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Abstract:  

Steady-state dissolution rates of diopside are measured as a function of solution saturation state 

using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175˚C. 

Diopside dissolved stoichiometrically under all experimental conditions and rates were not 

dependent on sample history. At each temperature, rates continuously decreased by two orders of 

magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant 

rates at high degrees of undersaturation.   The variation of diopside dissolution rates with 

solution saturation can be described equally well with a ion exchange model based on transition 

state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 

175˚C. At 175˚C, both models over predict dissolution rates by two orders of magnitude 

indicating that a secondary phase precipitated in the experiments. 

The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex.  

Lack of dependence of rates on steady-state aqueous calcium concentration supports the 

formation of such a complex, which is formed by exchange of protons for magnesium ions at the 

surface.  Fit to the experimental data yields  

  Rate (mol diopside cm
-2

 s
-1

) = 

n

Mg

HRT

Õ
Õ

Ö

Ô

Ä
Ä

Å

Ã
·

-

-

2a

a2

303.2/aE-
10k  

where the Mg-H exchange coefficient, n = 1.39, the apparent activation energy, Ea=332 kJ mol
-1

, 

and the apparent rate constant, k = 10
41.2

 mol diopside cm
-2

 s
-1

.   

 Fits to the data with the pit nucleation model suggest that diopside dissolution proceeds 

through retreat of steps developed by nucleation of pits created homogeneously at the mineral 

surface or at defect sites, where homogeneous nucleation occurs at lower degrees of saturation 

than defect-assisted nucleation.  Rate expressions for each mechanism (i) were fit to   
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where the step edge energy (c) for homogeneously nucleated pits were higher (275 to 65 mJ m
-2

) 

than the pits nucleated at defects (39 to 65 mJ m
-2

) and the activation energy associated with the 

temperature dependence of site density and the kinetic coefficient for homogeneously nucleated 
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pits (Eb-homogeneous = 2.59 x 10
-16

 mJ K
-1

) were lower than the pits nucleated at defects (Eb-defect 

assisted = 8.44 x 10
-16

 mJ K
-1

). 
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1. Background 

Chemical weathering of minerals play an important control on a variety of process in the 

Earth’s near surface environment.  As a consequence, a large number of studies have been 

devoted to quantifying dissolution rate of minerals both in the laboratory and in the field.  

Laboratory studies have been conducted to understand the mechanism of dissolution and also to 

quantify the effect of various physico-chemical conditions on dissolution rates.  Despite these 

efforts in the last two decades, dissolution rates predicted from laboratory studies are two to 

several orders of magnitude higher than those measured in the field [1].  One of the causes of this 

discrepancy is attributed to the fact dissolution rates measured in the laboratory are mostly 

obtained at far-from equilibrium conditions and are extrapolated to close to equilibrium field 

conditions assuming a simple function of dissolution rate with respect to solution saturation.  

However the few studies that have been conducted in the last decade show a much more complex 

relation between dissolution rate and Gibbs free energy (FGr) [2-20].   The macroscopic rates 

have either been fit with a complex functional dependence on FGr [2-5] or fit with inferred 

dissolution mechanisms; such as the ion exchange model [18] or pit nucleation  model [6-7].  

The objectives of this study are to investigate the effect of solution saturation state and 

temperature on diopside dissolution and in the process develop a database against which some of 

the mechanistic dissolution models can be evaluated.  We chose to study diopside, (CaMgSi2O6), 

a clinopyroxene mineral, because of its widespread occurrence in nature and also because Ca and 

Mg containing minerals have been targeted for geological sequestration of CO2. In this study we 

measured steady-state dissolution rates of diopside as a function of solution saturation state using 

a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175˚C.  
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Additionally, we tested the hypothesis that sample dissolution history impacts the measured 

dissolution rates in stacked experiments [8].  

 

2. Mater ials and Methods 

The diopside used in this study is from Andhra Pradesh, India, and was obtained from Ward’s 

Natural Science.  Large crystals were crushed and 150-240 µm size fraction was used in all the 

experiments. The grains were washed ultrasonically in isopropanol to remove fine particles, 

rinsed repeatedly with deionized water and dried.  The chemical composition of the mineral was 

determined using X-ray fluorescence and is given in Table 1. The stoichiometry of the diopside 

based on chemical composition is Ca0.86Mg0.90Fe0.08Al0.03Si2.02O6, when normalized to six 

oxygens.    The BET specific surface area of the grains was 565 cm
2
 g

-1
.   

All dissolution experiments were carried out in a titanium mixed flow-through reactor from 

Parr Instruments (see [20] for detailed description).  A series of stacked experiments were 

performed by simply changing the input solution composition and/or the flow rate on the same 

mineral specimens to study mineral dissolution and precipitation kinetics as a function of 

solution composition without disturbing the mineral phase.  The net dissolution rates normalized 

to their specific surface area (A) are calculated using the following expression 

 Ratenet ?
F i] _FR

Awi

 (1) 

where [i] is the difference between the effluent and influent concentration of a solute, FR is the 

flow rate, and wi is the stoichiometric coefficient of the element i in the mineral formula.  The 

experiments were conducted at an in situ pH of 7.5 and temperatures ranging from 125 to 175˚C.  

The inlet solution was continuously purged with nitrogen to remove CO2 from the solution to 

avoid precipitation of carbonate minerals.  About 2.5 grams of ground diopside were used in 
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stacked experiments in 0.1 M NaCl solutions buffered using 20 mM sodium borate and HCl.  

Most of the stacked experiments approached equilibrium from high degrees of undersaturation 

by changing the flow rate from about 4 to 0.01 ml hr
-1

.   

Experiments were also conducted to test the hypothesis that sample history can impact 

measured dissolution rates in stacked experiments.  In one set of experiments equilibrium was 

approached from high degrees of undersaturation by decreasing the flow rate. In a second set of 

experiments, far from equilibrium conditions were approached from near equilibrium by 

decreasing the Ca concentration of the input solutions from 500 oM and then increasing the flow 

rate to obtain higher degrees of undersaturation.  Solutions were analyzed for Ca, Mg, and Si by 

ICP-AES.  Solution pH was measured at room temperature.  The solution matrix of the standards 

was the same as the input solutions.  

Aqueous speciation, ion activity, pH, and the Gibbs free energy of the reaction at elevated 

temperature were calculated using Geochemist’s Workbench [21] by conducting a speciation 

calculation at 25°C based on room temperature measurements followed by a speciation 

calculation at the experiment temperature.  Dissolution of diopside can be described by 

 CaMgSi2O6 + 4H
+
 + 2H2O ±  Ca

2+
 + Mg

2+
 + 2H4SiO4. (2) 

The Gibbs free energy for the above dissolution reaction is calculated from 
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where, Keq is the equilibrium constant and ai represents the activity of the aqueous species.  The 

equilibrium constants at 125, 150, 160, and 175˚C are 10
14.48

, 10
13.27

, 10
12.82

, 10
12.19

, respectively 

[22].  No attempt was made to experimentally determine the equilibrium constant of the diopside 

in the study. 
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3. Results and Discussion 

3.1. Steady-state concentration and stoichiometry of dissolution 

An example of steady-state dissolution rates obtained in one of the stacked experiment 

conducted at 150˚C is shown in Figure 1 by plotting the silicic acid concentrations in the effluent 

as a function of residence volumes, where the dashed lines indicate a change in flow rate. 

Steady-state conditions were assumed and the flow rates were changed when the concentrations 

of the solutes in the effluent did not change with time. At the highest flow rate, the concentration 

of silicic acid decreased with time and steady-state was achieved after about 20 reactor volumes.  

Steady-state was generally achieved in about 1-5 reactor volumes at lower flow rates.  The 

steady-state concentrations reported for all the experiments were calculated as the average value 

of the final five samples where the concentrations in the effluent did not change with time. 

The steady-state Ca, Mg, and Si concentrations along with the flow rate are reported in Table 

2 and illustrated in Figure 2 by plotting the ratio between Ca or Mg concentration and Si 

concentration at steady-state divided by the stoichiometric number of moles of these elements in 

the solid versus the Gibbs free energy of the reaction.  In these plots, stoichiometric dissolution 

would be indicative when the ratio is close to 1.  Diopside dissolution was congruent to within 

‒0.4, with some higher and lower excursions.  We do not attribute observed trends in the Ca to 

Si ratios at 160 and 175°C to preferential exchange of Ca over Mg from the surface or to 

precipitation of a secondary phase because the departure from congruent dissolution was on the 

same order as that observed for the much larger data set collected at 150°C.  It is quite likely that 
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that this trend would disappear with the collection of more rate data at 160 and 175°C.  Net 

dissolution rates reported in this study from dissolved silica concentrations would increase by at 

most 0.2 log units at 160°C and 0.1 log units at 175°C if dissolved calcium concentrations were 

used to represent diopside dissolution.  Similar small deviations from stoichiometric dissolution 

have been found for other minerals and may be in part be due to analytical uncertainty in both 

the solution and solid phase concentration of these elements (see [23] for a review).   

The effluent solute concentrations were supersaturated with respect to antigorite (Mg3Si2O5) 

and chrysotile (Mg3Si2O5(OH)4) under most conditions above 150°C (Figure 3).  Mg-silicates 

exhibit retrograde solubility (i.e., a solubility decrease with increasing temperature).  Therefore, 

precipitation of these minerals is favored at higher temperature for similar effluent 

concentrations.  Precipitation of Mg-rich silicate minerals during the experiments should 

significantly lower the stoichiometric ratio of Mg/Si, because these phases have three times Mg 

relative to Si in diopside.  Such large lowering in the Mg/Si ratio was not observed at any of the 

temperatures.  

 

3.2. Hysteresis in dissolution rates as a function of saturation state 

A chief advantage of using mixed flow-through reactors to study mineral dissolution and 

precipitation kinetics is that it allows the rate at which minerals dissolve and precipitate to be 

evaluated as a function of solution composition without disturbing the mineral phase.  As a 

result, experiments are typically performed in series of stacked experiments by simply changing 

the input solution composition and/or the flow rate on the same mineral specimens.  Beig and 

Luttge [8] raised the concern that stacked experiments started from high or low degree of 

undersaturation can have a major impact on the observed rate dependency on solution saturation 



 9

state, and hence the mechanisms invoked to explain the dissolution behavior. Beig and Luttge [8] 

compared dissolution rates for albite (NaAlSi3O8) initially treated at 185˚C and pH 9 with an 

output solution composition that was far from equilibrium (ÄGr < 35 kJ/mol) with dissolution 

rates of untreated albite surfaces. When the treated and untreated specimens were subsequently 

reacted at the same conditions, they found that the treated albite dissolution rates were 0.6 to 2 

orders of magnitude faster than the untreated samples depending on the solution composition; the 

difference in rates were higher closer to equilibrium. The authors showed that the faster 

dissolution rates of the treated samples occurred on pre-existing etch pits from the initial 

treatment and at step edges, while the slower dissolution rates of untreated samples occurred 

mostly at step edges.   

Diopside dissolution rates measured at 150˚C in stacked experiments starting at far and close 

to equilibrium conditions are shown in Figure 4.  The differences in rates at small reaction 

affinity are highlighted in the insert plotted as log dissolution rate versus the Gibbs free energy of 

reaction.  The rates were at most 3 times higher at the maximum ÄGr compared to diopside 

dissolution in stacked experiments started at far from equilibrium conditions. The difference in 

rates or hysteresis quickly diminishes in more undersaturated solutions.  Dissolution rates 

obtained in all the experiments were similar to each other when ÄGr < -12 kJ/mol, regardless of 

the initial starting conditions of the stacked experiments.  Based on these results, we conclude 

that experimental protocol does not significantly impact dissolution rates measured over a range 

saturation states for ground diopside specimens. 

 

3.3.  Dissolution rate as a function of FGr  

 A generalized rate law for overall mineral dissolution can be written as  
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 Rdiss = k+ f(FGr),  (4) 

where FGr = RT lnµ = RT ln(Q/Keq), µ is the saturation state, Q  and Keq are the ion activity 

quotient and equilibrium constant of the dissolution reaction, respectively, and k+ is the apparent 

rate constant for the forward reaction at a given temperature which may include the effect of pH, 

presence of other solutes which might inhibit or enhance dissolution, and reactive surface area.  

The functional dependence of the rate on the Gibbs free energy of reaction (FGr) has been 

derived from transition state theory and, in its simplest form, is given by [24] 

 f (FG r ) ?1/ exp
FG r

uRT
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where, u  is the stoichiometric number of moles of precursor complex formed from one mole of 

the mineral also known as the Temkin’s co-efficient, R is the gas constant, and T the absolute 

temperature. Temkin’s co-efficient values of 1 to 3 have been used to describe macroscopic 

dissolution rate data [15].  With the above formulation, a dissolution plateau should be observed 

at conditions far from equilibrium when dissolution rates are largely independent of saturation, 

followed by a very strong dependence on saturation very close to equilibrium (Figure 5).  At a 

fixed temperature, the decrease in rate as equilibrium is approached is largely sensitive to the 

Temkin’s co-efficient where the rate becomes more dependent on FGr at conditions farther from 

equilibrium at higher values of the Temkin’s co-efficient.  Although this simple dependence of 

dissolution rate on FGr can be applied to a wide range of mineral systems, it has been observed 

only for quartz and silica polymorphs in dilute simple electrolyte solutions [7,9,25-27].  For 

other silicates and aluminum bearing minerals, dissolution behavior is more complex [2-20].  

This is also the case for diopside.   
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Dissolution rate of diopside as a function of FGr at all the temperatures is shown in Figure 6. 

Diopside dissolution rates continuously decreased with increasing FGr and cannot be attributed 

solely to the degree of undersaturation (equation 5). None of the trends display a dissolution 

plateau, when rates are independent of FGr.  The trend in rates shows a convex dependence on 

FGr, and not the concave dependence that would result from higher Temkin’s coefficient values.  

Rates generally decreased by two orders of magnitude when FGr is increased from –40 to –5 kJ 

mol
-1

 at 150, 160 and 175˚C.  Even at 125˚C, where rates were collected at much lower FGr, 

rates decreased by two orders of magnitude when FGr was increased from –80 to –50 kJ mol
-1

.  

It is possible that diopside dissolution may display a dissolution plateau at lower FGr values than 

those studied here, because dissolution plateaus for various minerals have been observed at 

different degrees of undersaturation [2-6,8,10,11,14-15,19].  For example, dissolution plateaus 

are observed at relatively high FGr values for gibbsite (-5 kJ/mol), intermediate values for albite 

and labradorite (-50 kJ/mol), and low values for K-feldspar and smectite (>-80 kJ/mol).  

An extension of transition state theory where a rate limiting ion exchange reaction controls 

dissolution [15-18] and an extension of crystal growth theory to dissolution dominated by 2D 

nucleation of etch pits or by detachment of ions at dislocation sites [7] have been used to explain 

similar continuous decreases in dissolution rates with approach to equilibrium. We generally 

refer to these models as the ion exchange and pit nucleation models. Below we use diopside 

dissolution rates that span over three orders of magnitude, a wide range of FGr and temperature 

to evaluate these two models which propose distinct dissolution mechanisms.  We also derive 

corresponding rate expressions, because an important strength of both of these models is that 

rates are linked to solution saturation allowing complex description of geochemical processes 

when kinetic and thermodynamic data bases are coupled with flow and transport.    
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4. Ion Exchange Model 

Oelkers [18] expanded equation 4 to explicitly account for the dependence of multi-oxide 

silicate mineral dissolution rates on solution composition by the formation of rate-limiting Si-

rich surface complexes formed by metal-proton exchange reactions. The hydrolysis of the Si-O-

Si bonds ultimately results in the dissolution of the mineral.  These authors also note that for 

some framework silicate minerals the mineral is dissolved only through metal-proton exchange 

reactions. This model has been used to describe the dependence of alumino-silicate minerals on 

dissolved aluminum concentrations and the dependence of magnesio-silicate minerals and glass 

on dissolved magnesium concentrations.  For alumino-silicate minerals, alkali and alkaline earth 

metals are exchanged fast and the Si-rich surface precursor complexes are formed from Al-H 

exchange reactions [11,15-16,20].  For mafic silicates, Oelkers (2001) predicts that the Ca-H 

exchange reaction will precede Mg-H exchange reaction and that rate-limiting Si-rich surface 

precursor complexes are formed by Mg-H exchange [13,15].  The concentration of the surface 

complexes would be therefore dependent on the dissolved Mg and pH according to the following 

reaction:  

 >nMgSiO + 2nH
+
 = >SiOH2n +  nMg

2+
, (6) 

where,  n is the stoichiometric exchange coefficient for H
+
 and Mg

2+
, >nMgSiO and >SiOH2n are 

the Mg-filled and the Si-rich mineral surface sites.  Using transition state theory and assuming 

that the forward rate of the dissolution of minerals is proportional to the concentration of the Si-

rich surface complex, and that there is a fixed number of mineral surface sites, the net dissolution 

rate of diopside is then given by 
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where k+ is the apparent forward dissolution rate constant and K is the equilibrium constant for 

the formation of the Si-rich surface complex (Equation 6).  When relatively low concentrations 

of the surface precursor complex are present such that K
a
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dissolution rates are dependent on the activity of H
+
 and Mg

2+
 and equation 7 reduces to  
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and n is represented by the slope and log k is given as the y-intercept.  

 The formation of Si-rich surface complexes could also be described as a function of both Ca–

H and Mg–H exchange on the diopside surface.  However, we model diopside dissolution as 

being limited by the concentration of Si-rich precursor complexes formed by Mg–H based on the 

few experiments conducted with excess Ca in the input solution (Figure 7).  Dissolution rates in 

experiments with excess Ca were nearly independent of log
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excess Ca.  This comparison suggests that for diopside the precursor complex is formed by Mg-

H exchange.       

 Figure 8 shows that the dependence of diopside dissolution on solution composition at 125, 

150, 160, and 175˚C can be described by the formation of Si-rich surface complexes by Mg-H 

exchange as is shown in plots of log Rnet versus log
a

H-
2

a
Mg2-

Ã"

Å"
Ä"Ä"

Ô"

Ö"
Õ"Õ".  The trends are highly linear and 

indicate a minimal effect of solution saturation even at ÄGr close to equilibrium.  We fit our data 

by multiple linear regression to an expanded form of equation 8 to describe diopside dissolution 

as a function of temperature as well as solution composition: 
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We do not fit the data at 175˚C, because diopside dissolution rates are of similar magnitude at 

175 and 160˚C indicating secondary mineral precipitation at 175˚C.  It seems unlikely that the 

fall off in rates represents a leveling off of the activation energy at higher temperatures, because 

Ea typically increases with temperature for mineral systems [28].  Nor is it likely that the fall off 

in rates represents a change in mechanism due to a more alkaline pH at higher temperature.  The 

solution OH
-
 concentrations are similar based on a minimal decrease in pKw of only 0.1 log units 

between 160 and 175˚C [22]. The best fit to the data was obtained with n = 1.39, Ea = 332 (kJ 

mol
-1

) and k = 10
41.2 (mol diopside cm-2 s-1).  A comparison between the experimental data and 

the fitted values, with an extrapolation to 175˚C, are shown in Figure 8.  The ion exchange model 

adequately describes diopside dissolution to within 0.5 log units from 125 to 160˚C.  

Extrapolation of this model to 175˚C suggests that the net measured rate is offset by precipitation 

of a secondary phase that is about 1.5 to 2.0 log units higher the net measured dissolution rate.  It 
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appears that the secondary precipitate is a Ca-Mg-silicate rather than a Mg-silicate, because the 

difference of rates calculated from dissolve Ca (which is nominally undersaturated with mineral 

phases) and dissolved Mg and Si concentrations do not account for difference between 

observation and model.  Fits did not improve when ÄGr, K and an associated enthalpy term were 

included to describe the full form of the ion exchange model.  

 The apparent activation energy obtained in this study is much higher than those reported 

previously, which varied from about 40 to 150 kJ mol
-1

 [29-32].  It is possible that the much 

higher activation energy reported may be due to differences in rate models and the temperature 

range studied.   Previous studies did not explicitly account for the effect of solution saturation as 

was done here with the ion exchange model.  The net result would be a lower activation energy 

derived from averaged rate constants. The previous studies were also conducted at temperatures 

below 100˚C, where the activation energy may be lower.       

 

5. Pit Nucleation Model:  

Dissolution mechanisms and rates have been explained recently using theories developed 

previously for crystal growth [33-34].  Extension of crystal growth theory to mineral dissolution 

calls for dissolution through retreat of steps, whose velocity (p) is dependent on the solution 

saturation state (µ) by the following expression 

 p = ydKeq(µ-1) (10) 

where d is the step kinetic co-efficient, y is the molar volume of a molecule in the crystal, and 

Keq is the equilibrium constant of the dissolution reaction.  These steps originate from 

dislocations within the mineral crystal as pre-existing features or develop by nucleation of two-

dimensional pits in an otherwise perfect surface once the energy barrier to their formation is 
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overcome.  Dissolution rates depend on the step source and density.  In this paper we focus on 

dissolution controlled by homogeneous and defect-assisted nucleation, because they appear to be 

the dominant mechanisms for diopside over step retreat at dislocations [7].  The dissolution by 

nucleation of two-dimensional pits can be initiated in an otherwise perfect surface only if the free 

energy barrier to the formation of a pit is overcome.  The resulting free energy is given by  

 
  
FGcrit ? /

ra
2yh

kTlnY
 (11) 

where c is the step edge free energy, h is the step height, k the Boltzmann constant.  As equation 

11 predicts, the free energy barrier is dependent on temperature, degree of undersaturation, and 

by factors that affect the step edge free energy.  According to this model, dissolution rates would 

then decrease continuously as equilibrium is approached because the number of pits decreases 

with decreasing reaction affinity.  Additionally, homogeneous nucleation of pits should transition 

to defect-assisted nucleation of pits at conditions closer to equilibrium.  The dependence of 

dissolution rates originating from nucleation of pits on the degree of undersaturation is then 

given by 

 R = h w2J* +1/ 3

 (12) 

where h is the step height and J is the nucleation rate.  The steady-state nucleation rate is derived 

from nucleation theory and is given by  
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where a is the lattice spacing and ns is the nucleation site density. 

 We fit our data from 125 to 160˚C to an expanded form of equation 12 (after substitution 

of equation 13) to describe diopside dissolution as a function of temperature as well as solution 

composition [7]: 
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where i indicates dissolution due to homogeneous or defect-assisted nucleation of pits on the 

surface.  For ease of discussion, we simplify equation 14 to 
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The total dissolution rate is simply the summation of dissolution due to both mechanisms: 

  Rnet = Rhomogeneous + Rdefect-assisted  (18) 

At a fixed temperature, bi and ci can be derived from a linear form of equation 15 by 

normalizing Ri to solution saturation (c defined by equation 16) and applying the natural log: 
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Changes in mineral dissolution as a function of temperature are accounted for by di and ns,i in the 

y-intercept and in ci in the slope in addition to the saturation terms (µ, KT,eq) and T in equation 

19.  The temperature dependence of di and ns,i can be estimated collectively from the Arrhenius 

equation: 

  
•lnb

•
1

T

?
E b

k
,  (20) 



 18

where Eb is the kinetic barrier.  It is not possible to resolve the temperature dependence of di and 

ns,i separately with our data set.  The temperature dependence of ci can be estimated from a 

variation of the Gibbs-Hemholtz equation: 

  H

T

F?
•

•
1

c
 , (21) 

where ÄH is the enthalpy associated with the step edge energy for pit nucleation.   

 Final fits to the data are shown in Figure 9 and 10 and Table 3.  To fit the data as a 

function of temperature, we first fit data sets at each temperature assuming that data collected at 

125˚C resulted from dissolution promoted by homogeneous nucleation of pits and that data 

collected at 150 and 160˚C resulted from dissolution promoted by homogenous nucleation of pits 

and defect-assisted nucleation of pits. The initial allocation of mechanism was based on the 

shape of the curve and its location in saturation space, where higher degrees of undersaturation 

(i.e. small 1/lnµ and steeper slopes) are likely to result in the homogeneous nucleation of 

dissolution pits and where solutions closer to equilibrium (i.e. larger 1/ lnµ and flatter slopes) 

are likely to result in defect-assisted nucleation of pits.  Temperature dependence was then 

evaluated using equations 20 and 21 (Figure 10) and extrapolated to 175˚C, because the highly 

linear and limited data set at this temperature did not allow contributions of homogeneous and 

defect-assisted nucleation to be constrained.    

 Final fits to the data indicate that dissolution is promoted predominately by homogenous 

nucleation at 125˚C over the narrow range of solution saturation (1/lnµ < 0.07) studied here.  At 

150 and 160˚C dissolution is promoted by both homogeneous and defect-assisted nucleation of 

pits such that homogeneous nucleation is negligible at 1/lnµ > 0.25 where it contributes less than 

2% to the total dissolution rate.  Extrapolation of the model to 175°C indicates that steady-state 
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dissolution rates can be attributed to homogeneous and defect-assisted nucleation mechanisms in 

roughly equal proportions over the limited saturation range in this study.  There is significant 

mismatch between the model prediction and diopside dissolution at 175°C.  The most likely 

explanation for the mismatch is that the measured rates represent both dissolution of diopside 

and the precipitation of a secondary phase. Mineral precipitation was also indicated with the ion 

exchange model (see section 4).   

 Our results show that step edge energy for homogeneous nucleation is generally higher 

than step edge energy for defect-assisted nucleation, consistent with the observations for quartz, 

feldspar, and kaolinite [7].  However the difference between chomogenous and cdefect-assited decreases 

at higher temperature, because estimated step edge energies for homogeneous and defect-assisted 

nucleation have different temperature dependencies.  A decrease in step edge energy for 

homogeneous nucleation of pits at the diopside surface from about 275 to 65 mJ m
-2

 from 125 to 

175°C suggests that the step edge energy required to form pits on an otherwise perfect crystal 

surface is lower at higher temperatures.  There appears to be little dependence of the 

homogeneous pit site density or the kinetic coefficient on temperature as is illustrated by near 

constant y-intercept for the contribution of homogeneous nucleation of pits to diopside 

dissolution (Table 3).  In contrast to homogeneous nucleation of dissolution pits, the temperature 

dependence of defect-assisted nucleation of dissolution pits on the diopside surface increases 

slightly with increasing temperature from about 39 to 65 mJ m
-2

 from 125 to 175°C.  This 

increase suggests that defect-assisted pits form more readily at lower temperature than at higher 

temperature.  Ostensibly higher step edge energy for defect-assisted nucleation at higher 

temperature appears to be compensated by an increase in the combined kinetic coefficient and 

site density for defect-assisted nucleation.  Thus as the step edge energy rises with temperature, 
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the kinetic barrier is lowered by increasing the number of defects that are accessible at higher 

temperature.  The net result is higher dissolution rates at higher temperature at conditions closer 

to equilibrium where defect-assisted nucleation of dissolution pits are expected to dominate.   

 

6. Broad implications for  developing predictive geochemical models 

 Diopside dissolution can be described equally well by both an ion exchange model based 

on transition state theory and a pit nucleation model based on crystal growth/dissolution theory 

from 125 to 160˚C (Figure 11), and both models predict much higher dissolution rates at 175˚C 

than those measured indicating secondary mineral precipitation in the experiments.  Thus based 

on the fitted data, we cannot determine if diopside kinetics are controlled by reversible reactions 

at the mineral surface (transition state theory) or if they are controlled by combined 

homogeneous and defect-assisted nucleation of pits on the mineral surface (crystal 

growth/dissolution theory).  It was not possible to isolate pits due to homogeneous nucleation 

and defect-assisted nucleation by imagining gem stone quality diopside surfaces reacted at 150˚C 

at distinct saturations representative of the two mechanism, as was done for quartz [7], because 

similar dissolution features and surface roughness were observed in both regions (interferometry 

data not shown). It is not clear if dissolution features were artifacts of the gem polishing 

technique or represented combined contributions from homogeneous and defect-assisted 

nucleations pits as predicted by fitted results of the macroscopic data. 

 Both these dissolution models are based on sound thermodynamic and kinetic principles, 

however, the mechanism on which they are based on are very different.  Both models link kinetic 

rates to solution composition through the Gibbs free energy of reaction or solution saturation, 

and they are a significant improvement on the use of rate constants derived at conditions far from 

equilibrium and the principle of detailed balancing to describe rock-water processes important to 
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soil formation, weathering, diagenesis, and environmental issues such as radioactive waste 

disposal and CO2 sequestration.  However successful application of models as a predictive tool 

requires that they be experimentally calibrated.  Here we briefly discuss calibration experiments 

needed to develop each of these models for a given mineral system.   

Calibration of the ion exchange model requires that mineral dissolution rates be measured 

over a range of solution saturation and temperature at a single pH (at a minimum).  The precursor 

forming exchange reactants (i.e. Mg-H for magnesio-silicates and Al-H for alumino-silicates) 

can be predicted from the relative dissolution rates of single hydroxides [15] and is related to the 

leached layer composition of the dissolving mineral.  The exchange co-efficient (n in equation 6) 

is the number of cations removed to form the precursor complex should be determined 

empirically.  Previous studies on alumino-silicate minerals suggested that n can be predicted 

from the charge balance where three protons are exchanged for each alumina [18]. This was not 

the case for diopside and may not be the case for other minerals.  The apparent rate constant (k in 

equation 8) must also be determined empirically as a function of temperature to derive the 

apparent activation energy.  Ideally, the effect of pH can be determined from experiments 

conducted at a single value, because pH is accounted for in the exchange reaction to form the Si-

rich precursor (as shown in equation 6 for diopside).  For enstatite dissolution, a model 

constrained at pH 2 is able to describe dissolution rates from pH 2 to 10 [17].  Similarly, for 

basaltic glass dissolution, the same model parameters describe dissolution at pH 3 and 11 [13].  

In contrast, model parameters obtained at acid pH for kaolinite and muscovite dissolution are 

different from those obtained at basic pH conditions [11,15].   

 Compared to the ion exchange model based on transition state theory, much more 

experimental data are required for the development and validation of a model based on crystal 
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growth/dissolution theory.  Mineral dissolution rates based on crystal growth/dissolution theory 

are dependent on the dominant source of steps.  The source of steps can be at existing 

dislocations, existing crystal edges, nucleated homogeneously throughout the mineral surface or 

nucleated at specific defect sites.  In the absence of experimental data (either microscopic or 

macroscopic), the source of steps cannot be determined a priori and are dependent on 

temperature and the extent of saturation for a given source of steps.  For example Dove et al [7] 

showed that kaolinite dissolution rates obtained at 80˚C are best explained by retreat of steps 

originating at dislocations.  In contrast, rates obtained at 150˚C are best explained by the pit 

nucleation model.  The effect of solution pH is explicitly accounted for in the saturation terms 

and has been validated for kaolinite dissolution data obtained at 150˚C under acid and circum-

neutral pH conditions.  However, the solution saturation ranges for homogeneous and defect-

assisted nucleation of pits cannot be determined a priori.  Even when the dominant step type is 

determined from microscopic observations, experimental dissolution data obtained over a range 

of saturation and temperature are still needed to empirically derive the temperature dependence 

for the step edge energy, site density, and kinetic coefficient.   

 Caution should be applied when extending dissolution models outside of their calibration 

range.  Figure 12 compares diopside dissolution rates calculated from the ion exchange and pit 

nucleation models using parameters calibrated with the data in this study between 125 

and 160°C (Equations 9 and 14) with measured diopside dissolution rates at 25°C.  

Measured diopside rate data and solution compositions are from Golubev et al. [35]; 

solution speciation and ┑ were calculated using Supcrit92 thermodynamic data base 

where log Keq = 20.96 for diopside solubility [22].  Comparisons between predicted and 

measured rates are made only for those experiments with reported pH and dissolved 
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Mg, Ca, and Si concentrations.  Rates are based on the stoichiometric release of Si, pH 

ranged from 1 to 5.05, and solutions were highly undersaturated with respect to 

diopside equilibrium, ｠Gr < -130 (kJ mol-1).  Both models calibrated with the high 

temperature data under predict measured rates at 25°C.  For the ion exchange model, 

the large discrepancy suggests lower activation energy at lower temperature consistent 

with experimental studies [29-32] and/or pH dependent parameters as is the case for 

Al-silicates [11,15].  For the pit nucleation model, the large discrepancy may indicate 

that step retreat controls diopside dissolution at 25°C as has been proposed for kaolinite at 80°C 

[7], or that activation energy and enthalpy terms associated with step edge energy, site density, 

and kinetic coefficients are different at lower temperature.     

 A final note is that the precipitation rate expressions are needed to fully describe many 

rock-water interactions in the near surface.  This is clearly illustrated in our experiments where 

mineral precipitation is indicated by similar rates measured at 160 and 175˚C and by the 

mismatch between model predictions and measured rates. 
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 Table 1.  Chemical composition of diopside. 

  ______________________________________ 

  Oxide Wt% 

  ______________________________________ 

 SiO2 54.25 

 CaO 21.58 

 MgO 16.03 

 Fe2O3 3.01 

 Al2O3 0.61 

  ______________________________________ 
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Table 2.  Results of diopside dissolution in flow-through experiments
1,2

. 

 
Temp-ID Si 

(µM) 

Ca 

(µM) 

Mg 

(µM) 

pH(T) Flow 

rate 

ml min-1 

log Rate 

mol diospside  

cm-2 s-1 

ÄGr 

kJ mol-1 log 
a

H-
2

a
Mg2-

Ã"

Å"
Ä"Ä"

Ô"

Ö"
Õ"Õ" 

175-1 26.8‒2.2 10.4‒1.2 8.5‒0.4 7.508 4.00 -12.20‒0.03 -22.78‒0.07 -9.35‒0.05 

175-2 29.6‒1.0 16.6‒0.9 11.8‒0.9 7.513 2.00 -12.46‒0.02 -18.89‒0.05 -9.50‒0.02 

175-3 43.6‒1.4 22.3‒1.9 14.6‒0.7 7.517 1.00 -12.59‒0.1 -14.01‒0.05 -9.60‒0.04 

175-4 51.3‒1.6 25.6‒1.0 16.4‒0.6 7.520 0.50 -12.82‒0.1 -11.75‒0.03 -9.66‒0.02 

175-5 54.8‒2.2 28.5‒1.3 19.3‒1.1 7.523 0.25 -13.10‒0.2 -10.15‒0.04 -9.73‒0.02 

175-6 67.7‒1.5 31.1‒0.7 18.6‒1.6 7.523 0.10 -13.40‒0.1 -8.40‒0.04 -9.72‒0.01 

160-1 19.0‒0.6 13.1‒1.8 7.9‒0.5 7.511 4.50 -12.30‒0.01 -28.48‒0.07 -9.36‒0.06 

160-2 27.1‒2.2 17.0‒2.1 11.5‒0.5 7.515 2.00 -12.50‒0.04 -23.50‒0.08 -9.53‒0.05 

160-3 35.8‒2.4 20.2‒1.2 16.2‒0.7 7.519 1.00 -12.68‒0.03 -19.50‒0.05 -9.69‒0.03 

160-4 41.1‒2.3 22.8‒1.7 17.2‒0.6 7.520 0.75 -12.74‒0.02 -17.85‒0.05 -9.72‒0.03 

160-5 45.4‒1.6 24.4‒0.7 19.8‒1.6 7.522 0.50 -12.88‒0.02 -16.30‒0.04 -9.78‒0.01 

160-6 59.4‒3.4 32.2‒1.8 28.2‒1.2 7.53 0.25 -13.06‒0.02 -11.85‒0.05 -9.95‒0.02 

160-7 75.6‒3.9 36.5‒2.3 30.2‒1.4 7.533 0.10 -13.35‒0.02 -9.32‒0.05 -9.99‒0.03 

160-8 88.6‒4.5 38.2‒2.5 34.9‒0.6 7.536 0.05 -13.59‒0.02 -7.41‒0.04 -10.06‒0.03 

150-A-1 16.8‒1.1 4.6‒0.4 5.6‒0.2 7.505 3.23 -12.50‒0.03 -37.00‒0.06 -9.23‒0.04 

150-A-2 18.4‒0.8 5.1‒0.4 6.1‒0.2 7.506 2.37 -12.59‒0.02 -35.66‒0.05 -9.27‒0.04 

150-A-3 20.9‒1.4 6.7‒0.6 8.0‒0.3 7.508 1.50 -12.74‒0.03 -32.79‒0.06 -9.39‒0.04 

150-A-4 24.4‒1.7 10.3‒1.2 9.8‒0.4 7.511 1.00 -12.85‒0.03 -29.38‒0.07 -9.48‒0.05 

150-A-5 27.3‒1.1 9.9‒1.0 11.3‒0.3 7.511 0.76 -12.92‒0.02 -28.23‒0.05 -9.54‒0.04 

150-A-6 30.6‒1.3 11.9‒0.4 13.2‒0.7 7.513 0.51 -13.04‒0.02 -26.17‒0.04 -9.61‒0.01 

150-A-7 35.4‒1.3 13.7‒0.3 15.4‒0.7 7.515 0.36 -13.13‒0.02 -24.04‒0.03 -9.69‒0.01 

150-A-8 42.0‒1.0 17.9‒0.5 18.8‒0.4 7.519 0.22 -13.27‒0.01 -21.08‒0.02 -9.78‒0.01 

150-A-9 47.0‒1.3 20.3‒0.8 21.3‒0.5 7.522 0.16 -13.36‒0.01 -19.66‒0.03 -9.80‒0.02 

150-A-10 56.3‒1.3 23.0‒1.8 25.1‒0.7 7.525 0.10 -13.48‒0.01 -16.94‒0.04 -9.92‒0.03 

150-A-11 73.3‒2.6 32.4‒1.2 30.9‒0.5 7.533 0.05 -13.67‒0.02 -12.90‒0.03 -10.02‒0.02 

150-A-12 83.7‒2.6 38.1‒1.0 36.0‒0.8 7.538 0.03 -13.91‒0.01 -10.71‒0.02 -10.10‒0.01 

150-A-13 97.2‒3.2 49.0‒3.6 41.4‒0.3 7.546 0.01 -14.25‒0.01 -8.03‒0.04 -10.18‒0.03 

150-B-1 18.0‒1.4 4.6‒1.0 5.6‒1.2 7.505 4.00 -12.38‒0.03 -36.51‒0.14 -9.23‒0.09 

150-B-2 19.8‒1.3 9.3‒1.0 11.0‒0.6 7.511 2.00 -12.64‒0.03 -30.83‒0.07 -9.53‒0.05 

150-B-3 27.1‒1.7 17.1‒1.3 11.2‒0.8 7.515 1.00 -12.80‒0.03 -26.26‒0.06 -9.55‒0.03 

150-B-4 36.7‒1.9 18.5‒1.5 17.5‒1.3 7.519 0.50 -12.97‒0.02 -22.18‒0.06 -9.75‒0.04 

150-B-5 49.3‒1.4 19.9‒2.9 22.3‒1.3 7.522 0.10 -13.54‒0.01 -18.89‒0.07 -9.86‒0.06 

150-B-6 86.7‒1.6 51.4‒2.8 48.5‒1.5 7.551 0.01 -14.30‒0.01 -7.96‒0.03 -10.26‒0.02 

150-B-7 46.2‒3.2 23.7‒1.7 25.4‒1.0 7.526 0.10 -13.57‒0.03 -18.15‒0.06 -9.92‒0.03 

150-B-8 36.1‒1.8 21.7‒1.1 18.8‒1.0 7.521 0.50 -12.98‒0.02 -21.41‒0.04 -9.78‒0.02 

150-B-9 24.6‒0.7 17.0‒0.4 9.5‒1.0 7.514 1.00 -12.84‒0.01 -27.62‒0.05 -9.47‒0.01 

150-B-10 16.4‒1.1 9.0‒0.9 7.3‒0.8 7.509 2.00 -12.72‒0.03 -33.77‒0.08 -9.35‒0.04 

150-B-11 14.0‒2.1 6.4‒1.2 6.5‒0.8 7.507 4.00 -12.48‒0.06 -36.49‒0.13 -9.30‒0.08 

150-C-1 32.2‒1.8 473.4‒10.3 15.8‒1.0 7.721 0.10 -13.73‒0.02 -5.97‒0.04 -10.11‒0.01 

150-C-2 34.6‒1.0 283.6‒6.9 16.0‒1.0 7.646 0.10 -13.69‒0.01 -9.44‒0.04 -9.96‒0.01 

150-C-3 42.8‒2.5 140.9‒6.3 20.3‒1.5 7.583 0.10 -13.60‒0.03 -11.48‒0.05 -9.94‒0.02 

150-C-4 60.2‒3.7 54.7‒3.0 24.9‒2.5 7.541 0.10 -13.45‒0.03 -12.97‒0.06 -9.95‒0.02 

150-C-5 65.4‒4.9 32.5‒2.8 27.8‒2.4 7.531 0.10 13.42‒0.03 -14.12‒0.07 -9.97‒0.04 

150-C-6 32.3‒3.1 15.8‒1.5 16.4‒1.5 7.517 0.50 -13.03‒0.04 -23.91‒0.08 -9.72‒0.04 

150-C-7 24.1‒2.6 15.1‒1.9 12.2‒1.1 7.515 1.00 -12.85‒0.05 -27.22‒0.10 -9.59‒0.06 
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150-C-8 17.8‒1.4 9.3‒1.5 11.0‒1.1 7.511 2.00 -12.68‒0.03 -31.07‒0.09 -9.59‒0.07 

150-C-9 15.9‒1.6 6.1‒1.6 6.6‒0.7 7.507 4.00 -12.43‒0.04 -35.08‒0.14 -9.30‒0.11 

150-C-10 19.8‒1.1 8.8‒0.6 9.3‒0.9 7.510 2.00 -12.64‒0.03 -31.65‒0.06 -9.46‒0.03 

150-C-11 24.6‒2.9 13.0‒0.7 9.5‒1.0 7.512 1.00 -12.84‒0.05 -28.62‒0.09 -9.47‒0.02 

150-C-12 30.6‒3.8 14.0‒1.8 15.0‒1.6 7.515 0.50 -13.05‒0.05 -25.10‒0.10 -9.67‒0.06 

150-C-13 55.8‒5.2 25.1‒2.1 25.5‒3.0 7.526 0.10 -13.49‒0.04 -16.62‒0.08 -9.93‒0.04 

150-C-14 96.7‒6.7 44.4‒2.2 41.3‒2.8 7.544 0.01 -14.25‒0.03 -8.49‒0.06 -10.17‒0.02 

125-1 1.0‒0.1 0.4‒0.1 0.4‒0.1 7.500 4.50 -13.6‒0.02 -79.36‒0.06 -8.08‒0.03 

125-2 1.3‒0.0 0.5‒0.1 0.5‒0.1 7.500 2.00 -13.8‒0.01 -76.09‒0.03 -8.21‒0.02 

125-3 1.7‒0.1 0.7‒0.1 0.7‒0.1 7.501 1.00 -14.0‒0.02 -72.07‒0.05 -8.34‒0.03 

125-4 2.1‒0.1 0.9‒0.1 0.9‒0.1 7.501 0.50 -14.2‒0.01 -68.60‒0.07 -8.47‒0.05 

125-5 2.5‒0.1 1.2‒0.1 1.1‒0.1 7.501 0.25 -14.4‒0.05 -65.99‒0.08 -8.54‒0.04 

125-6 4.1‒0.1 2.0‒0.1 1.6‒0.1 7.502 0.10 -14.6‒0.04 -59.72‒0.07 -8.72‒0.02 

125-7 5.4‒0.1 2.3‒0.1 2.0‒0.1 7.502 0.05 -14.8‒0.03 -56.63‒0.07 -8.83‒0.04 

125-8 6.2‒0.1 2.7‒0.1 2.4‒0.1 7.503 0.025 -15.0‒0.03 -54.78‒0.06 -8.90‒0.03 

125-9 8.8‒0.1 3.2‒0.1 3.3‒0.1 7.504 0.01 -15.3‒0.05 -50.61‒0.09 -9.04‒0.03 
1
 The sequence of a given stacked experiment is indicated in the Temperature-ID. 

2
 pH(T) was calculated by charge balance from measured solution composition. 
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Table 3:  Pit Nucleation Model.  Fitted parameters for equations 20 and 21 needed to describe 

diopside dissolution as a function of temperature.  
 

ÄHc-homogeneous = 749,700 mJ m
-2

 

ÄHc-defect assisted = -91,644 mJ m
-2

 

Eb-homogeneous = 2.59 x 10
-16

 mJ K
-1

, ln b homogeneous = -11.57 mol cm
-2

 s
-1

 

Eb-defect assisted = 8.44 x 10
-16

 mJ K
-1

, ln b defect assisted = 83.34 mol cm
-2

 s
-1

 

y = 1.1 x 10
-28

 m
3
,  h = 5.25 x 10

-10
 m 

T°C 1Keq homogenous 

mJ m
-2 

2y-intercept 
homogeneous 

defect assited 

mJ m
-2 

2y-intercept 
defect-assisted 

125 10
14.48

 275.9 -25.5 39.4 -36.9 

150 10
13.27

 164.6 -25.5 53.0 -30.6 

160 10
12.82

 123.7 -25.5 58 -28.3 

175 10
12.19 3

65.8 
3
-25.5 

3
65.1 

3
-25.0 

1
Solubility constants Keq are taken from Supcrit92 (Johnson et al., 1992). 

2
Calculated from: y-interceptT,i = ln KT,eq + ln bi – Eb T,i /kT 

3
Values for 175°C were extrapolated based on temperature dependence of best fit values at 125, 

150, and 160°C. 
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 Figure Captions 

 

Figure 1.  Silicic acid concentrations in the effluent as a function of residence volumes in a 

stacked experiment conducted at 150˚C and in situ pH of 7.5. Steady-state conditions were 

assumed and the flow rates were changed (shown in vertical dashed lines) when the 

concentrations of the solutes in the effluent did not change with time.  

 

Figure 2. The ratio between Ca (open symbols) or Mg (closed symbols) concentration and Si 

concentration at steady-state divided by the stoichiometric number of moles of these elements in 

the solid is plotted against the Gibbs free energy of the reaction.  The solid line indicates 

stoichiometric dissolution when the ratio equals 1.  The color of the symbols and the indicated 

temperature are the same in the figure.  All the experiments are conducted at an in situ pH of 7.5. 

 

Figure 3.   Stoichiometric ratio of Ca (open symbols) or Mg (closed symbols) with respect to Si 

at steady-state versus saturation with respect to (A) antigorite and (B) chrysotile.  Saturation state 

was calculated based on the steady-state solute concentrations using Supcrit92 database [22].  

The color of the symbols and the indicated temperature are the same in the figure.  

 

Figure 4.  Diopside dissolution rates measured at 150˚C and in situ pH of 7.5 in stacked 

experiments starting at far from (squares and circles) and close to (diamonds) equilibrium 

conditions are plotted against the Gibbs free energy of the reaction.  The rates in the insert are 

plotted as logarithm of rates to highlight the differences in the measured rates observed at close 

to equilibrium conditions. 

 

Figure 5. Predicted rates, normalized to the maximum rate, as a function of the Gibbs free energy 

of the reaction for different Temkin’s co-efficient (indicated by the numbers shown in the figure 

close to the lines). 

 

Figure 6. Steady-state dissolution rate of diopside measured at different temperatures are plotted 

as a function of Gibbs free energy of the dissolution reaction.  The insert is for data collected at 
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125˚C.  All the experiments were conducted at an in situ pH of 7.5. The temperature of the 

experiment is indicated with the same color as the data.   

 

Figure 7.  Logarithm of the steady-state dissolution rates as a function of log 
a

H-
4

a
Ca 2-aMg2-

Ã"

Å"
Ä"Ä"

Ô"

Ö"
Õ"Õ".  The 

experiments are conducted at 150˚C and in situ pH of 7.5.  The symbols represent different 

stacked experiments: squares and circles represent experiments initiated at far from equilibrium 

conditions, whereas, the symbols represented by diamonds were started at close to equilibrium 

conditions. The data points shown inside the oval were initiated with Ca in the input solution and 

were started at close to equilibrium conditions. 

 

Figure 8. Logarithm of the steady-state dissolution rates as a function of log
a

H-
2

a
Mg2-

Ã"

Å"
Ä"Ä"

Ô"

Ö"
Õ"Õ".  The 

symbols represent experimentally determined rates obtained at different temperatures.  The data 

were fitted with an ion exchange model and the fitted rates are shown in the figure by colored 

lines.  The same color is used for the experimentally determined and fitted rates (see text for 

details).  

 

Figure 9.  Natural log of normalized dissolutions rates obtained at different temperatures are 

plotted against 
1

lnY
.  Best fits with a pit nucleation model to the experimental data are shown 

by similar color lines (see text for detail).  

 

Figure 10.  Temperature dependence of pit nucleation model parameters: (A) step edge energy 

and (B) ln b for homogenous nucleation of pits is shown by black circles and those for defect-

assisted pits are shown by blue triangles.  The lines represent the best fits to the data. 

 

Figure 11.  Comparison of the predicted log rates (diopside cm
-2

 s
-1

) using the ion exchange and 

pit nucleation models with the measured log rates at 125, 150 and 160°C.  Comparison of 

predicted and measured rates at 175°C was not made because both models significantly over 

predict dissolution compared to the measured rates.   
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Figure 12.  Extrapolation of the ion exchange and pit nucleation models to 25°C using 

parameters calibrated with the data in this study between 125 and 160°C (Equations 9 and 14).  

Measured diopside rate data and solution compositions are from Golubev et al. [35].  All rates 

are given as log rates (mol diopside cm
-2

 s
-1

).  
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