
UCRL-JRNL-229466

Dose, exposure time, and
resolution in Serial X-ray
Crystallography

D. Starodub, P. Rez, G. Hembree, M. Howells, D.
Shapiro, H. N. Chapman, P. Fromme, K. Schmidt, U.
Weierstall, R. B. Doak, J. C. Spence

March 28, 2007

Jounal of Synchrotron Research



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



 1

Dose, exposure time, and resolution in Serial X-ray Crystallography. 

 

D. Starodub,a* P. Rez,a G. Hembree,a M. Howells,b D. Shapiro,b H. N. Chapman,c 

P. Fromme,d K. Schmidt,a U. Weierstall,a R. B. Doak,a J. C. H. Spencea 

aDepartment of Physics, Arizona State University, P.O. Box 871504 Tempe, Arizona 
85287-1504, USA, bAdvanced Light Source, Lawrence Berkeley National Laboratory, 
Berkeley, California 94720, USA, cLawrence Livermore National Laboratory, 7000 East 
Avenue, Livermore, California 94550, USA, dDepartment of Chemistry and Biochemistry, 
Arizona State University, P.O. Box 871604 Tempe, Arizona 85287-1604, USA. E-mail: 
dmitri.starodub@asu.edu 

 

Synopsis 

Using detailed simulation and analytical models, the exposure time is estimated for serial 

crystallography, where hydrated laser-aligned proteins are sprayed across a continuous 

synchrotron beam. 

Abstract 

The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be 

delivered prior to sample damage. In the proposed Serial Crystallography method, the damage 

problem is addressed by distributing the total dose over many identical hydrated macromolecules 

running continuously in a single-file train across a continuous X-ray beam, and resolution is then 

limited only by the available fluxes of molecules and X-rays. Orientation of the diffracting 

molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) 

required to obtain a given resolution from (1) an analytical model, giving the count rate at the 

maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for 

a GroEL–GroES protein complex, and (3) the frequency cut off of the transfer function 

following iterative solution of the phase problem, and reconstruction of a density map in the 

projection approximation. These calculations include counting shot noise and multiple starts of 
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the phasing algorithm. The results indicate the number of proteins needed within the beam at any 

instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of 

exposure time on resolution, with important implications for all coherent X-ray imaging. We find 

that multiple single-file protein beams will be needed for sub-nanometer resolution on current 

third generation synchrotrons, but not on fourth generation designs, where reconstruction of 

secondary protein structure at a resolution of 7 Å should be possible with short (below 100 s) 

exposures. 

 

Keywords: protein structure; coherent scattering; phase retrieval; transfer function. 

 

1. Introduction 

In order to solve the structure of proteins which are difficult to crystallize, we have 

proposed spraying them across a synchrotron X-ray beam and aligning them using the dipole 

moment induced by a near-infrared polarized laser (Spence and Doak, 2004; Starodub et al., 

2005). All three orthogonal intersecting beams (the single-file protein beam, the alignment laser, 

and the X-ray beam) operate quasi-continuously (without synchronization) until adequate signal-

to-noise ratio is achieved in the diffraction pattern, which is then read out. By rotating the 

polarization of an elliptically polarized laser, this process may then be repeated for many 

orientations to fill the 3D volume in reciprocal space with diffraction data. Other alignment 

methods, such as static electric or magnetic fields, or flow alignment have been considered and 

demonstrated (Bras et al., 1998; Koch et al., 1988), as well as employed in the field of 

birefringence measurements (Fredericq and Houssier, 1973). These alignment techniques may 

also be helpful to avoid the problem of orientation classification of diffraction patterns from 

single molecules in random orientations, which is the main difficulty arising for single molecule 
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imaging using pulsed X-ray free-electron lasers(Chapman et al., 2006a; Huldt et al., 2003). The 

motion of the molecules does not affect the diffraction pattern if the illuminating wave field is 

approximately planar, so that if there is, for example, one molecule in the beam at any instant, 

the method is equivalent to diffraction from a single stationary molecule. The continuous 

replacement of this molecule by others, however, allows an arbitrarily long exposure time 

without radiation damage. For 20-µm diameter X-ray and laser beams, with a typical droplet 

beam velocity v = 50 m/s, the transit time through the beam is t = 400 ns. The radiation dose 

received by each protein during this time can be estimated by applying the Bragg’s rule of 

weighted summation of monatomic photoabsorption cross sections for the elements composing a 

protein. Using tabulated data on photoabsorption cross sections (Henke et al., 1993), for a 

generic protein stoichiometry H50C30N9O10S1 and density 1.35 gm/cm3, that gives the mass 

absorption coefficient µ of 937 cm2/g at the X-ray energy E = 1.5 keV, and 9.6 cm2/g at 8 keV. 

The dose which sets the radiation damage limit at atomic resolution is DL = 2×107 Gy 

(Henderson, 1995). That assumes that an ejected photoelectron passes through surrounding bulk 

material causing damage, and therefore gives a lower limit on acceptable dose for the isolated 

biomolecules in Serial Crystallography, where the photoelectrons deposit only a small fraction of 

their energy before escaping into vacuum. Then the minimum flux that can be tolerated by a 

protein is 9102.2 !"" EtDI L0 #  photons s-1 nm-2 at the incident energy 1.5 keV, and 

4.1×1010 photons s-1 nm-2 at 8 keV. These intensities are far beyond the capabilities of any 

existing or projected X-ray sources. Therefore, the resolution, achievable in Serial 

Crystallography, is limited only by the time available for data collection. 

 If there is no interference between X-rays scattered from different molecules, then the 

scattered intensity from a single-file train of macromolecules with separation L traveling across 
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an X-ray beam of diameter DB = 20 µm is proportional to the number of molecules falling within 

the beam at any instant M = DB/L. We further assume that all M molecules are perfectly aligned. 

For a monodispersed Rayleigh droplet beam, the droplet diameter is about twice that of the 

column of liquid from which they form by a necking instability (Rayleigh, 1878), and the 

spacing between droplet centers is about twice their diameter. Therefore, the 1-µm liquid column 

produced by a Rayleigh droplet source gives L= 4 µm and M = 5, resulting in an 80% reduction 

in exposure time over single molecule exposure at the same resolution. In order to increase the 

scattering intensity, the design of "shower-head" aerodynamically formed multiple-jet nozzles is 

also under active development (Weierstall et al., 2007). Experiments are planned with an average 

of one protein per droplet, and also with many proteins per droplet. Data will also be collected 

using an average of one sub-micrometer protein crystallite in each droplet. Even without 

alignment, the resulting "powder protein data" might be solved by molecular replacement 

methods using the iterative flipping algorithm (Wu et al., 2006). In this paper we treat mainly the 

case of one molecule per droplet, and assume that all water except a few-monolayer jacket of 

vitreous ice has been removed, as in recent research on proteins using electrospray spectroscopy 

(Sobott et al., 2005), so that the ice-jacket effects can be ignored. Inclusion of the ice background 

may increase the required dose by almost one order of magnitude, however by choice of flight 

distance the jacket thickness may be reduced to zero. 

 The purpose of this paper is to provide realistic estimation of exposure time required for 

diffractive imaging of biological macromolecules. We perform simulations of the diffraction 

patterns for a sample object at various exposure times, and then apply the iterative procedure to 

solve the phase problem for charge density reconstruction in order to determine the relationship 
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between exposure time !t and resolution d in reconstructed image. The results are compared 

with power law estimates derived from simple scattering models. 

 Our project grew out of earlier work on coherent diffractive imaging (Marchesini et al., 

2003a) based on a soft X-ray undulator beam [beamline 9.0.1 at the Advanced Light Source 

(ALS)], using a zone-plate as a monochromator. Diffraction from virus particles was intended, 

requiring 500 nm spatial coherence and the high flux, made possible only by an undulator 

operating in the soft X-ray region. For large proteins or macromolecular assemblies at, say 20 Å 

resolution, shorter wavelengths and less coherence are needed, so that our simulations here are 

given for a planned upgrade of the 9.0.1 beamline at the ALS to 1.5 keV, for a new coherent 2-

6 keV undulator beamline at the Advanced Photon Source (APS), and for the energy-recovery 

linac (ERL) source planned at Cornell. 

 

2. Relationship between resolution and exposure time. 

Related treatments of the relationship between exposure, dose, resolution and beam 

energy for X-ray microscopy have been given previously (Howells et al., 2005; Marchesini et al., 

2003a; Shen et al., 2004). That work is based on calculation of the imaging dose (energy 

absorbed per unit mass) required to collect statistically significant data at a given resolution. If 

this dose is smaller than that known to destroy structural detail of a given size, this resolution is 

considered feasible. Otherwise, the resolution limit is determined by the dose that destroys detail 

of a given size. A statistically reliable photon count P, chosen for this dose, may be found in 

either of two ways. First, as the total number of photons scattered into the detector from a single 

voxel, within the sample, of resolution size d. (These counts will subsequently be phased and 

recombined computationally into one resolution voxel in the real space reconstruction or image). 

Alternatively, one may calculate the number of photons scattered by the entire object of size D 
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into one detector pixel at a scattering angle corresponding to the resolution of interest. The first 

method is independent of molecular size, the second is not. Both methods depend on the 

structure of the object (in the first method, the result depends on which voxel is chosen), so that 

resolution is here a property of the sample as well as the instrument. In the first approach 

(Howells et al., 2005), one can simply integrate the signal, scattered by a spherical voxel of 

diameter d, to get (Kirz et al., 1995) 

   tIdrP e $" 0
2422

8
%&'       (1) 

in the limit ! << d, where re = 2.82×10-6 nm is the classical radius of electron, )( 21 iffna ("%  is 

the effective complex electron density of a matter with atomic concentration na and complex 

atomic scattering amplitude 21 iff ( , ! is the X-ray wavelength, I0 is the incident X-ray flux, and 

!t is the data acquisition time. Then the dose, proportional to the incident X-ray beam fluence, 

scales with resolution as d-4. The required exposure does not depend on detector size. In the 

second approach, an incoherent sum over the object volume of the scattered intensities from the 

resolution-elements (voxels) of size d into a detector pixel corresponding to resolution d, is 

(Shen et al., 2004) 

   tIDdrP e $" 0
2322
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      (2) 

(By contrast, we assume a coherent sum below). This result depends on the object size, and the 

shape of the resolution element. Note that if the latter were cubic, the scattered intensity at 

scattering vector dq '2"  corresponding to the resolution limit would be zero. 

 The generally accepted requirement for a statistically reliable measurement of signal P is 

that that signal exceeds the background noise level by a factor of five (Rose, 1948). Since the 

input to the numerical phase retrieval algorithms involves the modulus of the scattered amplitude 
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rather than intensity, for Poisson noise this implies ) * 522 ""$"$ PPPPP , or P = 6.25. 

Successful 3D reconstruction from experimental diffraction patterns has been reported at the 

photon count of just 1 photon/pixel at the highest achieved resolution (Chapman et al., 2006b). 

To be consistent with previous work (Shen et al., 2004), we choose P = 5 for further discussion. 

 Because the coherence patch of the synchrotron is larger than our biomolecule, we 

assume that the statistical accuracy of a diffraction pattern is defined by the coherent scattering 

from the entire object at the angle that corresponds to the required resolution. For convenience 

we start by considering the scattering from a single organic spherical object of radius R = D/2. 

The incident X-ray wave vector is k, the scattered wave vector 'k  and the scattering vector q. 

The vector q connects the (000) point with other points on the momentum and energy-conserving 

Ewald sphere of radius k: 

   kkq +" ' , 

with the maximum value qmax defined by the maximum scattering angle allowed by the detector 

geometry. To obtain a full 3D reconstruction, diffraction patterns from all object orientations 

must be recorded, in order to fill a sphere of radius qmax in reciprocal space. These intensities 

measured on the Ewald sphere can then be redistributed onto a regular Cartesian grid by 

interpolation. As our object is coherently illuminated by X-rays, with incident electric field E0, 

the electric field amplitude at a distance r in a direction specified by q is 

   ) * ) * ) * rq.rrq diE
r
rE e expsin' 0 ," %-      (3) 

where "(r) is the charge density and # represents the angle between the electric field and the 

scattered direction (a polarization term). If the sphere had uniform charge density ", then the 

Fourier transform in Eq. (3) could be evaluated as 
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 In terms of intensities and a cross section the scattering equation can be written as 

   ) * 0
222 sin)( IqfrqI xe $0" -       (5) 

To solve the phase problem using the scattered intensity pattern based on the iterative Fienup 

(1982) algorithm, the object must be embedded in a known matrix of extent sD, with sampling 

ratio s = 21/3 for 3D reconstruction and s = 21/2 for 2D reconstruction. Then the pixel size in 

reciprocal space is sRq '"$ . If we consider scattering by relatively small angles, then the solid 

angle subtended by a pixel is 
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As seen from Eq. (4), the shape function for a uniform charge density falls as q3. Additionally, 

the atomic scattering factor also decreases for a larger scattering vector. This means that 

reconstructing an object to a given resolution d requires that there be statistically significant 

counts in a pixel at dq '2max " . If the detector has N×N pixels and its center is on the axis of 

the incident beam, at the edge of the detector 2max qNq $" .Then the expression for resolution 

becomes 

   
N
sRd 4

"         (7) 

From Eqs. (4)–(6), we get for the scattered photon count P at the pixel corresponding to the 

scattering vector q 
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The pixel size slightly exceeds the oscillation period of the term in parentheses, and becomes 

equal to that at s = 1. Averaging of this term in radial direction over the pixel size gives for small 

s 
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Combining Eqs. (8)–(9), we obtain for the number of counts in time $t at the pixel corresponding 

to resolution d: 

   tIdr
s
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.      (10) 

This expression has the same functional dependence as that obtained by Howells et al (Howells 

et al., 2005), but with a different numerical prefactor. We note in particular the power-law 

scaling with d and &. A similar result is obtained in the phase-grating approximation, applied to 

one voxel. Here the phase shift dre%&> " , which produces a cross-section d 2>?2, as above. 

 

3. Scattering simulation. 

 A more detailed analysis, extending to the important sub-nanometer resolution range, is 

possible using a direct calculation of the X-ray diffraction pattern based on atomic X-ray 

scattering factors. This allows the effects to be considered of three-dimensional atomic structure, 

detector size, noise, and stability of our iterative algorithm for solution of the phase problem. As 

the test object for our simulations we choose the asymmetric E. coli chaperonin GroEL14–

GroES7–(ADP·AlFx)7 protein complex, constituted of 59,276 atoms. GroEL contains 14 identical 

subunits of molecular mass 58 kDa, and GroES contains 7 subunits of molecular mass 10 kDa. 

They form a structure consisting of three distinctive rings. The length of the complex is 20 nm, 

and diameter 14.5 nm. The 3D structure of the complex at 2.8 Å resolution has been 
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reconstructed by X-ray crystallography (Chaudhry et al., 2004) and was obtained from the 

Protein Data Bank (entry 1SVT). A sketch of the scattering geometry is shown in Fig. 1. The 

detector is a two-dimensional 512×512 array of equidistant pixels of linear size a, located at a 

distance l00 from the sample, which limits the scattering angle at its edges to a resolution of a few 

ångströms. The position of a pixel with indices i and j relative to the sample is defined by the 

zenith angle $ij and azimuth angle %ij, which also determine the distance lij between this pixel and 

the sample. Then the diffraction pattern is formed by the polar gnomonic projection of the points 

lying on Ewald sphere onto the flat detector screen. According to Eq. (5), for an incident plane 

wave of intensity (photons per unit area) I0 with wavelength ! the scattered photon count in the 

given pixel is given in the single-scattering (Born) approximation as  

   0
22 )(sin)(*)( IqAqArI ijijijijeij $0" - ,    (11) 

with a sample scattering amplitude 

   ) * ) *@"
k

kijijkij iqfqA rqexp)( ,     (12) 

where qij = 4&sin($ij/2)/! is the scattering vector corresponding to detector pixel (i,j), which 

subtends solid angle 22 /)cos( ijijij la >"$0  at the angle >ij. kr  is the position vector of the kth 

atom in the sample, and the summation is performed over all the atoms of the sample. For the 

undulator odd harmonics the X-ray beam is linearly polarized and polarization term is 

   )(cos)(sin1)(sin 222
ijijij A>- +" . 

The scattering amplitude for the kth atom is (Henke et al., 1993) 

   )()( ''' qfiffqf kkkk $+(" , 

where the last term describes the angular dependence of the atomic form factor: 

   )(~)( qfZqf kk +"$ , 
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and )(~ qfk  is the empirical approximation of tabulated data by four-Gaussian fitting (Doyle and 

Turner, 1968), satisfying condition Zfk ")0(~ . We note that, if absorption is neglected so that 

fk(q) is real, then )()( * qq AA "+ , and the charge density obtained by Fourier transform of the 

sample scattering amplitude is real. 

We perform simulations of the diffraction patterns from the GroEL–GroES protein 

complex using the parameters of three X-ray beamlines that will become available in the near 

future. The first one is the planned upgrade of beamline 9.0.1 at the ALS (Berkeley, CA) with an 

expected fully coherent intensity of 2.5×103 photons s-1 nm-2 at 1.5 keV. Higher intensity at the 

cost of reduced coherence will be achieved at the projected undulator source at APS, which will 

operate in the energy range between 2 and 6 keV. A recent measurement of the undulator beam 

at Sector 7 of APS, focused into a ten micrometer spot, gave 6×1012 incident photons s-1 with 

beam divergence of 1.4 mrad at 0.01% energy bandwidth at 14.3 keV (Young et al., 2006). The 

variation of the undulator flux with energy depends on coherence requirements, with the single-

mode fully coherent flux varying as the square of the wavelength. Applying this scaling, the 

value of the incident flux could be interpolated to 7.7×105 photons s-1 nm-2 at 4.5 keV. The 

available number of photons can be further increased by using a larger bandwidth within 

acceptable limits. The requirement that the photons with wavelengths spread by the value of 

bandwidth '! and scattered at the same scattering vector diverge by no more than half a detector 

pixel, results in the condition '!/! < 2/N (Chapman et al., 2006b; Spence et al., 2004), where N is 

the number of pixels along one Cartesian axis. Therefore at the 0.1% bandwidth a detector with a 

linear size not exceeding 2×103 pixels will be adequate. A 1.4 mrad beam divergence $c 

corresponds to a spatial coherence width of approximately Lc = &/(2'?$c) = 313 Å at 4.5 keV, 

which is larger than our molecules (but smaller than the distance between them). For our 
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simulation, we use the estimation of 106 photons s-1 nm-2 for the new APS beamline incident 

flux. For the harder X-rays, we use the flux of 3×108 photons s-1 nm-2 at 8 keV, corresponding to 

the proposed ERL beamline at Cornell university (Shen et al., 2004). 

 The secondary structure of proteins ("-helices) can be resolved at resolution of d = 7 Å, 

which sets the lower limit for the largest measured scattering vector as 0.9 Å-1. The sampling 

ratio can be found from Eq. (7) as s = Nd/2D, and oversampling (relative to the minimum 

acceptable sampling ratio) for 2D projection is then Nd/23/2D. Thus, for a detector whose linear 

size is N = 512 pixels and D = 200 Å the diffraction pattern is oversampled by a factor of 6.3. A 

simulated diffraction pattern, on the 512×512 grid for one molecule in the 8-keV X-ray beam, is 

presented in the left panel of Fig. 2. The right panel shows the scattered intensity per pixel, 

averaged over the azimuth angle, as the function of scattering vector for incident beam energies 

of 1.5, 4.5 and 8 keV with fluxes of 2.5×103, 1×106 and 3×108 photons s-1 nm-2, respectively. If 

normalized to the same incident flux, the ratio of the integrated scattered intensities (scattering 

cross sections) for 1.5, 4.5 and 8 keV is 30.1:3.21:1. This is close to the ratio 29.3:3.18:1, which 

is predicted by a #2 scaling of scattered coherent flux with X-ray wavelength, according to Eq. 

(1). The visually steeper fall-off in scattered intensity at 1.5 keV is a consequence of the close 

distance between detector and sample, required to collect the data at large scattering angles, 

where the solid angle subtended by a pixel near the edge of the detector is reduced by a factor of 

cos ($). In this case the pixel size in reciprocal space near the center of the detector will be larger 

than the average, and failure to interpolate the diffraction pattern onto a regular grid of scattering 

wave vectors would result in a “stretched” reconstructed object. The dashed horizontal line in 

Fig. 2(b) corresponds to 5 counts per pixel after exposure of 100 s at minimum required 

sampling (N = 81) for one sample in the X-ray beam at any instant. Therefore, its intersections 
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with the scattering curves at different X-ray energies determine the resolution achievable under 

these conditions. In particular, the full reconstruction of the secondary protein structure can be 

predicted at the future ERL source, based on the requirement of 5 counts in a pixel at the 

maximum scattering angle, while the low resolution (27 Å) envelope could be obtained at the 

APS. For M proteins in the beam at any instant, the count rate is multiplied by M, since no 

interference occurs between different molecules. Therefore, with a reasonable assumption of 

M = 20-30, a resolution of 7 Å is feasible at the APS. Object reconstruction from these 

diffraction patterns (with noise added), as described in the next section, shows that larger 

exposure times than predicted here are actually required for the intended resolution. Note that 

full 3D reconstruction requires that the collected data be assigned to points on the Ewald sphere, 

which is swept through reciprocal space (by rotating the sample) to fill a 3D volume. Using 

diffraction patterns from different protein orientations independently would then increase 

tremendously the time required for data acquisition. However, if the correlation between various 

projections is taken into account for 3D reconstruction according to the dose fractionation 

theorem (Hegerl and Hoppe, 1976), the dose required for each projection in the 3D imaging will 

be reduced, so that the estimate of the dose needed for one reconstruction of a 2D projection can 

also be applied to the full 3D reconstruction. 

 In the inset of Fig. 2(b) the scattering curves for 8 keV photons with an incident flux of 

3×108 photons s-1 nm-2 (ERL) in the planes of qx = 0 (solid line) and qy = 0 (dash line) are re-

plotted using log-log coordinates. They are extracted from the 256×256 grid (sampling ratio s = 

4.48). As expected for an asymmetric object, at smaller scattering vectors the scattering curves 

are feature-rich and highly inhomogeneous. In particular, a pronounced peak at qy = 0.15 Å-1 

corresponds to the ring structure of the GroEL complex in y direction with a period of about 40 
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Å. It should be clear that in this scattering vector region it would be difficult to rely upon the 

general form of a power law (as derived in the previous section) for the required flux estimation, 

since the scattering curve in this region cannot be fitted by a power law. Due to the sharp peak at 

0.15 Å-1, this feature will dominate even in very noisy diffraction patterns, giving rise to a disk-

like structure. The scattering curves become relatively featureless and independent of azimuth 

angle only at the highest scattering vectors, and then they can be approximated using a power 

law, resulting in the power scaling of the required exposure time with resolution, described in the 

previous section. 

 In the discussion above, we have defined resolution by the highest scattering angle at 

which statistically accurate data above background can be found in a detector pixel. This 

treatment does not take into account the stability of the reconstruction algorithm, used for phase 

retrieval, with respect to statistical fluctuations. Therefore, it gives a lower limit for the required 

exposure. In the next section we apply the Hybrid Input Output (HIO) algorithm to reconstruct 

the high-resolution structure of the GroEL complex, and quantitatively investigate resolution as a 

function of incident fluence. 

 

4. Coherent transfer function for HIO reconstruction. 

 Because the HIO algorithm is known to be more effective for real-valued objects, where 

a strong positivity constraint can be applied, we limit our consideration to a real object. In the 

general case the Fourier transform of the scattering amplitude A(q), collected on a 2D grid, 

would not be real because one measurement cuts reciprocal space along the curved Ewald sphere, 

which does not contain points with inverted coordinates, and therefore the condition for object 

reality A(-q) = A*(q), while satisfied by a tomographic data set collected in three dimensions, is 

not met on a 2D grid. For simplicity, we do not consider such a full 3D reconstruction, and to be 
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consistent with the requirement of object reality, we use the diffraction pattern from a 2D 

projection of the GroEL-GroES electronic density, calculated by setting coordinate z = 0 in Eq. 

(12). This also avoids the de-focusing effects in the projection approximation for 3D objects due 

to the curvature of the Ewald sphere. We assume that the atomic scattering amplitude is equal to 

the number of electrons in atom Z, thus neglecting absorption and any angular dependence of 

scattering amplitude, which is justified for high energy photons (here 8 keV) and scattering at 

small angles. The projection of the object electronic density is given in the inset to Fig. 3 (left 

panel). The scaling bar length corresponds to 35 Å. The diffraction pattern was calculated on a 

256×256 grid with a maximum wave vector transfer of qmax = 0.9 Å-1 (sampling ratio s = 4.48). 

We found that application of the HIO algorithm to a 128×128 grid (s = 2.23) results in a smaller 

percentage of successful reconstructions. 

 The HIO iterative algorithm (Fienup, 1982) with reality and positivity constraints is 

described by a recursion relationship 

   
BC

B
D
E

+

FGHI
"(

otherwisegP

gPSifgP
g

nM

nMnM
n

)()ˆ1(

0))(ˆ()(ˆ
)(1

r

rrr
r

J
,  (13) 

where gn(r) is the reconstructed object in real space after n-th iteration, S defines a support 

such that 0)( "K Sg r , and the feedback parameter is ( = 0.9. The projector operator MP̂  

determines the projection of the Fourier transform of the reconstructed object on the reciprocal 

space subset satisfying the modulus constrain defined by the measured scattered intensities: 
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Here F(gn) denotes the operation of Fourier transform. We use 1000 cycles of the HIO iterations 

followed by 5 cycles of the error-reduction (ER) algorithm )(ˆˆ)(1 rr nMSn gPPg "( , where the 
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support projector is: 
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The quantitative measure of the iterative process convergence is the error metric in real space 

(equal to the amount of charge-density remaining outside the support) 
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and in reciprocal space 
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We determined the support by convolution of the known object, used for the calculation of the 

diffraction pattern, with a Gaussian whose half width at half maximum was 3 pixels (10.5 Å), 

and a subsequent cut off at 5% of the maximum object charge density. The area outside the 

support is marked by the gray color on the right panel of the inset to Fig. 3. Because the support 

is relatively loose, the actual sampling ratio s (which should be more correctly defined relative to 

the support size rather than the object size, as we do here) is somewhat smaller than indicated. 

Even without using the support, the HIO algorithm provides the low-resolution sample structure 

and external boundary. This implies that the Shrinkwrap algorithm (Marchesini et al., 2003b) 

could be applied if the support were unknown. That algorithm dynamically refines an initially 

loose support using intermediate reconstructions after a series of iterative steps. 

 The first object estimation was determined by applying the support projector given by Eq. 
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(15) to the Fourier transform of the measured modulus of the scattered amplitude )(qI  with 

random phases %(q). To ensure the reality of this Fourier transform, the condition %(-q) = -%(q) 

was enforced. In spite of the support asymmetry, sometimes the reconstructed image appeared in 

the inverse orientation. Though usually it rotates to the correct position after a sufficiently large 

number of iterations, in order to facilitate the convergence rate the first 100 iterations are 

performed additionally using the same set of random phases, but with reversed signs. Then the 

reconstructed object with the larger error, which has a wrong orientation, is rejected, and the rest 

of the iterations are done using the remaining object with the correct orientation. 

 Fig. 3 shows the behavior of the root mean square (rms) error, defined by Eq. (16), in a 

single reconstruction procedure for three reconstructions with different initial phases. In all cases, 

after a few iterations the error drops to ES $ 0.1. The successful reconstructions (solid lines, rate 

of success is about 85%) are characterized by a step-like decrease of the error by about a factor 

of 2 at some point (in Fig. 3, after around 400 and 800 iterations), which is accompanied by 

decreasing of the error standard deviation. Reconstructions that do not converge to the correct 

solution have a persistently high and noisy error (open circles). Before averaging over successful 

reconstructions, the images must be re-aligned to accommodate for the origin ambiguity 

produced by different random starting phases. This was done in two ways: by adjusting the 

image position in real space and the phases in reciprocal space. The reconstructed image with the 

smallest rms error was chosen as a reference. Then in real space, each remaining image was 

translated to the position where its cross-correlation with the reference image has a maximum. In 

reciprocal space, for each reconstruction we construct the matrix whose elements are equal to the 

difference ijA~  between the phases of this and the reference reconstructed scattered amplitudes in 

the corresponding pixel. From that the matrix ijijij AAA ~~~
1 +"$ (  is formed, where cyclic boundary 
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conditions ( 11
~~

iiN AA "( ) are applied. Then the object translation along x-axis in real space (in 

pixels) is determined as NX
ij

ij 'A 2~@$" . The shift in the y direction can be calculated in the 

same way by switching the indices i and j. The image averaged over 171 successful 

reconstructions (out of 200), adjusted using the cross-correlation function, is shown in the right 

inset to Fig. 3. It clearly repeats the original image structure. In particular, the details of the top 

trans GroEL ring, medium cis GroEL ring, and bottom GroES cap can be observed. 

 To test the stability of the HIO algorithm convergence with respect to the noise level, we 

introduced shot noise for the number of photons collected by a detector, described by a Poisson 

distribution of counts in each pixel: 

   
!

)exp(
)(

k
ss

kf
k
ijij

ij

+
" , 

where k is the integer number of counts in the (i, j) pixel, and tMqIs ijij $" )(  is the expected 

number of counts in this pixel after exposure time !t, determined from the calculated diffraction 

pattern. We assume an incident photon flux of 3×108 photons s-1 nm-2 (ERL) and one sample in 

the beam at a time M = 1. Then the phase retrieval algorithm was applied as described above. For 

each exposure time, 200 independent reconstructions have been run, and 15% of the 

reconstructions with the highest error have been rejected. The real space rms error after the final 

iteration step, calculated according to Eq. (16) and averaged over successful reconstructions, is 

shown in Fig. 4 as a function of exposure time. The mean error steadily increases as the input 

diffraction patterns become noisier, roughly following the power dependence on the counting 

time with the exponent of -0.28, as indicated by the fitting line. The images have been adjusted 

by either their positions or phases, as described above, and then averaged. The result is shown in 

Fig. 5 for both methods of image adjustment. Using the cross-correlation function in real space 
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gives somewhat better images. The details of the ring structure remain consistent at exposures as 

low as 10 s, but eventually they become completely smeared out at an exposure of 1 s, which is 

attributed to the fast growth of the HIO process instability at this counting time. The failure of 

the reconstruction algorithm is also reflected in the behavior of the error distribution, shown in 

the inset to the Fig. 4. In a large range of the longer exposure times, the errors of independent 

reconstructions have a very narrow and asymmetric distribution, which suddenly broadens as 

exposure decreases from 10 s to 1 s, indicating stagnation of the algorithm. 

 Visual examination of Fig. 5 allows one to follow the change of resolution in response to 

exposure time. If the Fourier transform of the averaged object is considered as the output of the 

phase retrieval algorithm, then its amplitude modulus transfer function (TF) can be defined as the 

ratio of the output modulus to the modulus of the ideal scattered amplitude. Then the TF 

scattering wave vector cut off can provide a quantitative measure of resolution. The plots of the 

TF, corresponding to different data acquisition times, and therefore different signal-to-noise 

ratios (SNR), are shown in Fig. 6. Prior to the TF calculation the Fourier transform moduli have 

been averaged over azimuth angle. The top row of images in Fig. 5 was used to obtain the curves 

in Fig. 6. Averaging of the reconstructed objects using phase information produces similar, 

though slightly narrower, curves. The thick line (1) corresponds to the ideal diffraction intensity, 

being the input for the HIO procedure. It reflects the effects of imperfect phasing by the iterative 

algorithm itself, and exhibits a flat plateau at lower scattering vectors with a rather abrupt cut off, 

characteristic for a coherent imaging system. Other curves demonstrate the TF response to the 

introduction of shot noise. We determined the resolution limit for a given exposure time from the 

width q1/2 of the corresponding TF at half maximum (TF = 0.5) as d = 2%/q1/2. The results are 

shown in Fig. 7 in the form of a plot of data acquisition time as a function of resolution, for 
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images averaged in reciprocal (solid squares) and real (open circles) space. Both sets of data 

points follow the power law at high resolution, but experience a sharp decrease at about 30 Å. 

This is especially obvious for the images averaged in real space, where apparent resolution 

becomes virtually independent of exposure. This effect is related to the specific features of the 

object structure, dominated by the well-defined rings with average periodicity of 40 Å. Therefore, 

at lower exposure time only the strong scattering due to these rings would be reliably detectable, 

even at very short counting times. In this case, the phasing algorithm does not properly retrieve 

the phases of the scattering amplitude, as demonstrated in Fig. 5 by the complete blurring of the 

images averaged in reciprocal space. But it still produces the distinctive strips, which do not 

vanish upon real space averaging. For the linear fit of the data we used only the five points 

giving the highest (best) resolution, where the required time obeys the power scaling with d. For 

the images, averaged in reciprocal space, the exponent of the power law is -3.99 (-3.59 for the 

real space averaging), in exact agreement with Eq. (10). 

For a quantitative comparison with the analytical results of section 2, we assume an 

empirical protein composition of H50C30N9O10S1 and density 1.35 gm/cm3, which gives an 

average electron density of 434 nm-3. We also take into account that Eq. (2) is derived for critical 

sampling, and rescale it to the sampling ratio of the 256×256 grid according to 2st L . The 

resolution predicted by Eq. (10) at a given time (dash dot line) is better by a factor of 1.7 than 

that derived from simulated images. This discrepancy may be due partially to the additional 

effect of shot noise on the phasing algorithm stability, and to the arbitrarily setting of the number 

of counts required for the data statistical accuracy, that appears to be too low, in the analytical 

solution. The possible reason is that the variation in scattered intensity rather than absolute count 

rate must be accurately measured, which would require a better SNR. Considering the count rate 



 21

P in the pixel at resolution limit as a free parameter in our analytic model, the resolution, 

determined from the TF calculation and shown in the Fig. 7 by solid squares, can be fitted by Eq. 

(10) with P = 37 counts/pixel. That is higher than the count rate expected from the Rose criterion. 

Fig. 7 also shows the required time dependencies on resolution described by Eq. (1) due to 

Howells et al. (2005) (dash line) and Eq. (2) by Shen et al. (2004) (dot line). These curves give 

too optimistic results for the expected resolution as compared to the explicit TF calculation. The 

resolution definition via TF is still uncertain due to its complicated shape and absence of a sharp 

cut off, emphasizing that for phase-contrast imaging, resolution cannot be specified by a single 

parameter, and depends on the sample itself. In Fig. 5 we observe that details of the shape 

envelope distort at counting times less than 100 s. Collecting data at the critical sampling ratio 

would reduce the required exposure by a factor of 12.6. However, we found that decreasing the 

sampling ratio reduces the stability of the HIO algorithm convergence to a valid solution. The 

addition of more constraints to the phasing algorithm due to an a-priori information may be 

available, especially convex ones such as the widely used histogram constraint. That may allow 

reduced oversampling. 

Note that all calculations have been done for one sample in the beam. Application of a 

“shower-head” multiple nozzle aerojet array, which is currently under development, has the 

potential to increase the number of molecules simultaneously present in the beam to about 100. 

This would substantially reduce the time required for diffraction measurement. 

 In summary, when full account is taken of Poisson noise and the performance of the 

phasing algorithm, we find using Eq. (10) that the exposure time for Serial Crystallography is 

given by 
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where we use nm and second units, and the scaling constant is derived from the Fig. 7. The 

severe dependence on the poorly defined resolution d is noted. (d is poorly defined because it 

depends on the structure of the sample. Our resolution definition using MTF=0.5 is highly 

conservative). This power law has serious implications for all attempts at coherent imaging with 

X-rays. Table 1 shows the estimates of the expected counting times at the planned ALS, APS and 

ERL X-ray beamlines from Eq. (18), which demonstrate a severe punishment in terms of the 

required exposure time for a very small resolution improvement. We note that, under the dose 

fractionation theorem of Hegerl and Hoppe (1976), these times are unchanged for 3D image data 

collection. 

 

5. Summary. 

 The simple way to estimate the diffraction experiment counting time required for a given 

resolution is to calculate the number of photons scattered at the angle corresponding to this 

resolution, and to set this number to a fixed value, which would provide the statistically accurate 

measurement. We performed this calculation analytically for a globular uniform object and 

numerically by simulating the diffraction pattern for the chaperonin GroEL-GroES protein 

complex. This approach gives the lower limit of the required exposure. For a more elaborate 

evaluation, which also accounts for the convergence stability of the phase retrieval algorithm and 

its effect on resolution, we have used the HIO procedure to reconstruct charge density maps in 

real space from simulated diffraction patterns with different noise levels. Visual examination of 

the reconstructed images shows that at the projected ERL X-ray beam source even the short 

exposure of 10-100 s can produce valuable information on the bio-complex envelope shape. 
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Using the transfer function spatial frequency cut off as a quantitative measure of resolution, we 

determined the functional dependence of the exposure time on required resolution. It scales as 

the inverse forth power of d. However, the prefactor obtained by fitting to the calculated 

resolution is higher than that expected from the Rose criterion. Using the count rate, required for 

a statistically accurate measurement, as a free parameter, we get the exact agreement with the 

analytical solution. 

 The times predicted by the simple analytical models given here and by Henke and DuMond 

(1955), Howells et al. (2005), and Shen et al. (2004) can be up to two orders of magnitude 

shorter than those following from the TF calculation, since they do not include the effects of the 

phasing algorithm on resolution. These three analytical model treatments may be distinguished 

as follows. 

 1. In Henke and DuMond (1955) and Howells et al. (2005), a coherent sum of scattering 

from one voxel (resolution element) inside the sample is used. The result depends on which 

voxel is chosen. 

 2. In Shen et al. (2004) treatment, an incoherent sum over all voxels is used at the 

maximum (resolution limiting) scattering angle. Interference between waves scattered by 

different voxels is ignored by averaging, and the result depends on molecular size. We note a d-3 

scaling of exposure time in this approach. 

 3. In our treatment, a coherent sum over all voxels is used at the maximum (resolution 

limiting) scattering angle. The result again depends on the size of the molecule. 

 The reported results have important implications for the design of droplet beam systems for 

serial crystallography, suggesting that the use of multiple nozzles will be essential for third-

generation synchrotrons, but not for fourth generation machines. 
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 Possibilities for decreasing the exposure time required to achieve a desired resolution 

include use of lower X-ray energy, optimization of coherence conditions, increasing the number 

M of proteins present in the X-ray beam at any instant, use of a more efficient phasing algorithm 

(Marchesini, 2007) and use of additional constraints in the phasing algorithm, such as the 

histogram constraint (which drives the density map toward the known grey-level histogram for 

protein density maps), allowing smaller oversampling ratio s. Additional a-priori information 

may also be available, such as bond-lengths and sequence. The method of molecular replacement 

may also be useful, and has now succeeded in solving a protein structure from powder diffraction 

data (Von Dreele et al., 2000). Taken together, these improvements would reduce the required 

exposure at the ERL down to a value of a few tens of seconds. 
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Table 1  Exposure time (s) required to achieve a given resolution at different X-ray 

beamlines with parameters, discussed in the text, calculated from Eq. (18) for s = 21/2 and M = 10. 

Reducing the spatial coherence at the ALS to match the molecular size would decrease the 

required exposure time by several orders of magnitude. 

 d = 0.7 nm d = 1 nm d = 2 nm 

ALS 9.5×105 2.27×105 1.42×104 

APS 2.1×104 5.1×103 319 

ERL 227 54 3.4 
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Figure 1 Scattering geometry for simulation of diffraction pattern. 
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Figure 2 (a) Diffraction pattern for GroEL complex at X-ray energy of 8 keV. (b) Scattered 

intensity per pixel after angular averaging at: (1) 1.5 keV and 2.5×103 photons s-1 nm-2 (ALS); 

(2) 4.5 keV and 1×106 photons s-1 nm-2 (APS); (3) 8.0 keV and 3×108 photons s-1 nm-2 (ERL). 

Inset shows the scattered counts per pixel for the incident flux (3) on the 256×256 grid, cut 

through the planes qx = 0 (solid line) and qy = 0 (dash line), indicated in (a). 
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Figure 3 Real space error for the HIO algorithm as a function of iteration cycle number. 

Solid lines show the error behavior for two successful runs, while circles correspond to the 

reconstruction, which did not converge to the solution. Arrow indicates the step where the ER 

algorithm was applied. Inset: the charge density projection of the protein complex used to 

calculate the diffraction pattern (left panel) and averaged reconstruction (right panel). Area 

outside the support is filled with gray color. The bar length is 35 Å (10 pixels). 
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Figure 4 Reconstruction rms error in real space, averaged over many independent 

reconstructions, as a function of counting time. Solid line shows the best fit to the data points by 

a power law. Inset: distribution of the rms error in two set of independent reconstructions for the 

counting time of 10 s and 1 s. 
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Figure 5 The series of averaged reconstructed charge densities for the indicated exposure 

times. Before the averaging the images are aligned by translation in real space (top row) or by 

phase adjustment in reciprocal space (bottom row). The incident flux is 3×108 photons nm-2 s-1

and X-ray energy is 8 keV. 
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Figure 6 HIO transfer function for different signal-to-noise ratios (exposure times). 
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Figure 7 Exposure time requirement for a given resolution, deduced from the TF 

width for the HIO output, averaged using phase adjustment in reciprocal space (solid 

squares) and cross-correlation in real space (open circles). Solid line is the least-squares 

linear fit to the former data set for resolution higher than 30 Å. Other lines are given for 

comparison with simple analytical predictions from Howells et al. (2005) (dash line), Shen 

et al. (2004) (dot line) and this paper (dash-dot line) with parameter P = 5. 
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