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The transverse Vlasov equilibrium distribution function of an unbunched ion beam propagating
in a continuous focusing channel is specified by a function f⊥(H⊥), where H⊥ is the single-particle
Hamiltonian. In standard treatments of continuous focusing equilibria in Vlasov-Poisson electro-
static models, it is assumed that a stable beam equilibrium specified by monotonic f⊥(H⊥) with
∂f⊥(H⊥)/∂H⊥ ≤ 0 is axisymmetric (no variation in azimuthal angle, i.e., with ∂/∂θ = 0). In this
paper a simple, but rigorous, proof is presented that only axisymmetric equilibrium solutions are
possible in Vlasov-Poisson models for any physical choice of f⊥(H⊥) with ∂f⊥(H⊥)/∂H⊥ ≤ 0 if the
confining boundary of the system (the beam pipe) is axisymmetric or if the geometry is radially
unbounded.

PACS numbers: 29.27.Bd,41.75.-i,52.59.Sa,52.65.y,52.65.Rr

The continuous-focusing model has been extensively studied by Davidson [1] and Reiser[2], and extensive reviews
can be found in US Particle Accelerator School courses[3]. Although the model can only be regarded as a highly
idealized representation of more realistic periodic focusing lattices, it is nevertheless useful to illustrate basic physics
and scaling properties. The proof we present that a stable, continuous focusing equilibrium distribution formed from
a monotonic decreasing function of the Hamiltonian can only produce axisymmetric beams improves the rigorous
understanding of equilibrium properties in the continuous focusing model. The proof parallels an analysis of a similar
equilibrium equation used to model a strongly magnetized, pure electron plasma described by E × B flow which is
confined in a Penning trap[4].

We consider an infinitely long, unbunched (∂/∂z = 0) beam of ions of charge q and rest mass m. All particles
propagate with axial velocity βbc = const. Here, c is the speed of light in vacuo. The beam phase-space is described
as a function of the axial coordinate s in terms of the transverse spatial coordinates x⊥ of the particles and the angles
x
′
⊥

that the particles make with the axis of the system. We adapt a Vlasov description, where the beam is modeled
by a continuous, single-particle distribution function f⊥(x⊥,x

′
⊥
, s). Within the paraxial approximation, f⊥ evolves

as an incompressible fluid in 4D transverse phase-space according to the nonlinear Vlasov equation[1–3]
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is the single-particle Hamiltonian, k2
β0 = const > 0 is the continuous, applied focusing force of the channel, γb =

1/
√

1 − β2
b = const is the relativistic gamma factor, and φ(x⊥, s) is the self-field potential generated by the beam

space-charge. The potential φ satisfies the transverse Poisson equation

∇2
⊥φ = −

q

ǫ0

∫

d2x′⊥ f⊥, (3)

with φ subject to the appropriate boundary conditions on the transverse machine aperture. Here, ǫ0 is the permittivity
of free-space.

The Vlasov-Poisson system given by Eqs. (1)–(3) model the transverse beam evolution in the continuum approxima-
tion. The system is solved as an initial value problem where f⊥(x⊥,x

′
⊥, s) is specified at some initial value of s = si.

The transverse particle Hamiltonian H⊥ given by Eq. (2) is a single-particle constant of the motion with H⊥ = const.
Therefore, any function f⊥ = f⊥(H⊥) satisfying f⊥ ≥ 0 at s = si will form a valid stationary continuous-focusing
equilibrium solution to the Vlasov-Poisson system. Functional bounds can be applied to show that the monotonicity
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condition ∂f⊥(H⊥)/∂H⊥ ≤ 0 is a sufficient condition for stability of the continuous-focusing equilibrium to both
small- and large-amplitude perturbations[1, 5–7].

It is convenient to define an effective potential[1–3]
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Then,
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and, without loss in generality, the beam density can be calculated as
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to recast the Poisson equation (3) of the equilibrium as
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If the system is confined in a cylindrical, conducting pipe of radius r =
√

x2 + y2 = rp held at potential φ = V = const,
the boundary condition on on ψ is
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For the special case of an equilibrium with a finite radial extent and line-charge λ = q
∫

d2x⊥ n in a radially unbounded
system (i.e., free space), the boundary condition (8) is replaced by the requirement that
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where r = rb is the characteristic transverse radius of the equilibrium beam.
Equation (7) is highly nonlinear and explicit solution for ψ must generally be numerically constructed for a specific

choice of equilibrium function f⊥(H⊥). Specific examples of solutions are analyzed in detail in Ref. [8]. In spite
of these general difficulties, it is possible to show that Eqs. (7) and (8) admit only axisymmetric [∂/∂θ = 0 where
θ = tan−1(y, x)] solutions for any physical choice of equilibrium function f⊥(H⊥). Paralleling Smith et. al[4], we
assume that a nonaxisymmetric (∂/∂θ 6= 0) solution ψ = ψ1 exists to Eqs. (7) and (8). Because the boundary
condition (8) is invariant under the rotation, another solution ψ = ψ2 can be generated by actively rotating ψ1

through any angle where the solution does not map back onto itself by symmetry. We define a positive definite
functional

F ≡

∫

pipe

d2x⊥

∣

∣

∣

∣

∂

∂x⊥

(ψ1 − ψ2)

∣

∣

∣

∣

2

> 0. (9)

Integrating by parts, and applying the Divergence theorem with the boundary condition (8), and then the Poisson
equation (7) obtains
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d2x⊥ (ψ1 − ψ2)[G(ψ1) −G(ψ2)],

(10)

where

G(ψ) ≡

∫ ∞

ψ

dH⊥ f⊥(H⊥).
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If f⊥ is a monotonic decreasing function of H⊥ with ∂f⊥(H⊥)/∂H⊥ ≤ 0, then G must also be a monotonic decreasing
function of ψ. Thus, wherever ψ1 ≥ ψ2, G(ψ1) ≤ G(ψ2), and wherever ψ1 ≤ ψ2, G(ψ1) ≥ G(ψ2). Consequently, the
integrand in Eq. (10) satisfies (ψ1 −ψ2)[G(ψ1)−G(ψ2)] ≤ 0 for all x⊥ in the pipe, which contradicts the requirement
that F > 0. Therefore, the assumption that a nonaxisymmetric solution exists is invalid and any solution to Eqs. (7)
and (8) when ∂f⊥(H⊥)/∂H⊥ ≤ 0 is necessarily axisymmetric.

This proof is easily modified to cover the case of a beam with finite radial extent in radially unbounded space (i.e.,
free space). The fact that system axisymmetry and stability are connected in simple, continuous focusing systems is
not surprising because the H⊥ depends only on |x′

⊥
| and the spatial x⊥ and angle x

′
⊥

degrees of freedom are strongly
connected in an equilibrium. If either: the beam pipe is replaced by a nonaxisymmetric conducting pipe, the radial
focusing force represented by k2

β0 is replaced by focusing forces differing in two orthogonal directions, or if f⊥(H⊥) is
a non-monotonic function; then no symmetry restrictions can be immediately obtained from the method presented.
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