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It is well known that an activity expansion of the grand canonical partition function 

works well for attractive interactions, but works poorly for repulsive interactions, such as occur 

between atoms and molecules.  The virial expansion of the canonical partition function shows just 

the opposite behavior. This poses a problem for applications that involve both types of 

interactions, such as occur in the outer layers of low-mass stars.  We show that it is possible to 

obtain expansions for repulsive systems that convert the poorly performing Mayer activity 

expansion into a series of rational polynomials that converge uniformly to the virial expansion.  In 

the current work we limit our discussion to the second virial approximation. In contrast to the 

Mayer activity expansion the activity expansion presented herein converges for both attractive and 

repulsive systems. 

 

 PACS numbers(s): 05.20.-y    05.70.Ce   52.25.Kn  

 

I.  INTRODUCTION 
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 In an earlier paper [1] (hereafter referred to as I) we showed that the activity 

(fugacity) expansion obtained from the grand canonical ensemble is the natural procedure 

for obtaining the equation of state of a reacting gas as the temperature changes.  In I we 

developed the activity expansion for the Coulomb interaction among ions and electrons. 

For the attractive interaction between ions and electrons in partially-ionized plasmas the 

activity expansion was particularly useful, but for repulsive interactions among neutral 

atoms it was less useful.  In I we were concerned with low-density, weakly coupled 

hydrogen.  In subsequent papers we extended the method to strongly coupled, high Z 

plasmas [2-5].  The validity of the method has been established by comparison with 

experiments [6-7].  It has also been shown to give good agreement with helioseismic 

measurements of the solar equation of state (EOS) compared to other methods [8,9].  

Molecules are a minor factor in the solar EOS, but must be considered in the outer layers 

of lower mass stars. That is the primary motivation of the present work. 

  

A number of methods to determine the range of convergence of activity and virial 

(density) expansions have been presented [10,13].   They show that the Mayer activity 

expansion has a very limited range of convergence for repulsive potentials, but fares 

much better for attractive potentials.  The opposite is true for the virial expansion, which 

gives good agreement with Molecular Dynamics [14] and Monte-Carlo [15] simulations 

for hardspheres, but converges poorly for attractive interactions.  At electron-volt 

temperatures, material is composed of a plasma component of positive and negative ions, 

which due to the electron-ion interaction, is net attractive and a repulsive component of 

neutral atoms and molecules.  Consequently, an expansion that combines the best features 
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of both expansions is needed. In the current work we show how to construct an activity 

expansion for the neutral component that effectively recovers the much better performing 

virial expansion. 

  

 There has been some earlier work dealing with how to treat the EOS of gases that 

involve both attractive and repulsive interactions.  Friedman and Ebeling [16] proposed a 

method that attempts to combine the best features of both types of expansion. They 

divided the pressure into a density expansion part that represents the reference system 

and an activity expansion part that treats the deviations from the reference system. 

Wertheim [17] developed a more limited, two-density formalism that can be applied to 

reacting molecules. Neither of these methods is suitable for our purposes.  Alternatively, 

we have developed an activity expansion method that treats the Coulomb interactions of 

the plasma by the usual graphical re-summation procedure.  However, the terms in the 

activity expansion attributable to short-range interactions are regrouped into a series of 

rational polynomials that uniformly converge to the virial expansion [18] (hereafter 

referred to as II).  The combined activity expansion is then solved numerically to obtain 

the equation of state for arbitrary states of ionization. We dealt with the plasma 

component in [1-5]. In the present work we are mainly concerned with developing 

methods that improve the convergence properties of the repulsive component. We limit 

our discussion to the order of the second virial approximation. This is sufficient to 

calculate the EOS of stars having mass greater than about 0.15 solar. 

 In II we showed that if terms in the activity expansion for a one-component 

repulsive system are grouped and summed in a specific way, it is possible to obtain an 
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activity expansion that has a greatly increased range of convergence compared to the 

Mayer activity expansion. In Sec. II we summarize results for the one-component 

problem and in Sec. III we extend the method to two-component systems.  In Sec. IV we 

study the convergence properties of the reorganized activity expansions for one and two-

components systems. 

 

II.   ONE VARIABLE 

 

 The pressure of a system of 

! 

N  particles at volume 

! 

V  and temperature 

! 

T  from the 

canonical ensemble  is: 

 

 

! 

"P(n) = n + S(n) # n($S /$n) .                                                                               (1) 

 

In Eq. (1) 

! 

n  is the density and 

! 

S(n)is the sum of the irreducible diagrams given by 

 

! 

S(n) =
n
j

j "1j=2

#

$ Bj ,                                                                                                 (2) 

 

where the 

! 

Bj  are virial coefficients. 

 The grand canonical ensemble gives the pressure as a sum of reducible and 

irreducible diagrams and is a function of the activity, 

! 

z = (2s+1)"#3eµ / kT ,  

! 

" = (2#h
2
/mkT)

1/ 2 is the deBroglie wavelength, µ the chemical 

potential, and s is the spin. 
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         In I we showed that the grand canonical pressure and density expansions in 

! 

z  have 

the form: 

 

              

! 

"P(z) = z + S(z) +
z

m!
m= 2

#
$

$z
z

% 

& 
' 

( 

) 
* 

m+2
$S

$z

% 

& 
' 

( 

) 
* 

m

.                                (3) 

 

 

            

! 

n(z) = z
"

"z
#P = z +

z

m!

"

"z
z

$ 

% 
& 

' 

( 
) 

m=1

*
m+1

"S

"z

$ 

% 
& 

' 

( 
) 

m

 ,                                            (4)        

with 

 

! 

z = nexp("#S /#n).                                                         (5) 

  

! 

S(z)  is the sum of all irreducible terms now written in powers of 

! 

z  instead of n,  and the 

summations over differential operators builds in the far more numerous reducible 

diagrams.   For 

! 

z  less than the radius of convergence we expect that the activity 

expansion pressure, Eq. (3), will equal the virial expansion pressure, Eq. (1). 

 In II we considered the solution of Eqs. (3) and (4) when 

! 

S(n) in Eq. (1) is 

truncated at the second virial coefficient. When 

! 

B
3  and higher virial coefficients are 

assumed to be zero, the corresponding cluster coefficients, 

! 

bj , are 

! 

~ b
2

j"1, so that the 

activity expansion involves an infinite number of non-zero terms.  In this simple case, Eq. 

(3) gives directly the Mayer power series expansion in the activity, which is known to 

have very poor convergence properties for repulsive interactions. To overcome this 

problem we showed in II that summing all the terms in Eq. (3) that contain a factor 
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! 

("S /"z)2  yields a rational polynomial.  Systematically repeating the process for terms of 

order 

! 

("S /"z) j  where 

! 

j=2,3, etc yields an infinite series of rational polynomials that are 

uniformly convergent.  The reordered pressure equation is 

 

! 

P

kT
= z + S + C j

j=2

"

#  ,                                                                                                                (6) 

 

! 

C
2

=
zx
2"

2
,                                                                                                            (7) 

! 

C
3

=
zx
3" 3

3!
,                                                                                                          (8) 

 

! 

C j = z
x
j" 2 j#3

j!
(1+ c j ,k (zy)

k

k=1

k= j#3

$ ),                                                                        (9) 

! 

" = 1# zy( )
#1

,                                                                                                                            (10) 

! 

x = "S /"z  ,  y = "2
S /"2

z ,                                                                                                      (11) 

 

and the  

! 

c j ,k  can be calculated according to 

 

! 

c
i,0 = 0  ,   c

i,1 = 0  ,   c4,2 = 2, 

! 

c j ,k = kc j -1,k  +  [2( j -1) -  (k +2)]c j -1,k -1.                                                          (12)     

                                                          

 

 It is the appearance of the denominator in powers of 

! 

"  that converts the activity 

series into a uniformly convergent series of rational polynomials.  There are other ways 
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to reorganize Eq. (3), but they are not uniformly convergent.  In the present work we 

have extended this procedure to two-component systems.  This has required that we 

develop a two-component generalization of Eq. (3).  

 

III.  TWO COMPONENTS 

          

Our starting point for deriving the two-component generalization of Eq. (3) is 

again the density expansion of the canonical partition function given by 

 

! 

P

kT
= n1 + n2 + S(n1,n2) " n1

#S(n1,n2)

#n1
" n2

#S(n1,n2)

#n2
,                                       (13) 

 

where 

! 

S(n1,n2) is the two-component generalization of (2).  We showed in I (see 

appendix A in I) that when (13) is mechanically stable,

! 

n
1
 and n

2
 are related to the 

activities 

! 

z
1
 and z

2
 according to  

 

! 

n1 = z1e
"S /"n1    ,   n2 = z2e

"S /"n2 .                                                                            (14) 

 

In order to invert Eq. (13,14) to get an expansion in 

! 

z
1
 and z

2
, similar to (3), we use the 

method described in I.  It is convenient to change variables as follows 

 

! 

(n1,n2) = (z1 + u1,z2 + u2),                                                                                    (15) 

 

where, 

! 

u
1

= n
1
" z

1
 and u

2
= n

2
" z

2
.  
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 In order to illustrate the method we expand Eq. (13) to terms cubic in the variable 

S.  This is sufficient to yield the lowest order cross-term involving the product 

! 

z
1
z
2
.  

Higher order terms can be obtained in exactly the same way by systematically adding in 

the contributions of terms of order   

! 

S
4
,S
5
L. 

 From (15) we get, to order 

! 

S
3, 

 

! 

n
1

= z
1

+ z
1

"S

"n
1

# 

$ 
% 

& 

' 
( +

z
1

2

"S

"n
1

# 

$ 
% 

& 

' 
( 

2

+
z
1

6

"S

"n
1

# 

$ 
% 

& 

' 
( 

3

,                                                           (16)  

 

! 

n
2

= z
2

+ z
2

"S

"n
2

# 

$ 
% 

& 

' 
( +

z
2

2

"S

"n
2

# 

$ 
% 

& 

' 
( 

2

+
z
2

6

"S

"n
2

# 

$ 
% 

& 

' 
( 

3

.                                                         (17) 

 

Expanding the 

! 

S(n1,n2)  factors in (13) about 

! 

z
1
 and z

2
 gives 

 

  

! 

f (n1,n2) = fz + u1
"fz

"z1
+ u2

"fz

"z2
+
u1
2

2

"2 fz

"2z1
+ u1u2

"2 fz

"z1"z2
+
u2
2

2

"2 fz

"2z2
+L ,            (18)   

 

where 

! 

f = S,  "S /"n1 or "S /"n2  and 

! 

fz = f (z1,z2). 

 

 Now we look at the differences 

 

! 

n
1
" n

1

#S

#n
1

 and n
2
" n

2

#S

#n
2

 .                                                                              (19) 
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From (18) we obtain 

 

! 

"S(n1,n2)

"n1

=
"S

z

"z1

+ u1

"2
S
z

"2
z1

+ u2

"2
S
z

"z1"z2

+
u1

2

2

"3
S
z

"3
z1

+ u1u2

"3
S
z

"2
z1"z2

                   +
u2

2

2

"3
S
z

"z1"
2
z2

,

                       (20) 

 

! 

"S(n1,n2)

"n2

=
"S

z

"z2

+ u1

"2
S
z

"z1"z2

+ u2

"2
S
z

"2
z2

+
u1

2

2

"3
S
z

"z1"
2
z2

+ u1u2

"3
S
z

"z1"
2
z2

                   +
u2

2

2

"3
S
z

"3
z2

,

                   (21) 

 

where 

! 

S
z

= S(z1,z2) .  Substituting Eq. (20,21) into (19) it is readily verified that all the 

terms in Eqs. (16-18) that are composed of combinations of density and activity factors 

cancel out.  As a result, to terms cubic in S we get  

 

! 

n
1
" n

1

#S

#n
1

= +
z
1

6

#S
z

#z
1

$ 

% 
& 

' 

( 
) 

3

"
z
1

2

#S
z

#z
1

$ 

% 
& 

' 

( 
) " z1u1

#S
z

#z
1

#2S
z

#2z
1

,                                          (22) 

 

! 

n
2
" n

2

#S

#n
2

=
z
2

6

#S
z

#z
2

$ 

% 
& 

' 

( 
) 

3

"
z
2

2

#S
z

#z
2

$ 

% 
& 

' 

( 
) " z2u2

#S
z

#z
2

#2S
z

#2z
2

.                                           (23) 

 

To complete the sum in (13) we need an expression for

! 

S(n
1
,n

2
)  in terms of 

! 

z
1
 and z

2
.  

Substituting for 

! 

u
1 
and u

2
 in (18) and keeping terms of order 

! 

S
3 gives 
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! 

S(n1,n2) = S
z

+ z1

"S
z

"z1

# 

$ 
% 

& 

' 
( 

2

+ z1

"S
z

"z1

# 

$ 
% 

& 

' 
( 

2
"2
S
z

"2
z1

+ 3z1z2

"S
z

"z1

"S
z

"z2

"2
S
z

"z1"z2

        + z2

"S
z

"z2

# 

$ 
% 

& 

' 
( 

2

+ z2

"S
z

"z2

# 

$ 
% 

& 

' 
( 

2
"2
S
z

"2
z2

+
z1

2

2

"S
z

"z1

# 

$ 
% 

& 

' 
( 

2
"2
S
z

"2
z1

+
z2

2

2

"S
z

"z2

# 

$ 
% 

& 

' 
( 

2
"2
S
z

"2
z2

.

                (24) 

 

Now substituting Eqs. (22,23) and (24) into Eq. (13) we find that the remaining negative 

terms cancel giving 

 

! 

P

kT
= z

1
+ z

2
+ Sz +

z
1

2

"Sz
"z

1

# 

$ 
% 

& 

' 
( 

2

+
z

2

2

"Sz
"z

2

# 

$ 
% 

& 

' 
( 

2

+
z

1

2

2

"Sz
"z

1

# 

$ 
% 

& 

' 
( 

2

"2
Sz

"2
z

1

         +
z

2

2

2

"Sz
"z

2

# 

$ 
% 

& 

' 
( 

2

"2
Sz

"2
z

2

+
z

1

6

"Sz
"z

1

# 

$ 
% 

& 

' 
( 

3

+
z

2

6

"Sz
"z

2

# 

$ 
% 

& 

' 
( 

3

+ z
1
z

2

"Sz
"z

1

"Sz
"z

2

"2
Sz

"z
1
"z

2

.

                (25) 

 

Eq. (25) can be put in the more compact form 

 

! 

P

kT
= z1 + z2 + Sz +Q2,1

p
+Q2,2

p
+Q2,2

c                                                                     (26) 

 

where, 

! 

Q2,1
p

=
1

2!
zi

i=1

i=2

"
#Sz
#zi

$ 

% 
& 

' 

( 
) 

2

 ,                                                                                          (27) 

 

! 

Q2,2
p

=
1

3!
zi
"

"zii=1

i=2

# zi
"Sz
"zi

$ 

% 
& 

' 

( 
) 

3

 ,                                                                                  (28) 
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! 

Q2,2
c

= z1z2
"sz

"z1

"sz

"z2

"2Sz

"z1"z2
,                                                                                  (29) 

 

 

the  notation ‘p’ indicates differentiation with respect to a single variable and the notation 

‘c’ indicates differentiation with respect to more than one variable 

Following the same procedure as just described, we have worked out the 

contributions to the pressure from terms of order 

! 

S
4
 and S

5: 

 

 

! 

Q2,3
p

=
1

4!
zi
"

"zii=1

i=2

# zi
"

"zi
zi
"Sz
"zi

$ 

% 
& 

' 

( 
) 

4

 ,                                                                       (30) 

 

! 

Q2,3
c

=
1

3!
z1z2 3

"

"z1
z1
"Sz
"z1

+ 3
"

"z2
z2
"Sz
"z2

# 

$ 
% 

& 

' 
( )12 ,                                                      (31) 

 

! 

Q2,4
p

=
1

5!
zi
"

"zii=1

i=2

# zi
"

"zi
zi
"

"zi
z1
"Sz
"zi

$ 

% 
& 

' 

( 
) 

5

 ,                                                              (32) 

 

! 

Q2,4

c
=
z1z2

4!

4
"

"z1

z1

"

"z1

z1

"Sz
"z1

# 

$ 
% 

& 

' 
( 

2

+ 6
"

"z1

z1

"

"z2

z2

"Sz
"z1

"Sz
"z2

        + 4
"

"z2

z2

"

"z2

z2

"Sz
"z2

# 

$ 
% 

& 

' 
( 

2

) 

* 

+ 
+ 
+ 
+ 
+ 

, 

- 

. 

. 

. 

. 

. 

/12,                             (33) 
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! 

"
12

=
#S

z

#z
1

#S
z

#z
1

#2S
z

#z
1
#z
2

.                                                                                            (34) 

 

By induction we conclude that in general  

 

! 

Q2,m
p

=
1

(m +1)!
zi

"

"zi
zi

# 

$ 
% 

& 

' 
( 

i=1

i=2

)

m*1
"Sz
"zi

# 

$ 
% 

& 

' 
( 

m+1

 ,                                                             (35) 

 

! 

Q2,m
c =

z1z2

m!
j
m( )

j=1

j=m"1

#
$

$z1
z1

% 

& 
' 

( 

) 
* 

m" j"1
$

$z2
z2

% 

& 
' 

( 

) 
* 

j"1
$Sz
$z1

% 

& 
' 

( 

) 
* 

m" j"1
$Sz
$z2

% 

& 
' 

( 

) 
* 

j"1

+12 .                 (36) 

 

The pressure is, thus, given by 

 

! 

P

kT
= z1 + z2 + Sz + (Q2,m

p

m=1

m="

# +Q2,m
c
).                                                                  (37) 

 

We now follow the same procedure used for the one-.component problem and 

sum all terms in Eq. (37) involving 

! 

("S /"z
i
)
2.  This is a much more involved process than 

it was for the one-component case.  The result is 

 

! 

C2,2 =
1

2
[z1x1"1 + z2x2"2]/#2c  ,                                                                          (38) 

where 

! 

"1 = x1(1# t2) + z2x2y12 ,                                                                                     (39) 

! 

"2 = x2(1# t1) + z1x1y12 ,                                                                                     (40) 
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! 

yij = "2
S /"zi"z j   ,   tk = zk ykk ,                                                                             (41) 

! 

"2c =1# z1y11 # z2y22 + z1z2(y11y12 # y12
2
) .                                                        (42) 

 

Eq. (38) is again a rational polynomial where 

! 

"
2c

 is the two-component generalization of 

! 

" .   Carrying out the sums to obtain higher lying coefficients gets progressively more 

involved. However, we have been able to sequentially sum the infinite sets of terms that 

include the factor 

! 

("S /"zi)
j , for 

! 

j = 3,4,5, giving 

 

! 

C2,3 =
1

6
[z1"1

3
+ z2"2

3
]/#2c

3                                                                                   (43) 

! 

C2,4 = {
1

24
[z1"1

4
(3# 3t2 # 2$2c )]+

1

24
[z2"2

4
(3# 3t1 # 2$2c )] 

       

! 

+
1

4
y12z1z2"1

2"2
2
} /#2c

5                                                                                 (44) 

! 

C2,5 =
1

5!

" 
# 
$ 

z1%1
5
[(15(1& t2)

2 & 20'2c (1& t2) + 6'2c
2

)]

                +
1

5!
z2%2

5
[(15(1& t1)

2 & 20'2c (1& t1) + 6'2c
2

)]

                          

 

! 

    +
1

12
y12z1z2"1

2"2
2
["2((1# t1)(1+ 2t2) + 2y12

2
z1z2)

    +"1((1# t2)(1+ 2t1) + 2y12
2
z1z2)]

  

     

! 

+
1

8
y12
2
z1z2(z1"1

3 + z2"2
3
) } /#2c

7                                                                       (45) 

 

The higher 

! 

C2, j  coefficients can also be obtained as rational polynomials, but become too 

complex to be of practical value 
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Knowing the 

! 

C2, j  coefficients up to 

! 

j = 5  is not sufficient to give accurate results 

over the entire region where the second virial expansion is the dominant term.  However, 

we have found that the 

! 

C2, j  coefficients in Eq. (43-45) are well approximated by adding 

modified forms of the one-component

! 

C j  coefficients for each component.  Explicitly, the 

first few coefficients are. 

 

! 

C2,2
a

=
z1x1

2

2"1
+
z2x2

2

2"2
,                                                                                             (46) 

! 

C2,3
a

=
z1x1

3

6"1
3

+
z2x2

3

6"2
3

,                                                                                             (47) 

! 

C2,4
a

=
z1x1

4

24"1
4
(1+ 2("1 #1))+

z2x2
4

24"2
4
(1+ 2("2 #1)) ,                                               (48) 

  

! 

M 

! 

"i =1# ziyij
j=1

2

$ ,                                                                                                   (49) 

! 

x
i

=
"S

z

"z
i

.                                                                                                            (50) 

In order to couple the one-component terms in Eqs. (46-48), we have replaced 

! 

z
1
y

1
  

! 

in the first component by

! 

z
1
y
1 j

j=1

2

" and 

! 

z
2
y

2
 

! 

 in the second component by 

! 

z
2
y
2 j

j=1

2

" .   

Using a combination of the exact and approximate coefficients gives for the pressure 

 

! 

P

kT
= z1 + z2 + S + C2, j

j=2

jx

" + C2, j
a

j= jx +1

jmax

" ,                                                              (51) 
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where 

! 

jx =5 unless 

! 

j
max

" 5   in which case, 

! 

jx = j
max

. 

 

To show the connection between the exact and approximate 

! 

C2, j  we  assume that 

! 

B
11

= B
12

= B
22

= B , but that 

! 

n
1
" n

2
. 

 

Then, 

 

! 

x1 = x2 = 2(z1 + z2)B                                                                                          (52) 

 

And  

! 

C2,2
a

= C2,2 = 2B
2
(z1 + z2)

3
/(1" 2B(z1 + z2))                                                        (53) 

 

Similarly, for the same conditions, the higher lying 

! 

C2, j
a  can be shown to be equal to the 

known exact 

! 

C2, j . 

 

 We have found numerically that when the

! 

Bij  have a wide-range of values the 

approximate forms of the 

! 

C2, j  still provide a good approximation.  Consequently when 

terms through 

! 

C2,5  are not sufficient we can improve that results by using Eqs. (46-50) to 

approximate terms for 

! 

j > 5 . 

 

IV. NUMERICAL EXAMPLE 

 



 16 

The purpose of Secs. II and III was to develop an activity expansion that 

uniformly converges to the virial expansion to 

! 

O(n
2
) for both attractive and repulsive 

interactions.  Fig. 1 shows 

! 

P /P
V

 vs. 

! 

n .  It demonstrates how well Eq. (6) achieves this 

result for a one-component gas.  For a simple example, that illustrates the method, we 

have assumed 

! 

B
2

= "0.5.  In applications for real gases we use interaction potentials 

obtained from Hartree-Fock20 or quantum Monte-Carlo methods21 to calculate the virial 

coefficients. The activity was obtained from numerical iteration to satisfy the density 

relation 

 

! 

n = z
"P /kT

"z
.                                                                                                       (54) 

 

We have not used Eq. (5) to obtain the activity because it is only valid in the region 

where the series has converged.  Otherwise, the pressure and density are inconsistent. 

Fig. (1) shows that as 

! 

j
max

 increases, Eq. (6) uniformly converges to the second virial 

pressure at increasing values of the density; i.e., each increase in 

! 

j
max

 by a factor of 4 

results in a fixed incremental increase 

! 

"n  to the value of

! 

n  where 

! 

P /P
v
 converges to 

unity.  Results are also shown for the Mayer activity series truncated at different orders.  

When only terms 

! 

O(z
2
) are included, the pressure diverges from the virial result at very 

small values of the density reaching a value 

! 

P /P
v

= 4 /3 at 

! 

n =1/4 .  No physical 

solutions exist at larger values of 

! 

n .  It is not shown in Fig. (1), but we note that when the 

calculations are repeated sequentially adding higher order terms in 

! 

z
j , the behavior is 

different depending on whether 

! 

j  is even or odd.  In the region where 

! 

n <1/4  the results 
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for the even values approach the virial result from above while the results for the odd 

values approach it from below. At about 

! 

O(z
30
)  both sets of results nearly coalesce.  As 

the number of terms in the Mayer pressure expansion is increased further, the maximum 

density at which real solutions exist approaches 0.2785 and 

! 

P /P
v
"1.  As shown in Fig. 

2, this limit is approached very closely when more than sixty terms are included.  As 

expected, the Mayer expansion in powers of 

! 

z  fares very poorly. 

 

 

 

Fig. 1: Ratio of the activity expansion pressure to the second virial pressure, 

! 

P
V

. 

Pressure from Eq. (6) truncated at 

! 

j
max

 (dotted).  Truncated Mayer activity 

expansion: 

! 

O(z
2
) (dashed); 

! 

O(z
>60
)(open circles). 
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Fig. 2 shows the ratio of the pressure from Eq. (51) to the second virial pressure 

of a two-component system having 

! 

B11 = 0.125  ,  B12 = 0.3535  ,  B22 =1.1 and 

! 

n
2

= 2n
1
. 

Results are shown for two different approximations of Eq. (51).  Approximation 1 uses 

the exact 

! 

C2,k  coefficients where they are known and the approximate coefficients 

otherwise.  Approximation 2 uses entirely the approximate coefficients. We have 

calculated the activities directly from a numerical solution of Eq. (51) and the density 

relations 

 

! 

ni = zi
"P /kT

"zi
  ,  ni = {n

1
,n2}                                                                         (55) 

 

Both versions of Eq. (51) yield results that agree closely with the virial pressure out to 

! 

n
2

= 0.5  when 

! 

jx = jmax = 5 , but the deviation from unity is much smaller for 

approximation 1.  As 

! 

j
max

 is increased, both versions yield improved agreement with the 

virial expansion.  Both approximations are uniformly convergent, but due to the use of 

the approximate coefficients (Eq. (46-48)) they are at variance with the virial pressure.  

At 

! 

n
2

=1, when 

! 

j
max

= 320 , the deviation from unity for version 1 is about 4%, while the 

deviation for approximation 2 is about 12%.   When 

! 

n
2

= 2n
1

=1, 

! 

PV /NkT " 2.0. In 

most cases, the third and higher virial coefficients make a significant contribution when 

the non-ideal pressure is this large.  In the density range where 

! 

PV /NkT  < 1.6, the 

second virial approximation is normally the dominant term. In this region the errors from 

approximation 1 are at most a few percent.  Results for the Mayer activity expansion 
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truncated at 

! 

O(z1
2
,z2
2
)  are also shown in the figure.  Similar to the one-component case, 

they diverge from the virial pressure starting at very small values of the density. The 

solution terminates at 

! 

n
2

= 0.1  and 

! 

P /P
v

=1.18 .  No physical solutions exist for larger 

densities.  Addition of higher order terms (not shown) results in behavior similar to the 

one-component case. 

. 
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Fig. 2: 

! 

P /P
V

 vs. 

! 

n
2
 for two different approximations of Eq. (51).  Approximation 1 uses the 

exact 

! 

C2, j  coefficients when 

! 

j " 5  and the 

! 

C2, j
a when 

! 

j > 5 ); approximation 2 uses entirely the 

! 

C2, j
a  coefficients, i.e. 

! 

jx = 0 .  Results are shown for 

! 

j
max

=2 (dot-dashed); 5 (long-dashed); 10 

(short-dashed); 40 (dotted); 320 (solid).  At each value of 

! 

j
max

 the approximation 1 results lies 

closest to unity.  Results  for  the  Mayer activity expansion truncated at 

! 

O(z1
2
,z2
2
)  (diamonds). 

 

 

 

IV. DISCUSSION 

 

 We have presented a procedure for generating an activity expansion with 

improved convergence properties compared to the Mayer activity expansion.  Herein we 

have only explicitly considered one and two-component systems, but the procedure can 

be extended to multi-component systems. We have been particularly interested in 

repulsive interactions since they have a very limited range of convergence for the Mayer 

activity expansion.  Based on work started earlier we obtained expressions that generate 

! 

P /kT  from differential operations on 

! 

S , the sum of irreducible diagrams.  We then 

showed that these operators could be worked out and the resulting terms regrouped into a 

uniformly convergent series of rational polynomials that give results equivalent to the 

virial expansion.  Herein we have only considered the second virial approximation, which 

is sufficient to treat most stellar conditions.  However, due to the complexity of the high 

lying coefficients in the resulting series, we have used an approximation that results in 

some small discrepancies with the second virial pressure.  The procedure presented here 
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can also be applied when higher virial coefficients are non-zero.  We have carried this out 

for the case that both 

! 

B
2
 and 

! 

B
3
 are non-zero, but it is beyond the scope of the present 

paper to discuss it here.  For applications involving more than two neutral components 

we have found that Approximation 2 of Eq. (51) gives accuracy similar to the two-

component case (see Fig. 2) when 

! 

PV /NkT  is less than about 1.6. 

 The activity expansion that we have described herein is of little value for 

applications involving purely repulsive interactions, since at best they only recover the 

much simpler virial expansion.  However at electron volt temperatures real materials are 

composed of ions, atoms, and molecules.  The ionic component involves the Coulomb 

interaction, which introduces many-body physics.  Our method for treating this part of 

the problem was described in [1-5].  The interactions involving the atomic and molecular 

species are short-ranged and can be treated with the activity expansions presented herein. 

The complete expression used to treat partially-ionized plasmas combines the two into a 

single activity equation that incorporates the best features of the virial and activity 

expansions.  The equation of state is obtained iteratively by satisfying the multi-

component density relations (Eq. (55)). 

  

Acknowledgement: This work performed under the auspices of the U.S. Department of 

Energy by UC, Lawrence Livermore National Laboratory under Contract DE-

AC-52-07NA27344. 

 

REFERENCES:    

  [1] F. J. Rogers and H.E. DeWitt, Phys. Rev. 8,1061(1973).  



 22 

  [2] F. J. Rogers, Phys. Rev. A10, 2441 (1974). 

  [3] F. J. Rogers, Phys. Rev. A 19, 375 (1979). 

  [4] F. J. Rogers, Phys. Rev. A 24, 1531 (1981). 

  [5] F. J. Rogers, Equation of State in Astrophysics, ed. G. Chabrier & E. 

       Schatzmann (Cambridge University Press, Cambridge, England, 1994), p16.  

  [6] D. Erskine, High-Pressure Science and Technology-1993, ed. S. C. Schmidt et al.,  

       (AIP Press, New York, 1993), p125. 

  [7] F. J. Rogers, and D. A. Young, Phys. Rev. E 56, 5876 (1997). 

  [8] J. N. Bahcall, et al, Phys. Rev. Lett. 78, 171(1997). 

  [9] S.M. Chitre and E. N. Parker, The Dynamic Sun (Cambridge University 

         Press, Cambridge, England, 2003), p45. 

  [10] J. L.Lebowitz , O. Penrose, , J. Math. Phys. 5, 841 (1964). 

  [11] S. Baer and J. L. Lebowitz, J. Chem Phys. 40, 3474 (1964). 

  [12] O. Penrose, J. Math. Phys 4, 1312 (1963). 

  [13] F. H. Ree, Phys. Rev. 155, 84 (1967). 

  [14] F. H. Ree and W. G. Hoover, J. Chem. Phys. 40, 939 (1964); 46, 4181 (1967).  

  [15] B. Barboy, and W. M. Gelbart, J. Chem. Phys. 71, 3063 (1979). 

  [16] H. L. Friedman and W. Ebeling, Theorie Elekrolytischer Flüssigkeiten, Rostocker       

          Physikalische Manuskripte,ed. W. Ebeling and H.Künstner 4,33 (1979). 

  [17] M. S. Wertheim, J. Stat. Phys. 35, 19 (1984). 

  [18] F. J. Rogers and H. E. Dewitt, Contrib. to Plasma, Phys. 43, 355 (2003);   

          F. J.Rogers, Contrib. to Plasma. Phys. 41, 179 (2001). 

  [19] E. T. Whitaker and G. N. Watson, A Course of Modern Analysis, (Cambridge 



 23 

         University Press, Cambridge, England , 1952), p. 132. 

  [20] R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Molec . Phys. 61, 1487 (1987). 

   [21] D. M. Ceperley and H. J. Partridge, J. Chem. Phys., 88, 997 (1986). 

 




