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ABSTRACT A new nonlinear thermo-mechanical model for heavily jointed rock masses
is presented. The model uses correlation functions between the porosity and the basic 
rock properties such as elastic moduli, tensile and compressive strength. The model 
assumes that the media is isotropic and is characterized by two variable parameters: 
insipient porosity and in-situ-to-intact modulus ratio.

INTRODUCTION: The objective of this paper is to develop a methodology to model 
nonlinear response for in situ rock masses. The in situ model is build as an extension of 
the model for intact rock samples [Vorobiev, Liu et al 2007] with the strength properties 
scaled down according to the Hoek-Brown empirical rule [Hoek & Brown 1998] using 
GSI index characterizing the rock mass quality. Continuum model has been compared 
with explicitly modeled jointed media. The joints were modeled using advanced contact 
detection described in [Vorobiev 2007].

MODEL EXTENSION FOR INSITU ROCKS: It is known that the compressibility 
and the strength of limestones depend on the insipient porosity of rock samples [Vajdova 
2004]. Figures 1,2 below show porosity correlations for the crush pressure and the initial 
bulk modulus.  
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Fig.1. Correlation between the 
porosity and the crush pressure 
for the limestones

Fig.2. Correlation between the 
porosity and the initial bulk 
modulus the limestones



Fig.3. Uniaxial loading of solid and jointed limestone. Curve 1 is the 
analytical solution without porous compaction for the given joint density.
Analytical solutions 2, 3 and 4 show sensitivity to various jE and a/d values.

The correlation functions are used in the model for the intact rock instead of constant 
parameters. The presents of joints makes the rock weaker. Using in-situ-to-intact
modulus ratio, F, the scale factor for the unconfined compressive strength, s, can be 
found by Hoek-Brown empirical rule as 4Fs = . The initial bulk modulus for the in situ
rock is matched by enhancing poroelaticity parameters to satisfy the given modulus ratio.

COMPARISON WITH THE EXPLICITLY MODELLED JOINTED ROCK: The 
results of simulations of quasi-static uniaxial strain loading of a jointed rock in horizontal 
direction calculated with an explicit 2D Lagrangian code are given in Fig.3. Assuming a 
linear response of the solid and nonlinear hyperbolic stiffening of the joints gives the 
following relationship between the axial stress, AT , and the axial strain, Aε :
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The joint model and the numerical method are described in [Vorobiev 2007]. It follows 
from the analytic solution that the effective initial modulus of the jointed rock with 
vertical joints, effE , can be expressed using joint and solid moduli, jE and sE , as
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where a is the maximum joint closure (the aperture) and d is the  joint spacing.
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Numerical results calculated for the vertical joints (Fig.3 solid line) agree with the 
analytical prediction for the initial part of the loading (line 1). Porous compaction 
changes material stiffness at high strains. This is not accounted for by the analytical 
model. The two cases of joint orientation considered above (the vertical and the 
horizontal) do not represent the general case of randomly oriented joints.  More general 
cases which require intensive 3D simulations are currently under way. By modeling the 
effective compressibility and the strength of the jointed rock at the same time one can
find the limitations of the Hoek-Brown approach. Another goal of this study is to relate 
the scaling factor, s and the effective elastic properties of the rock mass, effE , to the 
properties of the joints.

CONCLUSIONS: The new parametrized model has been designed for large scale 
simulations involving rock masses with variable porosity fields and variable GSI index. It 
is assumed that joints are randomly oriented and the yield surface for the in situ material 
is found as a scaled yield surface for the intact material. As an alternative to the Hoek-
Brown scaling the effective properties of heavily jointed rocks can be found numerically 
in explicit calculations if both the joint and the solid responses are known. 

REFERENCES: 

Hoek, E., and Brown, E.T.,1998, “Empirical Strength Criterion for Rock Masses”, 
Journal of the Geotechnical Engineering Division, American Society of Civil 
Engineers, 106(GT9), 1013-1035

Vajdova V, Baud P., Wong T.F , “Compaction, dilatancy, and failure in porous carbonate 
rocks” ,2004, Journ.Geophysical Research, 109(B05204),1-16

Vorobiev O. Yu., Liu B.T., Lomov I.N., Tarabay T.H., 2007, “Simulation of penetration 
into porous geologic media”, Int. Journ. Imp.Engng 34, 721-731.

Vorobiev O.Yu., 2007, “Simple Common Plane contact algorithm for explicit FE/FD 
methods”, LLNL report, UCRL-TR-227085.

nijhuis2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.




