 4: A graph of network scans generated
through statistical analysis using wavelet scalo-
grams. Each node represents a scan, and each edge
represents a measure of how similar the scans it con-
nects are. The scans are colored according to port
number.

most likely to belong to. Examples of supervised algorithms
include neural networks [14, 22], support vector machines [2,
3], and associative memory [9]. Of these, associative mem-
ory in particular has been shown to be useful for pattern
recognition, and so it was selected for use here.

3.1 Associative Memory Method
The concept of associative memory was first proposed by
Kohonen T. in [9]. In the human mind, the memory process
takes a stimulus and matches it up with what it remembers
about that stimulus. The nature of associative memory is
an emulation of human memory, and so it works in a similar
way. The associative memory model has many applications,
for example, pattern cognition and reconstruction, image
processing, face, character and voice recognition, databases,
control systems, and robotics. Human memory is quite ro-
bust in that in can correct errors and recognize stimuli even
when the they are incomplete or distorted. Similarly, in as-
sociative memory, given a stimulus pattern that is distorted
or incomplete, associative memories are often able to repro-
duce correct response pattern. It does this by remembering
a set of known patterns and then matching up incoming
unknown patterns against them.

There are a variety of types of associative memory models
that have been studied in the last two decades, including
Hopfield Networks [8] and Bidirectional Associative Mem-
ory (BAM) [12]. While initial results were produced with
Hopfield Networks, it was found that BAM was much faster
and produced results that were just as good, so BAM was

Figure 5: The sample pairs of patterns on layer X
and layer Y .

used for this paper.

3.2 The BAM algorithm
The BAM is one of the hetero-associative memories, such
that the X layer and Y layer of the network have distinct di-
mensions. The BAM structure is commonly built based on a
neural network. The BAM model maps stimulus vectors to
response vectors {(X1, Y1), . . . , (Xi, Yi), . . . , (XN , YN)}. We
use bipolar mode for the two states of the neurons: fire is
1 and not fire is -1. Therefore, Xi is {1,−1}n and Yi is
{1,−1}m. There is a weight between each pair of the neu-
rons in layer X and layer Y. There is no weight between
neurons within the same layer. It has two-way retrieval ca-
pabilities: Xi ¡-¿ Yi In the layer X, each pattern has 65536
(2562) pixels and we use two bits for each pixel. In to-
tal, there are 131,072 (65536 * 2) neurons. In layer Y, the
values of the neurons are encoded using the index of the
corresponding pattern in layer X. Here we use 10 neurons
for layer Y, which allows for memory of up to 210 control
patterns. For example, in the first control pattern, the index
is 1, so the value of the layer Y neurons will be (-1,-1,-1,-1,-
1,-1,-1,-1,-1,1).

The two patterns in layer X and layer Y will be stored as a
pair, some examples of this are provided in Figure 5 There
is a weight between any pair of the neurons. For example,
let us have xi for the value of the ith neuron in layer X and
yj for the value of the jth neuron in layer Y of the kth pair
of controlled patterns. The weight matrix can be calculated
by:

Wij =
K

X

k=1

x
k
ij ∗ y

k
ij (1)

where k is the kth pair of controlled patterns.

In the decoding stage, the system is given an unknown pat-
tern, which maybe a distorted or incomplete controlled pat-
tern. The system will decode the deviant pattern and output
the original controlled pattern. When it goes through the
network, each neuron in the network is updated by:

Figure 6: The user interface. The work flow runs
from top to bottom. The top row shows a set of pat-
terns from which control patterns can be selected.
The middle row shows the set of contrl patterns that
have been selected to train on. And the bottom sec-
tion shows the set of unknown scans for the system
to classify.

y =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

1 if

131072
X

j=1

Wij ∗ xj > θ

previous yi if
131072
X

j=1

Wij ∗ xj = θ

−1 if
131072
X

j=1

Wij ∗ xj < θ

(2)

x =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1 if

10
X

i=1

Wij ∗ yi > θ

previous xi if
10

X

i=1

Wij ∗ yi = θ

−1 if

10
X

i=1

Wij ∗ yi < θ

(3)

where θ is a fixed threshold and n is the number of neurons.
The threshold can be set by the user.

4. RESULTS
Application of the BAM algorithm to actual network scans
yields some useful results. When applied to individual scans,
it can be shown to be quite effective at removing distortions
due to noise. When applied on a larger scale, it can effec-
tively cluster a large set of scans quite rapidly. Finally, the
clusters that it generates can reveal some interesting fea-
tures in the data that statistical analysis missed. A picture
of the interface is shown in Figure 6.

4.1 Classification Examples
To demonstrate how the BAM model works, let us use only
four controlled patterns as the input. Figure 7 shows the
visualization of the four patterns. The weight matrix is cal-
culated using the input controlled patterns.

Figure 7: The four input patterns in our sample

Figure 8 shows the results of inputing one of the control
patterns the system was trained on. As expected, the input
scans at left are mapped exactly to the same scan in the
output scans at right.

Figure 8: The system recalls the same pattern when
we input one of the control patterns

In a second example, shown in Figure 9, the system was
given a deviant pattern that nearly matched one of the con-
trol patterns, but contained noise or distortion. After recon-
struction, the system recalled the original controlled pattern,
and hence has matched up the distorted or incomplete pat-
tern with the control data. The left images are the inputted
scans and the right images are the control scans that the
associative memory method matched them up with.

Figure 9: The system reconstructs the pattern when
given a distorted pattern

Figure 10: A graph showing the results of the BAM
classification. Three main groups are colored, and
examples from each are shown. Outliers are also
shown as black nodes.

Figure 11: A graph showing the results of the BAM classification. Four main groups are colored, and
examples from each are shown. Outliers are also shown as black nodes.

4.2 Visualization Integration
Once these unknown scan patterns have been classified by
matching them up with their associated control patterns, it
is useful to present these results visually to the user. This
is particularly important as the number of classified scans
increases and becomes too unwieldy to analyze by hand.
For this work, it was decided that these results could best
be visualized as a coloring of an existing graph generated by
statistical means as in [16]. An example of this is shown in
Figure 10, where the classification process was run on a small
set of controlled scans. In this example, the set of scans was
split into three groups, of which several samples are shown.
In this image it can be seen that scans that have the same
color do, in fact, have very similar patterns. It can also be
seen that some scans did not match any of the controlled
patterns. This is useful because it points out scans that are
outliers, which should be viewed in more detail.

4.3 Case Studies
Figure 11 shows the results of applying the techniques pre-
sented here to color a graph of over 800 unknown scans col-
lected off the network. One pattern that is readily apparent
is the large number of unclassified scans, which are colored
black in the image. This is indicative of the large number
of different kinds of scans active on the internet that have
not yet been identified. However, by applying an associative
memory approach, these scans have been highlighted by a
process of elimination, indicating a set of scans that would
be beneficial to look at in more detail. Another prevalent
pattern is that the nodes that were clustered by the statis-
tical analysis are generally classified the same according to
the associative memory. However, what is of interest is that
some of the scans within a cluster are classified differently.

Figure 12: A close up of one cluster. Most nodes
are colored red, and look as the detail view on top.
But some are not, and can look different as is shown
in the detail view at bottom.

This is indicating that the machine learning algorithm is
picking up on a detailed pattern that is lost by this statisti-
cal analysis. As is shown in Figure 12, the difference in the
patterns is not necessarily even difficult to discern by eye.
This shows that machine learning techniques can quickly
lead the analyst to find pattern details that were lost by
the statistical analysis. Figure 14(c) shows what happens
when the same test is run on a graph where the scans were
represented with an 8 bit encoding instead (-127 to 127) of
the 2 bit one. As can be seen, this completely changes the
results, and provides another view of the data which can be
investigated. Of interest here is that instead of the clusters
being mostly classified by the BAM algorithm, they were
marked as unknown. Also, the majority of the spread out
scans that were not classified in Figure 11 are now classified.

4.4 Performance Versus Quality
In order to accelerate the process, it was decided that it
might be effective to only use a part of the pattern. So
the process was run on samples of one fourth the size of
the original data. Also, to get better quality results, it was
decided that the process could be run with an 8 bit encoding
of the data instead of the 2 bit encoding described earlier.
Figure 15 shows what some of the patterns look like with 8
bit encoding. Some timing tests were run on a Mac Pro with
a 2.66Ghz Dual-Core Intel Xeon, although only one core was
used. The results of these tests are presented in the graphs
in Figure 13, which show that. reducing the data boosts the
speed of the process and increasing the bit encoding makes
the process take longer.

In Figure 14, it can be seen that the results are mostly
the same between the original graph and the lower qual-
ity graph, but the graph with 8 bit encoded patterns looks
entirely different. In regions of Figure 14(b) that are fairly
similar between two classes of scans, it is possible for scans
to be misclassified by the approximation caused by under-
sampling. Specifically, in the purple cluster at the bot-
tom of the graph, some of the nodes are supposed to be
colored green, as can be seen in Figure 14(a). But since
these nodes are clustered according to the statistical analy-
sis, these scans actually are fairly similar and so this might
actually be indicative of control patterns that were too sim-
ilar, and hence perhaps should be grouped together into one
class anyway. Figure 14(c) shows an entirely different color-
ing of the graph, where many nodes that were not classified
in Figure 14(a) are now classified, and many nodes that were
classified in Figure 14(a) are now not classified. This indi-
cates that the quality of the results is greatly dependent on
the number of bits used to represent the data. Since the
cost was not increased substantially by the increase in the
number of bits, the extra quality provided by this encoding
is very affordable. Although most of the results presented
here were done with only the two bit encoding, future re-
sults should probably be done with the eight bit or higher
encoding.

5. CONCLUSIONS
In the system presented in this paper, a machine learning
method, associative memory, has been used to perform in-
telligent network scan pattern reconstruction and classifica-
tion. When given a set of controlled scan patterns and a
noisy or incomplete pattern, the results show that the sys-

(a) Training Time

(b) Classification Time

Figure 13: Performance boost through undersam-

pling. In both the training and classification stages,
the process scales linearly by the number of pat-
terns. The time required can be reduced by under-
sampling the patterns, at the cost of some quality
of the classification. And the time requirements in-
crease when the quality is improved by using more
bits to encode the data.

(a) 2-bit Encoded, High Resolution

(b) 2-bit Encoded, Low Resolution

(c) 8-bit Encoded, High Resolution

Figure 14: Quality variation. (a) shows the original
graph. (b) shows the results of using only 1

4
of the

data. (c) shows the results of using 8 bits to encode
values instead of just 2. While (a) and (b) are mostly
the same, there are some differences where (b) has
lost some data, particularly in the large cluster at
the bottom of the graph. (c) however is completely
different from either of the other two, which shows
that the results are very dependent on the bit en-
coding, so higher bit encoding should be done when
possible.

Figure 15: Some patterns encoded with 8 bits in-
stead of 2. The quality is much greater and many
more fine details can be seen.

tem can remove the noise and successfully return the com-
plete pattern. These restored patterns are much more con-
venient for further studies, such as pattern comparison or
pattern clustering, for the purpose of correlating malicious
network activities. This paper has also shown the effective-
ness of combining machine learning techniques with exist-
ing visualization and statistical techniques to create a use-
ful visual representation for dealing with large numbers of
network scans. Therefore, the results naturally lead to the
feasibility of applying associative memory models in recon-
struction and recognition of network scan patterns.

From an operational standpoint, one of the most important
tasks in cyber security is ”damage assessment”. When dam-
age (a successful intrusion, or a detected data-exfiltration
activity) is discovered at one point, security managers must
immediately seek evidence of this activity more broadly,
where it may not yet have been discovered. Unfortunately,
this assessment is typically limited to a search for the same
(outsider) IP address, under the naive assumption that the
hostile agent will be using the same IP address for their ac-
tivities directed at range of targets. If the intruder or outside
agent employs different IP address, either in time (evolving)
or in space (intentionally to avoid naive correlation) then
these broader damage assessments will fail.

A system by which an intruder’s ”pattern”, such as exempli-
fied by scan timing characterization, could be used to quickly
”re-identify” an intruder (irrespective of IP address) would
greatly enhance the effectiveness of damage assessment ac-
tivities, enabling detection where none was previously pos-
sible. Our system demonstrates that associative memory
techniques and visualization together form an effective ba-
sis for such a characterization system. The system could
quickly be trained upon the known intruder evidence, and

then sought more broadly to determine the true scope of
damage.

6. FUTURE WORK
One possible extension of this work would be to investigate
looking at the differences between the original scans and the
controlled scans that the associative memory classified them
as. That is, by subtracting out the part of the pattern that
is controlled, it should be possible to isolate the distortion
patterns that are created by uncontrollable effects such as
router delays. Doing so should greatly enhance the capabil-
ity to correlate and identify such common but minute effects,
even when the underlying scans are vastly different due to
large scale effects such as the scanning tool used.

Another aspect that could be considered is the application of
unsupervised algorithms to this task. These would produce
a clustering without the need for controlled data. This could
lead to an even more effective tool for finding outliers in the
graph, since each true outlier would have a unique color
instead of all being grouped into one class.

7. ADDITIONAL AUTHORS
8. REFERENCES
[1] G. Conti and K. Abdullah. Passive visual

fingerprinting of network attack tools.
VizSEC/DMSEC ’04: Proceedings of the 2004 ACM
workshop on Visualization and data mining for
computer security, pages 45–54, 2004.

[2] C. Cortes and V. Vapnik. Support-vector networks.
Mach. Learn., 20(3):273–297, 1995.

[3] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-Based
Learning Methods. Cambridge University Press,
Cambridge, UK, 2000.

[4] Y. Dai, Y. Shibata, T. Ishii, K. Hashimoto,
K. Katamachi, K. N. N. Kakizaki, and D. Cai. An
associate memory model of facial expressions and its
application: In facial expression recognition of
patients on bed. IEEE International Conference on
Multimedia and Expo, 2001.

[5] Y. Dai, Y. Shibata, Y. Nakano, and K. Hashimoto.
Recognition of facial expressions based on the hopfield
memory model. Proceedings of IEEE ICMCS’99,
12:133–137, 1999.

[6] L. Girardin and D. Brodbeck. A visual approach for
monitoring logs. In Proceedings of the 12th Usenix
System Administration conference, pages 299–308,
1998.

[7] A. Graps. An introduction to wavelets. IEEE
Computational Sciences and Engineering, 2(2):50–61,
1995.

[8] J. Hopfield. Neural networks and physical systems
with emergent collective computational abilities. In
Proceedings of the National Academy of Sciences,
volume 79. Washington, DC: National Academy Press,
1982.

[9] T. Kohonen. Associative Memories: A System
Theoretic Approach. Spring-Verlag, Berlin, 1978.

[10] T. Kohonen. Self-Organization and Associative
Memory. Springer-Verlag, Berlin, 3rd edition, 1989.

[11] A. Komlodi, J. Goodall, and W. Lutters. An
information visualization framework for intrusion
detection, 2004.

[12] B. Kosko. Bidirectional associative memories. IEEE
Trans. Syst. Man Cybern., 18(1):49–60, 1988.

[13] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Symposium
on Math, Statistics, and Probability, volume 1, pages
281–297, 1967.

[14] J. L. McClelland, D. E. Rumelhart, and the PDP
Research Group. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. MIT
Press, Cambridge, Massachusets, 1986.

[15] J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti,
and M. Christensen. Portvis: A tool for port-based
detection of security events. In ACM VizSEC 2004
Workshop, pages 73–81, 2004.

[16] C. Muelder, K.-L. Ma, and T. Bartoletti. A
visualization methodology for characterization of
network scans. Visualization for Computer Security,
IEEE Workshops on, pages 4–4, October 2005.

[17] B. Parno and T. Bartoletti. Internet ballistics:
Retrieving forensic data from network scans. Poster
Presentation, the 13th USENIX Security Symposium,
Aug. 2004.

[18] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion
detection with unlabeled data using clustering, 2001.

[19] C. Sinclair, L. Pierce, and S. Matzner. An application
of machine learning to network intrusion detection. In
ACSAC ’99: Proceedings of the 15th Annual
Computer Security Applications Conference, page 371,
Washington, DC, USA, 1999. IEEE Computer Society.

[20] A. Stafylopatis and A. Likas. A pictorial information
retrieval using the random neural network. IEEE
Transactions on Software Engineering, 18(7):590–600,
July 1992.

[21] P. Tavan, H. Grubmller, and H. Khnel.
Self-organization of associative memory and pattern
classification: recurrent signal processing on
topological feature maps. Biological Cybernetics,
64(2):95–105, Dec 1990.

[22] P. J. Werbos. Beyond Regression: New Tools for
Regression and Analysis in the Behavioral Sciences.
PhD thesis, Harvard University, Division of
Engineering and Applied Physics, 1974.

