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Abstract

The recent diagnostic capability of the Omega laser to study solid-solid phase 
transitions at pressures greater than 10 GPa and at strain rates exceeding 107 s-1

has also provided valuable information on the dynamic elastic-plastic behavior of 
materials. We have found, for example, that plasticity kinetics modifies the 
effective loading and thermodynamic paths of the material. In this paper we 
derive a kinetics equation for the time-dependent plastic response of the material 
to dynamic loading, and describe the model’s implementation in a radiation-
hydrodynamics computer code.  This model for plasticity kinetics incorporates the 
Gilman model for dislocation multiplication and saturation.  We discuss the 
application of this model to the simulation of experimental velocity interferometry
data for experiments on Omega in which Fe was shock compressed to pressures 
beyond the α-to-ε phase transition pressure. The kinetics model is shown to fit 
the data reasonably well in this high strain rate regime and further allows 
quantification of the relative contributions of dislocation multiplication and drag. 
The sensitivity of the observed signatures to the kinetics model parameters is
presented. 

Keywords: dynamics (A); shock waves (A); crystal plasticity (B); rate-dependent 
material (B).
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1. Introduction

For several years now, high-power lasers have been used to explore high strain-
rate materials dynamics (Remington et al., 2004).  Materials dynamics 
experiments have been conducted at several laser facilities that are capable of 
shock-compressing solids at pressures greater than 10 GPa and at strain rates 
exceeding 107 s-1.  In this paper we present an analysis of materials dynamics  
experiments conducted at the Omega Laser (Boehly et al., 1995) at the 
University of Rochester, Rochester, New York.

In recent experiments at Omega, Kalantar et al. (2005) observed the α-to-ε solid-
solid phase transition in single-crystal Fe.  In these experiments they made use 
of a newly developed multi-film-plane detector (Kalantar et al., 2003) to record 
dynamic diffraction from multiple lattice planes simultaneously.  The detector is
large compared to the sample and is placed so that it can record Bragg 
diffraction from many lattice planes at a range of angles. The shock was created 
in the Fe sample by using one laser beam to directly illuminate the target at 
intensities of 2x1010 – 1012 W/cm2.  The target consisted of the thick (200-250 
µm) Fe sample overlain by a thin (15 µm) parylene (C8H8) ablator so as to keep 
the laser beam from directly heating the Fe; a flash coating of Al on the parylene 
served as a shine-through barrier.  See Fig. 1a.  A separate laser beam 
illuminated an Fe backlighter foil, creating the 6.7 keV Fe K-shell x-rays that 
served as the Bragg diffraction probe beam.  These backlighter x-rays were 
diffracted from multiple lattice planes on the front (drive) side of the shocked Fe.  
More details of the experiment are given by Kalantar et al. (2005), and more 
details of the diffraction analysis are given by Hawreliak et al. (2006).

Quantitative interpretation of the diffraction results depends on knowing the 
pressure applied by the laser drive at the front surface of the Fe, the side 
illuminated by the laser.  There is no way to measure the pressure directly on the 
front side.  Instead, a VISAR velocity interferometer (Barker and Hollenbach, 
1972) was used to measure the free-surface velocity of the Fe (i.e., the velocity
on the back or undriven side of the Fe). 

The front-surface conditions are then related to the free-surface conditions via 
propagation of the elastic and plastic waves through the Fe from front to back, 
given the equation of state (EOS) of the Fe.  In practice, what we do is a 
complete simulation of the response of the material using the 2D radiation-
hydrodynamics code LASNEX (Zimmerman and Kruer, 1975).  Hydrodynamics is 
treated in a Lagrangian formulation, with the elastic-plastic equations differenced 
on a staggered mesh (cell-centered stresses and strains, node-centered forces 
and velocities) by means of classical finite-difference techniques.  The EOS is
the analytical Quotidian EOS (More et al., 1988), which reduces to a Gruneisen 
EOS at low temperatures, in which the ratio of the thermal pressure to the 
thermal energy is a constant (Zel’dovich and Raizer, 2002).  We use a single-
phase EOS which does not account for the entropy change at the α−ε phase 
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boundary.  For our purposes here, though, a single-phase EOS is adequate 
since the Fe gets above the phase transition pressure in only some of the shots, 
and then only in the first few microns and for a short time. Radiation transport is 
calculated by multi-group diffusion, with opacities calculated from the average 
atom model.  Cold opacities in the parylene ablator are used to model 
propagation of the Al K-shell x-rays (created by the interaction of the laser light 
directly with the Al shine-through barrier on the surface of the target) that preheat 
the Fe (Colvin and Kalantar, 2006).  The laser beam propagation is followed by a 
3D ray tracing algorithm, with absorption by inverse bremsstrahlung.  Full 
transport physics is included, with metallic conductivities in the Fe.  

The main purpose of the simulations is to determine the pressure drive history at 
the front surface of the Fe, given the measured laser power history.  We 
benchmark the simulation by matching the simulated velocity history at the free 
surface with the one measured by VISAR.  As shown in Fig. 1b, we can match 
both the velocity amplitude of the elastic wave and the velocity amplitude of the 
plastic wave with the simulations (Colvin and Kalantar, 2006).  However, we do 
not match the time history.  In particular, we see in the VISAR traces the distinct 
signature of plasticity kinetics effects:  the shear stress overshoots the 
equilibrium value of the flow stress and then relaxes back, delaying the onset of 
fully plastic flow.  This behavior, of course, is not captured at all in a simulation in 
which the material is assumed to transition to perfectly plastic flow 
instantaneously when the shear stress reaches the equilibrium flow stress.

We see this characteristic signature of kinetics effects in all the VISAR data from 
these laser-driven materials dynamics experiments. We are confident that we 
have the peak pressure at the front surface correct since we can match the peak 
velocity at the back surface. Thus, these VISAR data --- even though somewhat 
noisy because of unavoidable intensity fluctuations in the drive laser --- can be 
used to indicate the plasticity kinetics processes that modify the temporal shape 
of the pressure wave during its propagation through the target.  The purpose of 
the work reported in this paper is to describe a plasticity kinetics model that, 
when incorporated into these LASNEX simulations, provides a much better 
match to these VISAR data.

In the next Section we derive a kinetics equation for the plastic flow, based on a 
model for dislocation multiplication and saturation first given by Gilman (1965).  
We also discuss how the kinetics model was implemented in the hydrodynamics 
code.  In Section 3 we discuss the simulation of the Fe VISAR data with plasticity 
kinetics, and the sensitivity of the fit to variations in the model parameters.  
Concluding remarks and a summary are in Section 4.

2. A plasticity kinetics model
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2.1 Derivation of the kinetics equation

It is important to understand at the outset that our treatment of time-dependent 
plasticity is different than most past treatments in that it is not a model for visco-
plasticity.  In visco-plastic deformation, the shear stress is directly proportional to 
the plastic strain rate, such as in a Newtonian (constant viscosity) fluid, so the 
shear stress (analogously, the drag force in a Newtonian fluid) relaxes to zero as 
a result of the plastic deformation. There has been a lot of work on developing 
models for the kinetics of visco-plasticity (see, for example, Magnenet et al., 
2007), and even a model that treats perfect plasticity as visco-plasticity (Colvin et 
al., 2003).  The model we present here, on the other hand, is for time-dependent 
perfect plasticity, i.e., where the shear stress relaxes to a constant non-zero 
value as a result of the plastic deformation.

We start with Hooke’s Law:

sij = 2Gεij (1)

where the sij are the deviatoric stresses, εij the elastic strains, and G the shear 
modulus.  We differentiate equation (1) and then write the differential equation as 
a difference equation, obtaining:

tG ijijij δε&2+=′ ss , (2)

where δt is the differential time step, the dot over a symbol indicates a time 
derivative, and the prime indicates the variable at time t+δt.  Then, we write the 
elastic strain as the difference between the total strain θij and the plastic strain 
εij

p:

tG p
ijijijij δεθ ][2 && −+=′ ss . (3)

Now, from the von Mises condition for plasticity, i.e., 
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we can re-write equation (3) as 

t
Y
GG pijijijij δεθ }32{ ′′−+=′ && sss , (5)

with Y the yield strength of the material.
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Following Steinberg and Lund (1989) we note that the first two terms on the right-
hand side of equation (6) do not depend on the plastic strain rate, and hence we 
define a new variable  

) s ij that is the sum of these two terms.  Thus, at each time 
step δt in the calculation, the shear stress is relaxed by a factor that depends on 
the plastic strain rate; i.e.,

tG
p

ij
ij

δε
τ

&

)

′+
=′

31

s
s , (6)

with τ the flow stress at time step δt.

We now specify the time-dependent plastic strain rate by adapting the Gilman 
(1965) model of dislocation multiplication and saturation.  Gilman’s key insight is 
that the dislocation density ρ does not stay constant during plastic deformation.  
Thus, we start with Orowan’s equation and account for the time variation of the
dislocation density, so the plastic strain and plastic strain rate are:

εp = blρ,

Ý ε p = bv0ρ + bl dρ
dt

(7)

where b is the Burger’s vector, l is a characteristic length scale for the dislocation 
motion and v0 the dislocation velocity.  

Dislocation density grows by multiplication, which is proportional to the 
dislocation density, and saturates by drag and annihilation.  The annihilation is 
largely by binary coalescence, which is proportional to the square of the 
dislocation density.  Thus, we can write the time rate of change of the dislocation 
density as

,2βραρρ −=dt
d (8)

with α and β constants.  Integrating equation (9) we get

.
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e

α

α

βρα
αρρ (9)

Gilman starts with equation (9) substituted into the second of equations (7), and 
then modifies it by accounting for the dislocation drag stress D and hardening 
stress H to write the plastic strain rate as a function of the variable plastic strain 
and the variable flow stress, τ:
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The initial dislocation density is ρ0 and M is the dislocation density multiplication 
coefficient.

It is relatively straight-forward to find from equation (10) that the plastic strain rate 
is a maximum at plastic strain εp = τ /H for the usual case of M >> ρ0.

We then have the following picture of time-dependent plastic deformation. The 
material initially compresses elastically along the shock compression direction 
under uni-axial shock compression.  Then, when the deviatoric stress reaches 
the von Mises yield condition, the flow stress initially overshoots its equilibrium 
value (the yield stress) as the plastic strain and plastic strain rate increase.  The 
plastic strain rate reaches a maximum value, and then the plastic strain rate 
decreases again as the flow stress relaxes back to its equilibrium value, as 
illustrated schematically in Fig. 2.

Our particular contribution --- in addition to the recognition that dislocation 
multiplication is the key to modeling plasticity kinetics --- is to combine the 
Steinberg and Lund (1989) formulation with the Gilman (1965) model to derive a 
plasticity kinetics equation that can be incorporated relatively easily into a 
hydrodynamics code.  Thus, we can write a kinetics equation, following the logic 
with which we arrived at equation (6), as 

0]
2
3[3)( 2/1 =•−+= ijijp tGf ssτδετ & , (11)

with pε& given by equation (10).

2.2 Implementation of the model in the hydrodynamics code

The first two terms in the kinetics equation, equation (12), both contain the flow
stress, τ.  We solve for the flow stress as the root of the kinetics equation, f(τ) = 
0. We find the root via a Newton-Raphson iteration.  Thus, at each time tm, we 
find the flow stress τ by iterating the kinetics equation:

.
/)(
)(

1 ττ
τττ

ddf
f

n

n
nn −=+ (12)

The iteration is continued until the difference between the flow stresses on 
successive steps in the iteration, τn+1 – τn, is less than some pre-set 
convergence criterion. Then, pε& is updated at time tm with the new τ and the 
plastic strain is updated as:
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Finally, we decrease the deviatoric stress via equation (6).  We continue this 
prescription at each time step until the deviatoric stress relaxes back to its 
equilibrium value.

In the 2D hydrodynamics code, the hydrodynamic equations --- conservation of 
mass, momentum, and energy --- are written in cylindrical co-ordinates, so

| s• s |= 2(srr
2 + szz

2 + srz
2 + szzsrr ), (14)

which for uni-axial compression along the z-axis reduces to

| s• s |= (3
2)szz

2 . (15)

Thus, the von Mises criterion for the onset of plastic flow, the first of equations 
(4), becomes

| szz |= (2 3)Y0, (16)

where Y0 is the equilibrium yield strength.

In addition to the four parameters of the kinetics model that need to be specified -
-- initial dislocation density ρ0, dislocation multiplication coefficient M, dislocation 
drag stress D, and hardening stress H --- we also need to specify Y0.  

3. Modeling the laser-driven Fe experiments

In these particular experiments the pulse duration, 6 ns, was very short 
compared to the transit time of the pressure pulse in the Fe foil.  Because of this, 
a rarefaction wave overtakes the propagating pressure pulse after the laser turns 
off, reducing the peak pressure and broadening its spatial profile as the wave
propagates to the back of the foil, as shown in Fig. 3.  Since the peak overshoot 
shear stress for this loading pressure profile does not necessarily exceed the von 
Mises criterion everywhere in the Fe, one single choice for Y0 in the modeling 
does not provide a perfect fit to the entire temporal profile of the measured free-
surface velocity history.

Nonetheless, the model provides a qualitatively improved temporal fit to the data, 
as shown in Fig. 4. Here we show, in panels a and b of Fig. 4, two model fits to 
the Visar data from one of the Omega shots in which 117 J of 1/3 µm laser light 
was incident on a target containing a 250-µm-thick single-crystal Fe foil, with the 
normal to the foil oriented in the <001> crystallographic direction.  This is the 
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direction of the shock propagation. In Fig. 4a we show the model fit (the red 
curve) for a single choice of Y0 = 1.2 GPa for the entire foil.  The blue curve 
shows the simulated velocity history without plasticity kinetics, with Y0 = 3.6 GPa. 
All the model parameters for the simulation with kinetics are shown in the second 
column of Table 1.  In this simulation, the kinetics model is turned on when the 
deviatoric stress reaches the von Mises condition for a yield strength of 3Y0, and 
allows it to relax back to a flow stress corresponding to Y0. For this choice of Y0, 
most of the zones in the back 20 µm of the foil never get to a deviatoric stress 
that exceeds the von Mises criterion, so the plasticity kinetics never turns on; i.e., 
the back 20 µm or so of the foil deforms only elastically.  This artificial 
discontinuity in the material response possibly explains the anomalous “plateau” 
features in the simulated velocity history shown in Fig. 4a between 44 and 46 ns 
and between 47 and 49 ns.  

The later (47-49 ns) plateau is reduced using a lower value of Y0 = 0.25 GPa in 
the back 20 µm of the foil, forcing the plasticity kinetics to turn on everywhere, as 
shown in the red curve in Fig. 4b.  All the model parameters for this simulation 
are shown in the third column of Table 1. In this simulation, the kinetics model is 
turned on when the deviatoric stress reaches the von Mises condition for a yield 
strength of 2Y0, and allows it to relax back to a flow stress corresponding to Y0. 
As seen in Fig. 4b, there are still anomalous discontinuities in the simulated 
velocity history; these are numerical artifacts that result from the artificial 
discontinuities in Y0 in the model.  

We also used the model to simulate a higher-energy laser shot.  In this shot, 179 
J of 1/3 µm laser light was incident on a target containing a 200-µm-thick single-
crystal Fe foil, with the normal to the foil again oriented in the <001> 
crystallographic direction.  In Fig. 4c we show the model fit (the red curve again) 
for a single choice of Y0 = 1.0 GPa for the entire foil, again turning on the kinetics 
when the deviatoric stress reaches the von Mises condition for a yield strength of 
2Y0.  All the model parameters for this simulation are shown in the fourth column 
of Table 1.  In this case, with the higher energy and hence higher pressure drive, 
and with the 20% thinner foil, we can get by with a single value for Y0 throughout 
the foil to get a fit with fewer discontinuities than for the thicker foil.  As for the 
117 J shot, the simulation without kinetics (the blue curve) was done with Y0 = 
3.6 GPa.

4. Summary and concluding remarks

We have also recorded Visar data for Fe <111>, showing peak velocity at elastic 
wave break-out of 0.15 µm/ns (compared to the 0.20 – 0.25 µm/ns for the Fe 
<001>), and which require different “best fit” model parameters. The rate of 
decay of the elastic precursor depends on the Gilman model parameters, as 
expected. Of the four Gilman model parameters, the fit is most sensitive to the 
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dislocation multiplication coefficient, M --- which sets the initial rise to peak ---
and the dislocation drag stress, D --- which sets the time over which the plastic 
wave develops. It is of interest to note that the parameter values for the high 
strain rates for Fe in the present study are comparable to the values for modeling 
Fe at  the lower strain rates typical of gas gun experiments and for modeling the 
precursor decay as observed by Taylor and Rice (1963), but we have not yet 
examined this issue in detail.  Overall, though, the simulated free-surface velocity 
history is relatively insensitive to variations in the four parameters of the Gilman 
equation, ρ0, M, D, and H.  The results are much more sensitive to the choice of 
Y0, which defines when the model turns on and when it turns off in each zone.  

We find a similar sensitivity to Y0 in our modeling of more recent VISAR data 
from laser-driven isentropic compression experiments (Smith et al. 2006) on 
much thinner metal foils in which the pressure varies little from front to back.  
This finding suggests that the Y0 sensitivity is not a result of the loading history, 
but is likely the result of some artifact in the model and/or in its implementation in 
the code.  The final form of the model and its implementation are a work in 
progress.

Nonetheless, we have shown that a consideration of plasticity kinetics effects is 
crucial to data interpretation; without this consideration we simply cannot explain 
the behavior of materials compressed at high strain rates.  We chose the Gilman 
model as the initial candidate to model plasticity kinetics effects because it is the 
only model to account for dislocation multiplication in these high strain rate 
regimes.

Finally, we find that accounting for the kinetics of the plasticity in the simulations 
reduces the calculated peak hydrostatic pressure at the front of the Fe (where 
the diffraction data is taken) by ~20%, as shown in Fig. 5.  The temperature on 
release is lower, too.  Thus, the plasticity kinetics modifies both the 
hydrodynamic path and the thermodynamic path followed by the shock-
compressed material.

In summary, we find that:

• Quantitative interpretation of the diffraction data from the laser-driven Fe 
experiments relies on knowing accurately the pressure history at the front 
(drive) surface of the Fe, which we obtain from hydrodynamics code 
simulations.

• The VISAR diagnostic provides a measure of the material velocity history 
at the back (free) surface.

• Incorporating a model for plasticity kinetics into the hydrodynamics code 
simulations better represents the physical processes that occur during 
wave propagation from front to back in the Fe.

• Accounting for the plasticity kinetics in the simulations we obtain much 
better agreement with measured free-surface velocity histories, which 
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gives us confidence that we can accurately calculate the pressure history 
at the front (drive) surface.
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Figure Captions

Fig. 1. a) Schematic of the three-layer target used in the laser-driven dynamic 
diffraction experiments. b) Fe free-surface velocity history as measured by the 
Visar diagnostic for one representative Omega laser shot with 117 J of beam 
energy, and as simulated without plasticity kinetics (blue curve).

Fig. 2. Schematic of the components of stress vs. strain in perfect plasticity with 
(red curve) and without (black curve) kinetics for uni-axial compression along the 
z axis.

Fig. 3. Pressure profiles in the Fe foil at the indicated times, as simulated without 
kinetics for the 117 J Omega laser shot. 

Fig. 4. Fe free-surface velocity history as measured by the Visar diagnostic 
(black curve), as simulated without plasticity kinetics (blue curve), and as 
simulated with plasticity kinetics (red curve) for a) the 117 J Omega laser shot 
and the model parameters shown in column 2 of Table 1; b) the 117 J Omega 
laser shot and the model parameters shown in column 3 of Table 1; and c) the 
179 J Omega laser shot and the model parameters shown in column 4 of Table 
1.

Fig. 5. The Temperature-pressure trajectories of the front few microns of the Fe, 
as simulated with (red curve) and without (blue curve) plasticity kinetics, 
superposed on the temperature-pressure phase diagram for Fe.
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Table 1. Model parameters used in the simulations

Parameter Sim. 1 Sim. 2 Sim. 3
_________________________________________
ρ0 (cm-2) 106 106 106

M (cm-2) 1012 1012 1012

D (GPa) 0.75 1.0 0.5
H (GPa) 0.2 0.2 0.2
Y0 (GPa) 1.2 2.0 & 0.25 1.0
_________________________________________
Notes:
Sim. 1 was for the 117 J Omega laser shot
Sim. 2 was for the 117 J Omega laser shot
Sim. 3 was for the 179 J Omega laser shot
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