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ABSTRACT 
 
 We present the first experimental radium mineral/melt partitioning data, specifically 

between anorthite and a CMAS melt at atmospheric pressure. Ion microprobe measurement of 

coexisting anorthite and glass phases produces a molar DRa = 0.040±0.006 and DRa/DBa = 

0.23±0.05 at 1400°C. Our results indicate that lattice strain partitioning models fit the divalent 

(Ca, Sr, Ba, Ra) partition coefficient data of this study well, supporting previous work on crustal 

melting and magma chamber dynamics that has relied on such models to approximate radium 

partitioning behavior in the absence of experimentally determined values.  

                                                
* E-mail: smiller@gps.caltech.edu 



 2 

 INTRODUCTION 
 

Short-lived radioactive isotopes provide unique information about timescales of melting 

and magma transport processes that operate in the earth’s crust and mantle. Any differentiation 

process that chemically fractionates parent and daughter elements from a decay chain will 

produce secular disequilibrium in which the activity ratio of the parent and daughter isotopes 

differs from unity. After approximately five half-lives of the daughter isotope, secular 

disequilibrium can no longer be measured and the decay rates of the parent and daughter are 

again equal. Because the half-life of 226Ra is ~1600 years, (226Ra)/(230Th) disequilibria produced 

within the past 8000 years may be preserved, making it an important chronometer of recent 

magmatic activity. 

Successful interpretation of 226Ra disequilibria in igneous rocks relies on our 

understanding of its partitioning behavior between minerals and melts. Unfortunately, no stable 

isotopes of radium exist with which to easily determine such partitioning. Because of the 

technical challenges involved in conducting experimental partitioning studies with Ra 

concentrations high enough to be measured in situ, our knowledge of Ra partitioning has been 

restricted to phenocryst/glass analyses of natural rocks producing apparent DRa values (Cooper et 

al., 2001) and modeling that either assumes Ra partition coefficients to be comparable to those of 

barium (e.g., Reagan et al., 1992; Schaefer et al., 1993; Volpe and Hammond, 1991) or employs 

lattice strain theory and partition coefficients of other divalent elements to approximate DRa 

(Blundy and Wood, 1994; 2003) 

Partitioning behavior of radium between feldspars and coexisting melts is of particular 

importance because the large M site of the feldspar structure is one of the few sites in common 

crustal minerals able to accommodate measurable amounts of Ra, which has an ionic radius of 
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1.48 Å in VIII-fold coordination (Shannon, 1976). The presence of feldspar potentially can 

influence (226Ra/230Th) disequilibria in magmas generated at pressures below ~1.5 GPa within the 

plagioclase lherzolite stability field of the upper mantle (Presnall et al., 2002), whether the 

disequilibria arise from source melting or from diffusive reaction of rising melts with gabbroic 

cumulates (Saal and Van Orman, 2004; Van Orman et al., 2006). Dufek and Cooper (2005) 

demonstrate how lower crustal amphibolite dehydration melting involving plagioclase can 

generate and sustain radium excesses in arc magmas by incongruent continuous melting. 

Crystallization of feldspars within magma chambers in the shallow crust will further affect 226Ra 

disequilibria by preferentially removing radium from melts and either reducing the magnitude of 

226Ra excess relative to 230Th or even developing a 226Ra deficit (e.g., Condomines et al., 1995; 

Zellmer et al., 2000). 

EXPERIMENTAL METHODS 

 The starting composition was mixed from reagent oxides and CaCO3 and ground under 

ethanol in an alumina mortar for five hours. The mixture was heated in air in 200°C/hour steps 

and held at 1000°C for 24 hours before fusing in a Pt crucible at 1450°C. The fused glass was 

reground under ethanol for one hour. A 0.5-gram aliquot was spiked with Ba and Sr solutions to 

achieve concentrations of approximately 100 ppm each. The material was dried, re-fused, and 

ground again under ethanol for half an hour. A fused glass of this starting composition (sample 

2-1*-GL) was analyzed for major element content by electron microprobe and for Sr and Ba by 

SIMS. Additionally, a bead of this material, also not spiked with Ra, was run through the same 

experimental crystallization protocol described below, as a blank (sample 2-1*-1). 

In a glove box positioned within a fume hood, approximately 2.5 µCi of 226Ra in 5M 

HNO3 solution was added to 150 mg of the Ba- and Sr-spiked starting material on a Teflon watch 
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glass. The mixture was dried under a heat lamp, formed into a bead with polyvinyl alcohol 

(PVA), and transferred onto a wire mesh platform ~1 cm in diameter. The bead was air-dried 

overnight and then placed near the top of a 1-atm Deltech vertical muffle furnace at ~170°C for 

four hours to ensure dryness. It was then fused for 1 hour at 1430°C and air-quenched. The glass 

bead material was removed from the platinum wire mesh in the glove box using a percussion 

mortar and tweezers. The separated glass was powdered in an agate ball mill to produce the 

radium-spiked starting material.  

   The sample charge was prepared by mixing ~30 mg of spiked starting material with a 

drop of PVA and adhering it to a Pt wire loop. The small bead was dried overnight at ambient 

temperature and transferred to the furnace, where it was subjected to a known anorthite-

crystallizing thermal regime based on the procedures of Simon et al. (1994), as described in 

Miller et al. (2006). Since the liquidus temperature of this starting composition was 

approximately 1398°C (all temperatures ±5°C), the furnace was initially held at 1410°C for 1 

hour to reduce potential crystal nuclei before decreasing the temperature at 2°C/hour to 1370°C, 

where the charge was held for 24 hours. The temperature was then decreased further at 2°C/hour 

until the furnace reached the final temperature of 1330°C and held there for 24 hours. The 

sample was air-quenched by removing it from the top of the muffle tube. The charge was 

mounted in Araldite epoxy and polished to 0.3 µm with alumina lapping paper before coating 

with carbon. 

A standard (sample 2b-1-2) containing anorthite and glass of identical major element 

composition without radium but with elevated Ba (3000 ppm) and Sr (1000 ppm) was both 

quenched directly from above the liquidus to check bulk composition and also crystallized under 

similar experimental conditions as the radium sample and analyzed by electron microprobe at 
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Caltech (Miller et al., 2006). All trace element concentrations herein are expressed as oxide mole 

fraction (e.g. 1 ppm Ba means 1 mole BaO for every 106 moles of all oxide components). 

SAMPLE ANALYSIS 

The sample was analyzed on the modified Cameca ims-3f ion microprobe at Lawrence 

Livermore National Laboratory. The concentrations of 42Ca, 88Sr, 138Ba, and 226Ra were measured 

using a 30 µm diameter, 5 nA O– primary beam with an impact energy of ~17 keV. Isobaric 

molecular interferences were minimized using energy filtering (Zinner and Crozaz, 1986); only 

secondary ions with kinetic energies within a 32.5 eV window centered on a 60 eV offset from 

the peak of the secondary ion energy distribution were focused into the mass spectrometer. Data 

collection consisted of 20 cycles through the mass sequence at each spot of interest, with 

integration times of 1 second for 42Ca, 88Sr and 138Ba and 10 seconds for 226Ra. Scans over the 

mass interval from 220 to 233 for both NBS-610 glass and the Ra-free anorthite/melt samples 

revealed virtually no background (0.2 counts/s) at mass 226. Figure 1(a) shows the portion of the 

mass spectrum from masses 224 to 228 on glass in the radium-free sample 2-1*-1 at 2 nA beam 

intensity; Figure 1(b) shows the same mass region for a radium-bearing glass sample (2-1*-Ra) 

at identical beam conditions. Mass scans were restricted to ±0.15 amu centered at each integer 

mass. Radium is clearly detected at mass 226 with average background intensity accounting for 

~1 % of the Ra peak intensity in the glass over the 226 mass range shown in Figure 1. 

Concentrations (Ci, ppm) were calculated by applying a calibration factor, F, to convert 

secondary ion intensities to ppm abundances. For Sr and Ba, these calibration factors were 

obtained from electron probe analysis of the standard anorthite- and glass-containing sample 2b-

1-2, which was spiked with 3000 ppm Ba and 1000 ppm Sr. F values for the glass (88Sr = 

2900±100, 138Ba = 3300±200) and anorthite (88Sr = 2000±100, 138Ba = 2300±400) were 
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calculated from 42Ca-normalized ion intensities. Since no appropriate standard was available for 

Ra, 226Ra ion intensities were converted to ppm abundances using the upper bound on the F-value 

for Ba. Ci, std represents the concentration (ppm) of ion i in a standard and Ii is ion intensity 

(counts/s) in the material with unknown concentration of i: 
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where Ii represents the ion intensity for the element of interest in the sample, ICa is the 42Ca ion 

intensity, CaOi is the known CaO concentration in the sample, and CaOstd is the CaO 

concentration in the standard from which the calibration factor was established. In this case CaOi 

and CaOstd have identical values. Following Brenan et al. (1995), the detection limit calculated 

for radium at mass 226 is 2 ppb for both anorthite and glass. 

RESULTS AND DISCUSSION 
 The sample charge consisted of CMAS glass and well-formed pure anorthite laths, the 

largest measuring over 100 µm along its short dimension. Since the spatial resolution of our 

analyses is limited by the ~30 µm diameter of the ion probe primary beam, measurements were 

taken in the centers of crystals and assumed to represent near-liquidus growth at 1400°C. Table 1 

reports molar partition coefficients for Ca, Sr, and Ba, calculated from crystal center and glass 

starting compositions, with uncertainties propagated from both crystal and glass analyses. Initial 

melt compositions used to calculate DmMg and DmRa (that is, mole fraction of the oxide of 

interest in anorthite divided by mole fraction of the oxide in the melt) were obtained by back-

correcting final melt composition to account for 23% crystallization. Total fraction crystallized 
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was calculated using the Rayleigh equation and Ba data. The determined molar partition 

coefficient for Ra is 0.040±0.006. 

Lattice strain modeling with DRa  

The most commonly used partitioning model describing the empirical observation of a 

quasi-parabolic relationship between log of isovalent cation partition coefficients and ionic radii 

of those cations (Onuma et al., 1968) is that of Blundy and Wood (1994): 

 2 31
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Here the partition coefficient Di for a given absolute temperature (T), pressure (P), and phase 

compositions (X) is a function of the ideally-sized radius (ro) of a fictive cation with partition 

coefficient (Do) that would fit into the crystallographic site without strain, the radius of the cation 

of interest (ri), and a strain parameter qualitatively related to the Young’s Modulus of the site 

(E). NA is Avogadro’s number and R is the gas constant.  

The addition of radium partitioning data to a plagioclase Onuma curve for divalent 

cations provides a unique opportunity to test the application of lattice strain modeling to 

prediction of large, geologically short-lived radioactive isotope partitioning. The best-fit lattice 

strain model parameters for these data, when fitted in natural log space at 1400°C, are Do = 

0.93(5), ro = 1.207(6) Å, and E = 107(9) GPa. Parameterizing with only the Ca, Sr, and Ba 

partition coefficients of this study (that is, excluding the Ra data) results in a 5% decrease in E 

with negligible changes for Do and ro. These ro and E values fall within or close to the reported 

uncertainty of the extrapolated end-member anorthite parameters in Blundy and Wood (1994), 

although those authors considered all magnesium to reside in the plagioclase M site for their 

parameterizations.  
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Magnesium has been shown to occupy both tetrahedral and octahedral sites in anorthite 

(Longhi et al., 1976; Peters et al., 1995) and its exact site distribution in this composition remains 

unknown. Therefore, magnesium data are not used in the Onuma curve parameterization here, 

though the bulk molar distribution coefficient is plotted in Figure 2. Using the lattice strain 

model to predict the partitioning of octahedrally coordinated Mg in anorthite results in an 

estimated octahedral site occupancy of 35%, which differs from previous, significantly lower, 

estimates of 3% and 9% for this composition based on thermodynamic melt modeling (Miller et 

al., 2006). 

Ra-Ba fractionation 
 

The extent to which barium partitioning can be used to estimate initial 226Ra contents of 

magmas prior to crystallization in magma chambers, an important component of dating 

eruptions, remains unresolved. Although Ra-Ba fractionation is clearly predicted by lattice strain 

equilibrium partitioning models, some studies continue to find assumptions of identical 

geochemical behavior sufficient to recover initial (226Ra)/Ba ratios of magmas (e.g., Condomines 

et al., 2005). We measure a DRa/DBa of 0.23±0.05 for this composition, which compares favorably 

with estimates of 0.21-0.25 for plagioclase used by other workers (Cooper and Reid, 2003; 

Cooper et al., 2001). Greater DRa/DBa fractionation, characterized by a tighter Onuma curve, 

results with increased Ca content in plagioclase and/or decreased temperature (Cooper et al., 

2001). Although this study was conducted at 1400°C, strain modeling using the parameters 

reported here permits calculating Ra-Ba fractionation between highly calcic plagioclases and 

melt at the lower temperatures more common in natural environments. 
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Implications for radium partitioning in clinopyroxene 
 

(226Ra/230Th) excesses in young volcanic rocks are ubiquitous across a wide range of 

geologic environments and range from slight in OIB settings to values of over 6 in some arc 

lavas (Turner et al., 2001). While fluid addition is also implicated in arc settings, such excesses 

are generally thought to result from Ra-Th fractionation during melting and to be preserved by 

rapid transport of the melt to the surface, although the exact location of radium excess production 

in even the relatively uncomplicated MOR setting remains an open question. A study of well-

characterized lavas from the East Pacific Rise (Sims et al., 2002) attributed the inverse 226Ra and 

230Th excess systematics to polybaric melting of a homogenous source, with the 226Ra excesses 

generated at shallower depths in equilibrium with depleted spinel harzburgite material just 

beneath the lower crust.  

The dominant mantle reservoir of radium below the plagioclase peridotite field is likely 

clinopyroxene, except possibly in hydrous environments where phases such as phlogopite 

(calculated DRa > 1 for melts and >>1 for fluids) may play a significant role in radium storage at 

depth (Feineman and DePaolo, 2003). Given that Ra2+ has been shown here to be a well-behaved 

ion whose partitioning behavior between plagioclase and melt is closely approximated by a 

lattice strain partitioning model (Blundy and Wood, 1994), this study lends further confidence to 

clinopyroxene/melt DRa estimates, typically on the order of 10-7 (Cooper et al., 2003), calculated 

from such models. 

CONCLUSIONS 
 

For the first time, experimental radium partitioning data are available to test a widely-

used predictive partitioning model (Blundy and Wood, 1994). Hitherto, Ra partitioning behavior 

has been estimated or calculated rather than directly measured. When focus is restricted to 
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divalent elements known enter only the 7-fold site in anorthite (Ca, Sr, Ba, Ra), we find excellent 

agreement of the measured radium partition coefficients with those predicted by lattice strain 

models. Our results show that partitioning studies for phases in which Ra is more compatible, 

such as potassium feldspars and phlogopite (Blundy and Wood, 2003), could be relatively 

straightforward. Furthermore, our present experiments have sufficient analytical margins that 

obtaining Ra partition coefficients at least one and possibly two orders of magnitude lower 

would be feasible. 
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Captions: 
 

Table 1. Compositions of starting material, Ba and Sr standard, radium-free sample, and radium-

bearing sample as determined by electron microprobe (EMP, reported in weight percent) and ion 

microprobe (SIMS, reported in weight parts per million) analysis. Elements not analyzed denoted 

by ‘-‘. Na2O, K2O, FeO (total iron as FeO) were analyzed by EMP in standard sample 2b-1-2 and 

found to be 0.02 wt. % or less. Molar partition coefficients for divalent elements are reported for 

data collected from centers of crystals and random surrounding glass points back-corrected for 

fractional crystallization to initial melt composition. Standard deviation (1σ) in the last one or 

two decimal places is given by the numbers in parentheses. 

 

Figure 1. SIMS mass spectra of the region surrounding mass 226 for (a) glass of the radium-free 

sample 2-1*-1 and (b) glass of the radium-bearing sample 2-1*-Ra. Data were collected over a 

±0.15 amu interval centered at each integer mass with ion intensities measured every 0.010 amu. 

Secondary ion intensity is reported in counts per second. 
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Figure 2. Onuma curve generated by lattice strain modeling of Ca, Sr, Ba, and Ra molar partition 

coefficients. Ionic radii are for VIII-fold coordination taken from Shannon (1976). Uncertainties 

are reported as 1σ and are within the size of the markers except where explicitly shown. Partition 

coefficient for total Mg is shown, but this point is not used in fitting, since an unknown fraction 

of the Mg in anorthite is on a different site (see text). 

 

Table 1. 
 
 
 EMP (wt. %) SIMS (ppm) 

 Starting 
glass 

2-1*-GL 
n = 4 

Standard 
2b-1-2 

Anorthite 
n = 10 

Standard 
2b-1-2 
Glass 
n = 10 

Ra-free Run 
2-1*-1 

Anorthite 

Ra-free Run 
2-1*-1 
Glass 

Run 
2-1*-Ra 

Anorthite 

Run 
2-1*-Ra 

Glass 

SiO2 46.6 (2) 43.4 (1) 47.97 (11) - - - - 
Al2O3 21.56 (6) 36.5 (2) 18.14 (19) - - - - 
MgO 0.99 (1) 0.099 (4) 1.19 (6) - - - - 
CaO 30.26 (7) 20.9 (1) 32.48 (18) - - - - 
SrO 114 (4) † 0.111(5) 0.136 (5) 99 (5) 111 (4) 96 (5) 112 (4) 
BaO 68 (4) † 0.097 (8) 0.60 (3) 10 (2) 76 (4) 12 (2) 85 (5) 
RaO nd † -- -- nd nd 0.16 (3) 5.2 (3) 
        
 DmMg** DmCa DmSr DmBa DmRa   
2-1*-Ra 0.098 (6) 0.724 (4) 0.84 (6) 0.17 (3) 0.040 (6)   
 
nd = not detected 
 
† Doping concentrations (ppm) as measured by SIMS on quenched glass of starting material. 

 
** Bulk Mg partition coefficient shown from standard run 2b-1-2, including all magnesium in 

anorthite, irrespective of crystal coordination environment. 
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Figure 1. 
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Figure 2. 

 

 
 




