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Abstract.  This tutorial lecture explains the ways supersaturation in complex solutions 
may be introduced to be most relevant to describe experimental data on kink and step 
kinetics.  To do so, we express the kink rate via the frequencies of attachment and 
detachment of the building units and then link these frequencies to the measurable 
activities of these units in solution.  
Possible reasons for violation of the Gibbs-Thomson law are briefly discussed with 
reference to our earlier work.     

1. INECNTIVES TO STUDY SOLUTION GROWTH 

Basic knowledge and problems accumulated by the middle of the 20-th century in crystal 
growth physics were summarized and resolved in the now classical theory of W.Burton, 
N.Cabrera and F.C.Frank (BCF) in 1951[1].  Developing the J.Frenkel’s pioneering idea 
[2],  Burton and Cabrera introduced basic concept on surface roughening.  This concept 
allowed to understand why crystals growing from solution and vapor are mainly faceted 
while the crystal growing from melt acquire spherical shape. The BCF theory brought 
contemporary physics to crystal growth.  In particular, quantitative understanding of the 
layer-by-layer growth of faces, steps and kinks was achieved and the Frank’s idea on 
crucial role of screw dislocations in step generation was elaborated. 

Being experimentally simple, solution growth was historically the first area in the basic 
academic studies of crystal growth physics and chemistry (see refs [3-5] for history), 
along with the much older geometrical approach of mineralogists and crystallographers.   
The new practical incentives for deeper insight into growth from solutions came during 
the World War II when growing quartz was initiated for radio frequency stabilization and 
classical optics and later, in the 50-s, when non-linear optics demanded KDP and other 
materials, like Rochelle salt - for laser frequency doubling and tripling, infrared 
detection, imaging etc.  In the 70-80-s, the laser nuclear fusion programs in the USA, 
USSR, Japan and France raised even more challenging issues of extremely perfect meter-
scale KDP and DKDP crystals capable not to crack, even locally, under the gigawatt 
scale laser pulses.  In response, the fast crystal growth technology was born [6-8] 
allowing to reach growth rate of  ~1 cm/day rather than traditional <1mm/day, keeping 
the crystal perfection high.  Subtle defects allowing laser beam to damage these crystals 
below the theoretical threshold still remain a big challenge. 

Since the 70-s, massive effort to decipher atomic structure of tens of thousands of 
biological macromolecules is on the way.   This gave a big push to biomacromolecular 



crystallization, also exclusively from solutions.  The studies are funded by space agencies 
worldwide - because ~20% of crystals grown in convection free environment showed 
higher lattice perfection.  The latter is a must to determine atomic structure of 
biomacromolecules which makes crystallization the bottleneck for the whole enterprise.  
Nevertheless, despite of humongous dissemination, deeper current insight, automation 
and other new know-how in practical terms, this area remains essentially empirical.  One 
of the reasons is extreme chemical complexity and variability of surfaces of the ~2- 100 
nm size biomacromolecules  and of solutions from which these biocrystals grow [9,10].  

Biomineralization, which is also the growth from the about room temperature solutions, 
is aimed at several strategic puzzles to be solved.  Among these puzzles are, for example, 
the ways Nature build bones, teeth, kidney and gallstones and how to repair the former 
and get rid of the latter.  Mollusk shells and sea urchins are examples of interaction 
between the living and inorganic molecules with the perspective to understand origin of 
life and carbon cycle on our planet with its ecological and geological problems.  Essential 
effort to understand growth of calcite, hydroxyapatite, brushite, oxalates and other 
biominerals is being successfully undertaken.  Nevertheless, there are still more questions 
than answers in this vast area [11-13].

Preparation and handling of nanoparticles for optics and electronics, grown often from 
solutions in the 300-700oC range, is overwhelmingly empirical despite of its big potential 
practical impact [14].  Creation of the nanoparticles in complex solutions rise also of the 
Ostwald ripening problem since thin protection film covering each particle is still 
permeable for ions and so are the matrices into which the nanoparticles are embedded.  

Chemical industry produces, mainly from solutions, drugs, fertilizers, paint, table salt, 
sugar powders subject to ageing via Ostwald and non-Ostwald ripening (the latter - via 
temperature variations).  Understanding of the ageing also remains mainly empirical.

Chemical complexity is the common feature in both the old and more recent areas while 
the existing theories deal overwhelmingly with the simplest Kossel model. 
Computational prediction of the crystal habit based on the classical periodic bond chain 
approach with its assumptions on the bond strength is probably the only exception[15]. 
However, this approach hardly allows to understand growth kinetics.  

Even relatively simple ionic solution often includes complexes of the species of which 
the crystal is built.   Composition of these building units and their kinetic properties are 
usually only guessed.  We do not have the rules how to identify building units and their 
behavior. In any crystallization driven by chemical reactions  (because the desired 
product is slightly soluble),  influence of solution composition, including stoichiometry, 
acidity,  and temperature on the growth rate and crystal composition and perfection are 
the closely related important questions requiring deeper insight.  
There is also another group of problems related to the slightly soluble salts, biominerals 
in the first place. For these materials, the surface free energy is several times higher than 
that for the well soluble crystals.  This is indirect evidence of the high kink energy and
thus of the low kink density. The latter means extremely straight, rather than rounded 



steps and questions applicability of the Gibbs-Thomson law and fluctuation dissipative
theorem, the cornerstones of the BCF theory.  

In these tutorial notes, we will address briefly basic concepts used in treatment of crystal
growth from chemically complex solutions.  

2. SUPERSATURATION
2.1. Molecular solutions.  
As the reference point, let us recollect the simplest case of a solution consisting of a 
solvent and one type of solute species (molecules) with the activity a.  If ae is the solute 
activity at the solution-crystal equilibrium, the absolute supersaturation may be defined as 

∆a = a-ae.                                                                                                                       (1)

The relative supersaturation is defined either as a/ae, or as  

S=(a/ae) -1 = ∆a/ae..                                                                                                       (2)

The most general driving force for any phase transition is the difference, µL-µS,                                                                          
between chemical potentials, µ, of molecules in liquid L and in solid, S.  This difference 
in kT units may be called logarithmic supersaturation 

σ = (µL-µS)/kT ≡ ∆µ/kT = ln(a/ae).                                                                                 (3)

To obtain the last relationship in eq.(3), we use the chemical potentials of a molecule in 
the solution and in the crystal in the form: 

µL = kTln ωa + ψ,        µS = kTln ωae + ψ,                                                                    (4)                                                                                                                                     

where ψ is the energy of interaction between the solute molecule with the surrounding 
species in solution.  The energy ψ depends only on pressure and temperature but not on 
the concentration. At equilibrium, µS = µL. Unlike in conventional definition of chemical 
thermodynamics, the activity in eq.(4) is multiplied by molecular volume ω in the solid 
phase to make the quantity under logarithm dimensionless.  The quantity ωa may be 
understood as the volume fraction of the molecules in solution times the activity 
coefficient.  The supersaturations S and ∆a are related to σ as

S = expσ - 1 = a/ae -1 = ∆a/ae  (5)

2.2. Solution of dissociating molecules. 

Here we consider molecules dissociating in a solvent to the ions or not charged species, A 
and B.   Then the logarithmic supersaturation



σA,B = ∆µ/kT = ln aAaB/K,       ∆µ = µLAB - µSAB = kTlnaA +ψA +kTlnaB +ψB -  µSAB,
K ≡ K(T,P) = exp [(µSAB -ψA - ψB) /kT] = (aA.aB)equilibrium.                (6)               

Here the experimentally measured solubility product K is expressed via the difference 
between the usually unknown chemical potential µS,AB of the molecule AB in the solid 
and the energies ψA, ψB of the species in solution.  This difference determines the energy 
required to replace the AB molecule from a kink on the crystal surface to solution and to 
dissociate it.  Entropy (mainly vibrational) is present in the µS but is not major in the ψA, 
ψB.  Therefore the dissolution enthalpy may be an approximate measure of this 
difference.   The species activities in solution at equilibrium, aAe and aBe, and thus the K 
value are measured experimentally.  

Often the molecules dissociate only partly, so that molecules are also present in solution.  
Then we deal with three species, A,B,and AB.  At equilibrium, balance between all these 
three species in solution and the molecules in the crystal, must be maintained:

µLA +µLB = µSAB

µLAB =  µSAB  (7)
µLA + µLB = µLAB.

The first two equations present the liquid-sold while the third one presents the 
dissociation equilibrium within solution.  Eqs. (7) mean that the log supersaturation with 
respect to molecules, σAB, no matter how high or low their concentration, is the same as 
the supersaturation with respect to the ions, σA,B:

σAB = ∆µAB/kT =  ln aAB/KAB = ln (aAB/aAaB)(K/KAB) =  ∆µA,B/kT = σA,B,  KAB = 
exp[(µSAB-ψAB)/kT].                                                                                                         (8)

Therefore, adding the molecule AB as a new species for consideration, on top of the A 
and B, means replacing  ∆µA,B by the sum ∆µA,B + ∆µAB which is equivalent to just 
squaring the σA,B.  Thus, adding any species into which the crystal molecule, or unit cell, 
or any other group of molecules in the crystal may dissociate, means just taking power of 
the supersaturation relative to any of these species.   Therefore the log supersaturation are 
usually divided by the number of species to which the given solid dissociates [12].  For 
the two ions this normalized supersaturation is:

σA,B = ln (aAaB/K)1/2 = (1/2)ln(aAaB/K).                                (9)

The supersaturation, generalizing S and ∆a/ae is then, similar to eq.(5)

S = expσ = (Π/K)1/2 – 1 = (Π1/2 –K1/2)/K1/2.                                                                   (9’)                     

For a molecule or a growth unit if n species:

σ = ∆µ/nkT = (1/n)ln Πi
n ai /Kn,  Kn = exp[(µSA1A2…An - ψ1ψ2….ψn)/kT],  



S = expσ = (Π/K)1/n – 1 =  (Π1/n – K 1/n)/ K1/n.                                                              (10)

where Π denotes the product of activities from 1 to n and K is solubility product.  The 
product  SK1/n is analogous to ∆a.  

In laboratory practice, studying crystal growth kinetics, people often simply dissolve a 
dissociating salt in water, determine the equilibrium solubility, i.e. ae, and then use 
molecular relationships eqs.(1),(2),(3) for the driving force.  That works well because aA
= aB = squared equilibrium concentration so that eq.(9) is reduced to eq.(3) – ionic 
solution may be treated as a molecular solution.  However, composition and 
stoichiometry of solution may be violated by changing pH or adding excess of one of the 
ions.  In that case, the pseudomolecular  approach is not valid any more and the 
supersaturation σA,B averaged over the A and B should be used.  Similarly, in more 
complex systems, the driving force eq.(10) that presents the average supersaturation per 
one ion should be used.  The averaging, i.e. dividing  ∆µ by n, eq.(10) makes sense 
because, as it was mentioned above, supersaturation with respect to each of the ions 
involved is the same.  In addition, averaging is practically more convenient since it keeps 
the numbers expressing activity and solubility products within the reasonable range.  For 
instance, taking for the whole two hydroxyapatite formula units as they are present in the 
lattice unit cell as Ca10(HPO4)6(OH)2 and taking as A,B,… the ions Ca 2+ , HPO4

2-, and 
OH- ions  and calculating their solubility product with their concentrations in the 
corresponding powers 10,6, and 2 (18 species in total) one comes to K18 = 10117.3

(mol/L)18[12].  Averaging results in more convenient K = 106.5mol/L keeping the same 
sense.  It is, however it is a matter of kinetics how to determine kinetic coefficient, if any, 
to properly describe crystal face, step or kink rate or rate of nucleation with these 
different forms of supersaturation. 

The chemical potential difference, ∆µ, i.e. the log supersaturation, enters the nucleation 
work along with the volume ω of the growth unit this ∆µ is related to as the ratio ω3/∆µ2

for the 3D nucleation or as  ω2/∆µ for the 2D nucleation.  Because of these different 
exponents at the volume and at the ∆µ, normalization of ∆µ to the number of neither ions, 
nor molecules, nor molecules per lattice unit cell leaves the nucleation work invariant.  In 
other words, the nucleation work depends on our choice of the growth unit making the 
calculation about useless unless we know what these units are.   This is the problem of 
the growth units.  This problem exists also for the kink and step propagation rate.  It is 
generating many uncertainties in both the nucleation and growth analyses.  Therefore 
understanding of what definition of supersaturation is the most relevant for any specific 
case is important.   Vice versa, carefully measuring the relevant propagation rates, one 
may hope to get information on the growth units.  In what follows we will consider the 
kink kinetics.

3. KINK KINETICS.

3.1. Kink position.  The upper image in Fig 1 shows schematically kink position at the 
step in the simplest case of the so called Kossel crystal model.  This is just a simple cubic 
lattice (or its topological equivalent, like FCC or diamond lattice).  Thus each molecule in 



the bulk has six neighbors while the one in the kink position has three neighbors.  In a 
Kossel crystal, there are only one type of kinks, no matter what the crystal face is.  In the 
non-Kossel crystal, there are several types of kinks terminated by either different species 
e.g., ions, or by exactly the same molecules occupying not equivalent position in the 
lattice unit cell, as shown in the lower drawing in the Fig.1, or  both.  Different kink 
configurations possess different energies. 

Non-Kossel crystal
w±i

i = 3
3

1

2

w±

w+

b

c

w-
Kossel Crystal

Kink 
positions of 
a molecule

Figure.1. There is only one type of kinks at the step on the Kossel crystal and several 
types on the non-Kossel crystal l(see the text above).  A scheme allowing three possible 
non- Kossel kinks is shown. The frequency of attachment and detachment are w+ and w-, 
respectively.

On the Kossel crystal surface, detachment of a molecule from the kink does not change 
interfacial energy (so that chemical potential in the kink equals that of the crystal).  On 
the non-Kossel surface, this statement is correct only for the unit cells as a whole.  This 
property makes the kink position the gate to the crystal.  That is why its behavior is so 
important.  The kinks may be visualized by STM on conducting materials, like metals or 
semiconductors [16] or by AFM on proteins with their large molecules [10]. However, 
the temporal resolution is in the scale of a second at best.  Even with proteins, this is far 
too long as compared with the reciprocal frequencies of attachments and detachments.  
The average kink density, nevertheless, may be measured directly[16,17]. What is 
doable, is to measure step velocity, vst.  
3.2.  Molecular solution. For geometrical reasons, vst is just the product of the kink 
velocity, vk and the kink density along the steps, b/λ:

vst = (b/λ)vk,                                             (11)



where b is the kink depth (Fig.1) and λ is the average interkink distance.  We will briefly 
discuss the kink density in Sec.4.  The kink velocity is evidently 

vk = c(w+ - w-)     (12)

where w ± are the frequencies of attachments(+) / detachments(-) of the growth unit 
to/from the kink and c is the length per the growth unit in the crystal lattice along the step 
(Fig.1). 

The Gibbs distribution of statistical mechanics says that the probability to find a particle 
which chemical potential is µ in a state with the energy E equals to exp[(µ-E)/kT].  We 
now assume that this is an activated state on top of the potential barrier E that the growth 
unit must overcome to join the crystal at the kink.  In inorganic solutions, this barrier (10-
20kcal/mol [ 18,19]) is associated mainly with partial dehydration of a molecule 
attaching to the crystal or hydration of a detaching molecule (though there is no direct 
experimental proof).  In proteins, contribution from rotational entropy of big molecules 
and of water seems also to be significant.   If ν is the thermal vibration frequency of the 
growth unit, then 

w+ = νexp[(µL-E)/kT  ,   w- = νexp[(µS-E)/kT].                                                             (13)

The frequencies νexp (–E/kT) of the L→S and the S→L transitions are, on average, the 
same at equilibrium assuring the balance w+ = w-.  In that sense, one should more 
rigorously think on the chemical potential rather than on the energy E of species in the 
activated state on the top of the barrier E.  Here we ignore this difference.  Less formal 
reason for the equality between the L to S and S to L transition barrier is that the 
energetically lowest reversible hydration-dehydration path is the same in both directions.  
When the hydration-dehydration reaction is controlled by electron transition rather than 
molecular vibrations or arrival of species to the kink site, the frequency ν ~ kT/h where 
h= 6.63.10-27 erg.s is the Plank constant [20]. Substituting eqs.(13) into eq.(12), one 
obtains:

vk = νexp [(ψ-E)/kT]ω(a-ae) ≡ βk ω(a-ae),  where   βk ≡νexp [(ψ-E)/kT].                 (14)

The eq.(14) defines the kink kinetic coefficient βk.   Evidently, from eq.(11), kinetic 
coefficient for the step is 

βst = (b/λ)βk.                                                                                                                 (15)

The fundamental feature of eq.(14) is the linear relationship between the supersaturation 
∆a, eq.(1), and the kink rate.   This linearity follows from statistical independence of 
attachments and detachments at a kink.   As we shall see below, this feature, rigorously 
speaking, is missing when there are more than one type of the crystal building units in 
solution and the sequence of species in the lattice is strictly determined, say, by strong 
electrostatic interactions as in all ionic systems.  Eqs.(14) and (15) demonstrate also that 



the absolute supersaturation ∆a, eq.(1) is, unlike σ, eqs.(3) or (9), is  the one at which the 
linearity holds.  If the interkink distance, λ, is independent on supersaturation, the step 
velocity is also linear in ∆a. This should be the case if the kinks are generated by 
equilibrium thermal fluctuations at the rate strongly exceeding mutual annihilation of the 
kinks during growth.  

Last but not least, the activities a and ae are proportional to the solution concentrations, 
C(1/cm3).  Therefore, the eq.(14) with ∆a rather than the similar with the σ, eq.(3),  fits 
the important common sense that the growth rate is proportional to the density of 
crystallizing species in solution, more precisely, to ωC, the ratio of the solution to the
crystal molecular number density. The reason for that scaling is that the transition 
frequencies, eq.(13), are proportional to the exp(µ/kT) rather than to chemical potential 
itself and thus the frequency difference, eq.(12), scales as exp(∆µ/kT) rather than just ∆µ. 

3.3. Solution of dissociating molecules. Let us now consider the simplest NaCl type 
crystal built of two types of ions, A and B in solution containing only these ions.   
Though NaCl may be an example, ironically, for unknown reasons, nobody succeeded to 
grow any perfect alkali halide crystal from pure solution!.  For the binary crystal, there 
are four independent frequencies, w± A,B.  Then the kink velocity [21,22]

vk = 2c (w+Aw+B – w-Aw-B) / ( w+A + w+B + w-A + w-B)                      (16)

where now 2c means the length along the step per two species, A and B.  Each of the 
frequencies w±A,B has the form of eq.(13) .  While the attachment frequencies are 
expressed via the known activities of species in solution, the detachment frequencies are 
expressed via the product (aA.aB)e with any pair of activities at equilibriumand thus the 
ratio between the two may be chosen arbitrarily.  Alternatively, the transition frequencies 
follow from the unknown chemical potential on top of the activation barrier and vibration 
frequencies (cf.eq.(13)).  The transition frequencies, however, should depend mainly on 
the temperature and pressure, T and P, because the potential barrier height and vibration 
or electronic frequency, to the first approximation, should not depend on the solution 
composition.   Thus the missing ratio between the detachment frequencies may be 
expressed via a quantity g which depends only on T,P:

g(T,P) = w-A/w-B.    (17) 

Then, since w-Aw-B ~ K we have  aAe~ (Kg)1/2 and aBe ~ (K/g)1/2.  Analogously, 
introducing the measurable stoicimetric ratio r = aA/aB in solution, and the product of 
actual activities Π≡ aAaB the activities may be expressed as aA = (Πr)1/2, aB = (Π/r)1/2. 
Assuming then for simplicity that all the factors νexp(-E/kT) and ψ for +,-,A,B are equal 
to one another we obtain from eq.(16) [23]:

vk = ωνexp[ψA + ψB - E)/kT](aAaB – K)/[ (Πr)1/2 + (Π/r)1/2 + (Kg)1/2 + (K/g)1/2].  (18)

We arrive at the relationship for the kink rate of the structure similar to eq.(14).  The 
driving force replacing ∆a = a-ae is  ∆Π ≡ Π– K.   This is the difference between the 



products of the actual activities, Π,  and the equilibrium product, K, rather than activities 
of the molecule.  At aA =aB, eq.(18) is reduced to the eq.(14). This is the reason why 
treatment of growth kinetics for many ionic crystals in about stoichiometric solutions 
works well as if that is a molecular solution. 

Similarly to eq.(1), ∆Π comes  from the exponent exp(∆µ/kT) rather than from the 
difference in chemical potentials ∆µ = µLA +µLB - µSAB that leads to the log 
supersaturation, eqs.(3), (9).   However, the kink rate eq.(18) is neither proportional to 
∆Π nor to S= (Π/K)1/2 – 1 because of the denominator in eq.(18), except for the cases 
mentioned above.  Only at S >> 1, we may generally expect vk ~ Π1/2, i.e. to the 
concentration of ions.  Only at such high supersaturations, the kinetic coefficient may be 
taken as ωνexp[ψA + ψB - E)/kT], ignoring denominator in eq.(18).  

The non-linearity of vk dependence aA and aB on comes from the strict ABABA… order 
of species in the lattice, i.e. from correlations in selection kinetics– the attachments and 
detachments are not completely random. Rather, attachment of A is impossible unless B 
is in place. In other words, there exists cooperative interaction within the unit cell AB.

It is well known, however, that the growth rate of many dissociating salts may be treated 
as if only molecules are present in solution, i.e following eqs.(1),(3) and (12).  In 
particular, the step rate is often linear function of ∆a. We may guess that there is strong 
electrostatic coupling between cations and anions in solution.  Also, one may expect that 
activities of the cations and anions are automatically adjusted to be in stoichiometric 
relationship in the immediate vicinity of steps and kinks by the strict balance between the 
cations and anions entering the crystal.  More experiments are needed to reveal the 
factors that force ionic solutions to mimic behavior of the molecular solutions.  

The denominators in eqs.(16), (18) is responsible for dependence of the growth rate on 
solution stoichiometry.  Evidently, at  ∆Π = const, the kink rate should reach a maximum 
at some ratio r.  The simple reason comes again from the common sense – at low 
concentrations of either A or B this rate must be low and limited by the low probability of 
having an ion A near the kink if r << 1 or of the ion B at  r>> 1.  Position of the vk(r) 
maximum on the r-axis depends on the frequency factors dropped in eq.(18).   A 
maximum in the vst(r) was experimentally found in our AFM measurements of the step 
rates on calcium oxalate monohydrate CaC2O4.H2O assuming that only the Ca2+ and  
C2O4

2- are present in solution [23].  However, in this work the supersaturation was 
determined under the assumption of full dissociation and correction may change the 
result [24].  

If the lattice is built of three different species, A,B,C, the dependence of kink velocity on 
the attachment and detachment frequencies is calculated to be [23]:

vk = 3c (w+Aw+B w+C - w-A w-B w-C)/(w+A w+B + w+B w+C + w+C w+A
+ w-A w-B + w-B w-C + w-C w-A + w+A w-B + w+B w-C + w+C w-A).                        (19)



Here 3c is the length of the unit cell ABC along the step.  Making again use of eq.(13) it 
is easy to show that the numerator is proportional to the difference between the product 
of the actual activities of all species A,B, and C in solution and the solubility product of 
these species.  Denominator in eq.(19) is a sum of nine binary frequency products that is 
split into three groups of three products in each.  In the first group, each product includes 
only attachments, in the second - only detachments, and in the third - one attachment and 
one detachment frequency.  The pair of indices follow cyclic permutations of the contacts  
AB,BC,CA.   Following the same arguments we may conclude again that there is no 
linear dependence of the kink rate on supersaturation in any form reviewed above, ∆µ/kT 
or exp ∆µ/kT ~ Π - K.  However, at large supersaturations the denominator is the sum of 
terms proportional to Π2/3, (ΠK)1/3 and K2/3, so that at large Π and at K = const the kink 
rate scales as Π1/3.  This suggests, again, that taking supersaturation as expσ is the most 
relevant way for the kink and step kinetics.
It is a matter of future to identify the growth units and the dependence of the kink and 
step rates on the driving force and stoichiometry. 

4. KINKS AND GIBBS-THOMSON LAW
It is well known [1] that kink density on a step is ~ c.exp(ε/kT) where ε is the additional 
step energy associated with creation of this kink.  The kink energy may be estimated as 
the  step energy times the length per the growth unit of which removal creates two kinks 
of the opposite site.  Even more rough empirical estimate follows from measurements of 
the surface energy averaged over all crystal faces on the basis on nucleation data [25]:   

ε/kT  ≈ -0.272 lnCe (mol/m3) + 2.82.     (20)

A nucleus surface includes significant portion of  rounded edges and corners so that their 
lower free energy from this contribution to eq.(20) is large.  Also, nucleation in at least 
some of the numerous experiments summarized by eq.(20) may be heterogeneous.  
Therefore eq.(20) may be considered as a lower estimate.   The lower is solubility, the 
larger is the kink energy and therefore the lower kink density. On orthorhombic 
lysozyme, there have been observed extremely straight steps where the average distance 
between kinks was measured to be ~ 600nm, or ~100 lattice spacing [17].  We may 
expect that the interkink distance is large as compared to the lattice spacing on all steps 
strictly following crystallographic orientations with simple Miller indices.  Calcite and 
brushite are biominerals examples.  When development of a spiral step around outcrop of 
a screw dislocation was measured, it was found that the length of the critical step segment 
starting with which this segment propagates normal to itself  is of the order of the 
interkink distance [26].  It was found also that on brushite (CaHPO4.2H2O) reentrant 
corner expedite step propagation.  These finding put into question two basic assumptions 
of the current theory, BCF included: 1. Intensive thermal meandering of steps which is 
equivalent to the fast kink generation and applicability of the fluctuation dissipative 
theorem [20], 2. Applicability of the Gibbs-Thomson law (GTL) predicting the shift of 
the supersaturation above a short step segment or a small crystallite. These issues have 
been discussed in several publications [26, 27,28] and will not be discussed here in detail.  



However, two notes, highlighting simple physics of these still not wel studied phenomena 
should be made.  

The inapplicability of the GTL comes from the fact that, unlike in liquids,  the GTL in 
solids, is implemented only by step or surface fluctuations.  If these fluctuations are slow, 
as with a step possessing low kink density, the GTL implementation may take time 
longer that allowed by other processes on a surface growing at sufficiently high 
supersaturation.  This “high”, however seems to really low.
The supersaturation S, eq.(2) should be of the order of reciprocal length of the step 
segment measured in lattice spacing.  If this length is ~100, the GTL have enough tome 
to take effect only at S < 1%.

The reason why crystals (and solids in general) are so different from liquids is as follows.  
Information that a molecule, or an atom, or another growth unit attached to or detached 
from a liquid droplet surface is spread over the droplet quickly by capillarity surface 
waves and surface pressure equilibration.  On a small crystallite or on a step species 
sitting in one area of the surface do not “know” what happens on the other until a kink or 
a step arrive.  The latter process is orders of magnitude slower than the waves on liquid 
surface or pressure equilibration occurring at the speed of sound.  

These issues still need further experimental and theoretical analyses.

5.  CONCLUSIONS.

The supersaturation taken as the difference, ∆µ/kT, between actual and equilibrium 
chemical potentials of crystallizing species entering the growth unit enters the nucleation 
work. On the other hand, this is the exp(∆µ/kT) that enters the kink and thus the step rate 
of growth.  Strict order of species in the lattice gives rise to cooperativity within the unit 
cell.  Correlation between the type of species already present in the kink and the one that 
is supposed to be added induces non-linear dependence of the growth rate on the species 
activities and geometrical average of the product of the activities entering the growth 
unit.  This non-linearity is supposed to be minimized in stoichiometric solution by 
adjustment of the ionic activities in the immediate kink and step vicinity. 

References to our earlier work on steps with low kink density are made.  The capillarity 
driven shift of equilibrium predicted by the Gibbs-Thomson law over a short step 
segment with low kink density may have not enough time to be implemented - if other 
related processes on a surface proceed too fast.  For development of a polygonized spiral 
around screw dislocation, supersaturation as low as ~1% may be considered too high.     
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