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Abstract—Global search and more recently adjoint-based in-
version methods used in ocean acoustics showed their effec-
tiveness in the estimation of the sound-speed profile (SSP) in
water columns of several environments. In the framework of
the European Seas Observatory Network (ESONET) an essential
part of the research and technology focuses on continuous and
long term observations to characterize dynamic ocean processes
and monitor the global state of the ocean. Therefore, the
development of high performange integrated tools for acoustic
inversion is one of the attractive components in this network.
For the purpose of efficient data assimilation this paper in-
vestigates sequential methods that are able to update sound-
speed profile parameters, typically the coefficients of empirical
orthogonal functions (EOQF), with respect to new incoming
acoustic or hydrographic measurements and take into account the
seafloor and sub-seafloor acoustic properties in a shallow water
environment. A formulation using Kalman filters is suitable for
a sequential treatment. This paper investigates the application
of two different extensions of the Kalman filter, the extended
Kalman filter and the more recent unscented Kalman filter for
comparison.

Index Terms—ocean acoustic tomography, unscented Kalman
filter, empirical orthogonal functions

I. INTRODUCTION

Global search and more recently adjoint-based inversion
methods used in ocean acoustics showed their effectiveness in
the estimation of geometric and (geo)acoustic parameters of
several environments ([1]-[3] and many others). The sound-
speed profile (SSP) is an important source of information in
order to retrieve ocean properties (temperature, salinity,...).
In the framework of the European Seas Observatory Network
(ESONET!) an essential part of the research and technology
focuses on continuous and long term observations to charac-
terize dynamic ocean processes and monitor the global state
of the ocean. Therefore, the development of high performance

Isee website http://www.ifremer fr/esonet/

integrated tools for acoustic inversion is one of the attractive
components in this network.

Due to their stochastic nature, model-based processing
approaches are well suited for data assimilation into numeri-
cal models, typically in meteorology and oceanography. The
ocean-acoustic model and measurement system are placed into
state-space form, allowing unknown signal and environmental
parameters to be estimated simultaneously [4], [5]. A major
advantage of the model-based approach is that there is no
inherent limitation to the degree of sophistication of the mod-
els used, and therefore it can deal with different propagation
models (normal-mode, parabolic equation, ...) and integrate
oceanographic models.

Recently, some works have envisioned an integrated formu-
lation of joint acoustic and oceanographic data assimilation,
including both the acoustic and the oceanic variables in
the state vector [6], [7]. For the purpose of efficient data
assimilation this paper investigates sequential methods that are
able to update sound-speed profile parameters, typically the
coefficients of empirical orthogonal functions (EOF), with re-
spect to new incoming acoustic or hydrographic measurements
and take into account the seafloor and sub-seafloor acoustic
properties in a shallow water environment.

This paper treats a shallow water case with broadband and
full field measurements, as required by the use of sparse, ver-
tical hydrophone arrays in a time-dispersive ocean waveguide
[8].

Because variations in SSP perturb the pressure field, the
model-based processor is constructed to extract time variations
of the EOF coefficients. The Gauss-Markov representation
enables the inclusion of stochastic phenomena such as mea-
surement noise or modeling error into the processor. Modeling
error terms can then represent the uncertainty on the evolution
of the (slowly varying) SSP.

Non-linearity in the state-space formulation requires the use



of suitable processors. The extended Kalman filter (EKF) is a
sub-optimal processor that linearizes the dynamical equations
around the current estimate of the state, under Gaussian
assumptions. This paper proposes a design of both the EKF
and an unscented Kalman filter (UKF). The UKF uses the
same Gaussian assumptions than EKF, but distributions are
represented using a minimal set of sample points to capture
the statistics of the variables. The main advantage of UKF is
the use of the true non-linear model to propagate the sample
points [9].

The remainder of the paper is organized as follows. The
state-space model is first introduced in Sec. 2. Section 3 then
presents the essential principles of the UKF. Section 4 presents
some results in a real environment. We conclude the paper in
Seci.5.

II. GAUSS-MARKOV STATE-SPACE MODEL

The use of empirical orthogonal function (EOF) is a good
way to fully parameterize the sound-speed profile. EOF are
basis functions that can be obtained from a database and
are very efficient to reduce the number of data points to be
estimated. The use of EOF has already proved its efficiency
in sound-speed profile inversion problem ([10], [11] and many
others).

The modeled sound-speed profile ¢(z) can then be expressed
in terms of a vector of coefficients

N
e(2) =2(2) + Y _ aide(2) (1)
i=1
where ©(z) is the mean sound-speed profile computed on the
historical data. The number N of EOF is chosen so that, in
terms of energy, more than 90% of the sound speed variation
is described (N = 3 in our case).

Figure 1 shows the mean SSP and the first three EOF
computed from the Yellow Shark (YS) database.

We propose to use EOF coefficients as the states o; of our
model. Indirect measurement of these states is given by the
acoustic pressure field p; on a vertical array of L hydrophones.
The relation between the states and the acoustic pressure field
is highly non-linear and is computed by the resolution of a
normal-mode model. The state-space evolution model is given
by

o (tx) o (tk—1)
- — | +w(tr—1) @
an(tk) an(te-1)
The measurement values are computed as
pa(te)
: =C(af(tr)) +v(tk) 3)
pL(tk)

where A is the transition function, C is the (non-linear) mea-
surement function that computes the acoustic pressure field
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Figure 1. (a) Mean sound-speed profile of the database. (b) First three EOF
computed on the database (solid line: EOF 1, dashed line: EOF 2, dotted line:
EOF 3).

with respect to the state vector, and w(t) and v(t,) are zero-
mean Gaussian random vectors (respectively of covariance
Ryw and R,,). The components of p;(tx) are the acoustic
pressure amplitude at each frequency on the 4th hydrophone.
Noise terms are assumed to be independent and uncorrelated
(spatially and temporally).

For this paper, we would like to investigate the capability
of the state-space formulation with Kalman filtering to to
efficiently invert the SSP. We do not yet integrate suitable
oceanic models, so the transition function is set to the identity
matrix. However, the structure of the state-space model should
integrate a more complex oceanic model, with augmenting
simultaneously the state vector and the measurement process.
Improvements of inversion results could be done with adding
in situ hydrographic measurements (like CTD or XBT). Fur-
thermore, the source and receiver geometry and the bottom
(and subbottom) properties are exactly know. No track of range
and depth will be made because the source and receiver are
assumed to remain at a fixed position.

III. KALMAN FILTERING ALGORITHMS

The non-linearity (3) in the state-space formulation requires
non-linear filtering methods. The most common method is the
extended Kalman filter (EKF) that linearizes the process and/or
measurement functions around the current state. However,
such a linearization can produce unstable filters and degrade
the results of the filter [9]. For this reason, new extensions of
the Kalman filter have been developed in the last decade. In
this paper we empirically compare the performances of EKF
with the unscented Kalman filter (UKF) for inverting sound-
speed profile in a shallow water environment.

The UKF was first developed by Julier and Uhlmann [9].
Instead of linearizing the dynamics of the system, a statis-

tical transformation approach is developed. The fundamen-

tal component of this filter is the unscented transformation.



The WSSR hypothesis test is based on

Hy : p(j)is white
Hi : p(7)is not white

Under the null hypothesis, and with a product LN > 30,
p(j) can be approximated by a Gaussian N'(LN,2LN), so
that 95% of the WSSR statistic must lie below the threshold

T =LN +1.96vV2LN (19)

Filtering algorithms used in this paper come from the
REBEL Toolkit [14].

IV. RESULTS
A. Framework

The Yellow Shark experiments [8], carried out in the Giglio
basin of the west coast of Italy during the fall of 1994 (YS94)
are used as a realistic case to test the tracking method and
evaluate algorithm performance.

The geometric and acoustic parameters used for the fol-
lowing test cases are identical to one of the runs along the
main transect of the experiment: the 9-km run. Broadband
multitone signal in the frequency band 200-800 Hz was
emitted from a source at 69.2-m depth; the water depth was
113.1 m. The frequencies were 200, 250, 315, 400, 500,
630 and 800 Hz. The transmitted signal was received on a
vertical receiving array of 32 hydrophones from 37.2-m to
99.2-m depth with 2-m interelement spacing. The acoustic
fields are synthesized using bottom properties measured on
sediment cores and through geoacoustic inversion [8], [15].
The bottom is modeled as described on [15] and consists of
a 7.5-m thick clay sediment layer with a compression-speed
gradient (p=1.5 g cm~3, c=1470 m s~ !, g=2 s~!, a=0.03 dB
A~1) and a homogeneous fluid half space modeling a silty-clay
sediment (p=1.8 g cm~3, ¢=1530 m s, a=0.15 dB A=)
This environment is depicted in Fig. 2.

The synthesized pressure fields are computed using the
normal modes model resolution KRAKEN [16]. Gaussian,
zero-mean and uncorrelated measurement noise is added, with
a standard deviation of an order of magnitude equal to the half
of the amplitude of the pressure fields on the hydrophones.

B. Benchmark results

The first test case presents a sequence of 20 synthesized
profiles. This sequence is constructed with the three first EOF
coefficients of the 20 first adjacent SSP from the YS database
(9-km run on September 10, 1994).

To ensure a optimal tuning, process covariance used
in the filters is equal to the variance of the sequence
P, = diag([1.1424;1.2776;0.6021]). The initial condi-
tion of the state is a vector of EOF coefficients close the
true values (Xo = [-5.0;0.8; —0.4] in place of Xy =
[—5.44;0.63; —0.18]), with an initial error covariance P, set
to Prz. So close initial conditions would be obtained by a
preliminary inversion on the site, based for example on global
optimization methods.
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Figure 2. The environment used for the different test cases. The source
coordinates are (0 km, 69.2 m) and the 32 hydrophones coordinates are (5
km, 37.2-99.2 m).
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Figure 3.  Results of an extended Kalman filter on a sequence of 20

synthesized SSP with 3 EOF coefficients based on YS data set (solid
line: true coefficients, dashed line: EKF estimates, dotted line: error bounds

(£1.96/Prz) ).

Results of EKF and UKF are shown in Figs. 3 and 4.
Variations of the coefficients are better tracked by the UKF
processor than by the EKF processor, Indeed, EKF shows more
inconsistent results, the estimated EOF coefficients are out of
the predicted error bounds on more iterations.

A more interesting illustration of the results quality is the
root mean square error of the sound-speed profile (Acmme)
computed with the filtered states. This parameter is computed
as

Aty = % Z [em(z) — Cﬁher(z)]2

zZ=z

(20)

where D is the number of depth points used to discretize the
water column.

Figure 5 shows the evolution of this parameter for both the
EKF and UKF techniques. The Acyys rms clearly show better
results for the UKF than for EKF, since 80% of the UKF values
are smaller than EKF values. The statistical tests on innovation
sequences indicate a better tuning for the UKF processor than
for the EKF: 5.36 % of innovation vector components have a



Like the EKF, the UKF represents the states as Gaussian,
but it is specified using a minimal set of deterministically
selected samples (the o-points). These points capture the mean
and covariance of the Gaussian distribution. When they are
propagated through the true non-linear process, the posterior
mean and covariance are accurately captured to the second
order. We give here only the basis principles of the algorithm.
More information about algorithmic details and theoretical
considerations can be found in [12] and [13].

Consider a state vector of dimension n. Unscented transfor-
mation will create a collection of o-points following :

& = =
£ = TH(V(n+XN)P); for i=1,...,n
& = T—(V(n+X)Py); for i=n+1,...,2n

)
where T and P, are respectively the mean and the covariance
of the state vector and A a scaling parameter that determines
the spread of the sigma points.

Each o-point is propagated through the prediction process

Eg‘(thrI[tk:) = A(E;(tk)) for vad—0,...,2n 5
and the a priori estimate is computed as
2n
Btrsalte) = Y Wiki(tesalte) ©)
i=0
with the weights given by
A
T ! M)
W; gy for i#0
The predicted covariance is computed as
2n
Pro(teralts) = WE [Ei(thsilte) — B(trslt)]
i=0
X [&i(terr|te) = B(teralt)] ®)
with the weighted terms
Wéc) n_-ll\-A +(1-a?2+p) ©)
Wi W; for i#0

where o and 3 are the two other scaling parameters.
Each predicted point is used in the measurement model

Y(k+1|k) = H(E(tr+1ltr)) (10)
and predicted observations are computed as
2n
Y(trpalte) = > WiX(teralt) (11
i=0

with covariances

2n

Py (tealte) =Y Wi [Xiltrslt) — y(teralte)]
=0
X [Xi(tetrlte) — y(tesalte)]”

+Ryu(th+1) (12)

Finally, the cross-covariance is computed as

2n
Poy(trsalte) =D Wi [€:(tkraltn) — B(tera|te)]
i=0
X [Xi(theilte) — y(teealtr)]” (13)
to obtain the Kalman gain given by
K(tks1) = Pay(ter1lte) Py (begafte) (14)

The corrected and predicted states and measurements follow
the traditional Kalman filter. In fact, in the exact formulation
of the unscented processor, the state vector is augmented with
process and measurement noise terms and the process model
is rewritten consequently, enabling a generalization of process
noise terms in a nonlinear manner.

Besides the parameters o, 3 and , of the UKF, other param-
eters can influence the performances of the filter: initial values
and error covariance of the states and noise terms for process
and measurements. A necessary and sufficient condition for
filler optimality is that the innovation sequence e(t) (the
difference between predicted and measured acoustic pressure
fields, on each hydrophone) is zero-mean and uncorrelated
[13]. Therefore, the minimum variance filter is considered
tuned if and only if this condition is satisfied. If possible,
the free parameters will then be adjusted until the condition
is achieved. ;

The zero-mean test will be formulated as follows. Assuming
that the processor is Gaussian and ergodic, we test the sample
mean i, to estimate the population mean m,. The sample
mean for the ith component of the innovation vector is

N
1
me(z')zﬁzf;i(tk) fori—ily . il 2415)
k=1

where L is the size of the observations vector, N the number
of iterations and 7M.(i) ~ AN(me, Ree(i)/N). At the 5%
significance level (see [13] for more details), the sequence
is assumed zero-mean if the sample mean lies below the

threshold
Ree(i
5 = 1.96\/%() (16)
where Ree(i) is the sample variance estimated by
&
it SRl 2
Beei) = 5 ; € (t) (17)

The whiteness of the sequence will be tested with the
weighted sum squared residual (WSSR). This test aggregates
all of the innovation vector information over a finite window
of length W (see [13] for more details). The WSSR statistic
is defined by

J

2

k=j—W+1

pi) = eT(te) R} (te)e(ty) for j=W (18)
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Figure 9. Acms for the EKF (dotted line), for the UKF (dashed line) and
optimal (solid line). The input data is the entire sequence of real SSP from
the YS database. 61 % of Acps UKF is smaller than EKF.

V. CONCLUSION

Characterize dynamic ocean process and monitor the global
states of marine systems is an attractive component where
hydroacoustics and oceanographic sciences can interact. Se-
quential methods are able to update the state of a system with
respect to new measurements. For this purpose, use of non-
linear Kalman filter show his potentiality to update the sound-
speed profile of a shallow water environment sequentially,
by assimilating new broadband acoustic measurements on
sparse hydrophone array. Because of the non linearity of our
measurement model, the unscented Kalman filter can greatly
improve state estimations with respect to the extended Kalman
filter. Results are encouraging and use of ensemble method
will be the next step of this work. In a parallel direction,
inclusion of an oceanographic model, able to theoretically
predict global state of the system, will be investigated.
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Figure 4. Results of an unscented Kalman filter on a sequence of 20

synthesized SSP with 3 EOF coefficients based on YS data set (solid line:
true coefficients, dashed line: UKF estimates, dotted line: error bounds

(£1.96/Pyz) ).
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Figure 5. Acms for the EKF (dotted line) and for the UKF (dashed line).
The input SSP is a sequence of 20 synthesized SSP.

mean above their threshold for the EKF, for only 1.33 % for
the UKF. The WSSR statistical tests give 9.10% out for the
EKF and 0% out for the UKF (Fig. 6).

C. Real data sequence

The second test is a run on the entire YS sequence. This
sequence of profiles is shown in Fig. 7 in the region of 10- to
40-m water depths.

Results of both filters are presented in Fig. 8. The state-
space model is clearly not optimal to describe the SSP evolu-
tion, since the transition matrix is the identity. However, the
UKF tracks reasonably well the EOF coefficients and performs
better than EKF (in the mean of Acm) for 61 % of the
sequence.

Figure 9 shows the Acms for the two filters. The third
(solid) line is the minimum that is possible to obtain, with
the sequence of true EOF coefficients. We use a finite number
of EOF, so that the reconstruction of the SSP cannot match
exactly with the real SSP used to synthesize pressure field.
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Figure 6. WSSR test for the EKF (dotted line, 9.10 % out) and for the UKF
(dashed line, 0 % out). The solid line is the WSSR threshold (19). The input
SSP is a sequence of 20 synthesized SSP,
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Figure 7. Zoom on the entire sequence of the 80 sound-speed profiles
from the YS database. Region of 10- to 40-m depth. One minor tickmark
corresponds to 4 m/s.

40
lteration

Figure 8. State estimations of EKF (dotted line), UKF (dashed line) and
true coefficients (solid line). The input data is the entire sequence of real SSP
from the YS database. :





