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Abstract

The aim of this paper is the development of equilibrium and non-equilibrium exten-
sions of the quasicontinuum (QC) method. We first use variational mean-field theory
and the maximum-entropy formalism for deriving approximate probability distribu-
tion and partition functions for the system. The resulting probability distribution
depends locally on atomic temperatures defined for every atom and the corresponding
thermodynamic potentials are explicit and local in nature. The method requires an
interatomic potential as the sole empirical input. Numerical validation is performed
by simulating thermal equilibrium properties of selected materials using the Lennard-
Jones pair potential and the EAM potential and comparing with molecular dynamics
results as well as experimental data. The max-ent variational approach is then taken
as a basis for developing a three-dimensional non-equilibrium finite temperature ex-
tension of the quasicontinuum method. This extension is accomplished by coupling
the local temperature-dependent free energy furnished by the max-ent approximation
scheme to the heat equation in a joint thermo-mechanical variational setting. Results
for finite-temperature nanoindentation tests demonstrate the ability of the method to
capture non-equilibrium transport properties and differentiate between slow and fast
indentation.

1 Introduction

The aim of this paper is the development of equilibrium and non-equilibrium extensions of
the quasicontinuum (QC) method of Tadmor et al. [27] to finite temperature. A number of
finite-temperature extensions of QC have been proposed in the past within the framework
of equilibrium statistical mechanics and thermodynamics (cf, e. g., [7, 22]). Whereas these
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extensions are powerful and effective for application to equilibrium problems, e. g., systems
at uniform temperature, they cannot be applied to systems away from equilibrium such as
involving heat conduction, mass transport, and other non-equilibrium phenomena.

The path that we follow for deriving a non-equilibrium QC extension is as follows. In-
stead of resorting to equilibrium statistical mechanics, e. g., in the form of Gibbs canonical
ensemble, as in previous finite-temperature extensions of QC, we directly approximate the
probability density function of finding the system in a certain state, not necessarily an equi-
librium state. We do this by recourse to variational mean-field theory and the maximum-
entropy (max-ent ) formalism for deriving approximate probability distribution and partition
functions for the system. We envision systems of atoms whose state is defined by the po-
sition and linear momentum of each atom and that undergo Lagrangian dynamics defined
by an empirical interatomic potential. In formulating the variational mean-field model we
allow every atom to have its own local temperature and entropy, to be understood here as
parameters that determine the local statistics of the atom. The max-ent variational princi-
ple then supplies the most likely probability density function within the assumed mean-field
class and consistent with all constraints on the system (e. g., [28]) and, as a byproduct, the
dependence of the local atomic entropy on the local atomic temperature.

For simplicity, we restrict attention to macroscopic processes that are quasi-static. Under
these conditions, the net result of the max-ent procedure is to define a non-equilibrium free
energy depending on the positions and temperatures of all atoms. Conveniently, for sev-
eral interatomic potentials of interest, including Lennard-Jones (LJ) and Embedded-Atom
Method (EAM), the non-equilibrium free energy can be computed explicitly up to numer-
ical quadratures, and the result may be regarded as a temperature-dependent interatomic
potential. This structure greatly facilitates implementation, which is reduced to replacing
ordinary interatomic potentials by temperature-dependent ones.

For a given temperature field, the stable equilibrium configurations of the system follow
from free-energy minimization. The chief remaining step in the development of the method
therefore concerns the computation of the evolving temperature field. We accomplish this
by coupling the free-energy minimization problem to a diffusion form of the energy balance
equation. The proper form of the coupling is suggested by the variational formulation of
coupled thermo-mechanical problems of Yang et al. [30]. This framework ensures that the
coupled problem has a joint variational structure and, in particular, the time-discretized
problem entails the minimization of a joint potential of displacement and temperature. In
addition, the variational framework uniquely determines the precise manner in which me-
chanical work is converted into heat, a feature of the behavior of the system that must
be modeled in other approaches. The coupling of the free energy to the energy equation
introduces an empirical constant, namely, the heat conduction tensor, in addition to the
empirical interatomic potential. In particular, the heat conductivity in the model does not
follow as a result of the QC coarse-graining or any other form of upscaling of the molecular
dynamics. However, in metals the electronic density contributes significantly to the heat
conductivity and interatomic empirical potentials cannot possibly predict that property ac-
curately. Therefore, accounting for heat conduction empirically is justified, albeit somewhat
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expedient, in those materials.
It bears emphasis that at no time in this procedure equilibrium statistical mechanics is

invoked to define temperature and entropy or to determine the probability density function
of the system. In particular, as used here, the terms temperature, entropy and free energy
have non-standard meanings. Thus, unlike the conventional temperature and entropy de-
fined in equilibrium thermodynamics and statistical mechanics, the local temperatures and
entropies that arise in the present theory are parameters that the mean-field probability
density function is endowed with. For non-interacting atoms, the local temperatures and
entropies do indeed coincide with the equilibrium values of each one of the atoms regarded
as an isolated system in thermodynamic equilibrium, which justifies the use of terminology.
Likewise, the non-equilibrium free energy that arises in the present theory is defined formally
from the mean-field probability density function and reduces to the equilibrium free energy
of the system when the temperature field is uniform.

The plan of the paper is as follows: Section 2 provides a concise review of the fundamen-
tal postulates of statistical mechanics and the general framework for variational mean field
theories. In section 3, this variational formulation is used to obtain local max-ent probability
distribution functions for an atomistic system. The derivation of effective thermodynamic
potentials is presented in section 4. In section 5, we show some example calculations for
the Lennard-Jones pair potential and the EAM many-body interaction potential. Section
6 discusses the results for some numerical validation tests. Specifically, we calculate the
specific heat and the thermal expansion coefficient of argon and copper using the Lennard-
Jones potential, and the embedded-atom method potential, respectively and compare with
experimental data and molecular dynamics results. Next, we briefly review the static theory
of the quasicontinuum in section 7. Section 8 extends this framework to equilibrium ther-
modynamic processes. A convergence analysis of the method for homogeneous deformations
such as uniform thermal expansion is also presented. In section 9, we review the variational
formulation for coupled thermo-mechanical problems. Section 10 presents the details of the
non-equilibrium finite temperature formulation of the quasicontinuum method. Finally, in
section 11, results for some nanoindentation tests are discussed that demonstrate the ability
of the method to capture non-equilibrium transport properties and simulate slow and fast
microstructural evolution.

2 General framework

Let us consider a system of N atoms in configuration space X. Let q ∈ X ≡ R3N represent
the array of atomic positions and p ∈ Y ≡ R3N be the array of corresponding momenta.
Let qa ∈ R3 and pa ∈ R3 denote the position and the momentum of atom a. For simplicity
of subsequent calculations, let q and p be defined as mass-reduced coordinates. Then, the
Hamiltonian of the system is

H(q, p) =
1

2
|p|2 + V (q) , (2.1)

3



Y. Kulkarni and M. Ortiz 4

where V (q) is the potential energy of the system expressed through the use of appropriate
interatomic potentials. Thus, (q,p) denotes a point in the phase space X×Y . Any function
f(q,p) whose instantaneous value can be completely determined by the microstate, i.e., the
instantaneous positions and momenta of the atoms, is referred to as a phase function. Ac-
cording to a fundamental premise of statistical mechanics [3, 17, 28], there exists a function,
p(q,p) ≥ 0, known as the probability distribution function and interpreted as the probabil-
ity that the system be at point (q,p) in the phase space. Then, when the system attains
equilibrium, any macroscopic quantity can be computed as a phase average of an appropriate
phase function, f(q,p), where the phase average is defined with respect to p(q,p) as

〈f〉 ≡ 1

N !h3N

∫

Γ

p f dq dp , (2.2)

where we have used the following to simplify the notation:

dq dp ≡
N∏

a=1

3∏
i=1

dqaidpai .

Γ denotes the phase space and h is the Planck’s constant. The factor (N ! h3N)−1 arises from
taking the classical limit of the analog of the phase averaging operation in quantum mechan-
ics. It is also essential for the entropy to be extensive in classical statistical thermodynamics
[3, 17].

In order to develop an averaging scheme for the atomistic system at finite temperature,
the first step is to construct an appropriate probability distribution function which we ac-
complish by way of a mean field approximation as described in the next section. Mean
field theory was developed essentially as an approximation tool for facilitating a theoretical
treatment of critical phenomena such as phase transitions [2, 3, 17]. The basic idea is to
study one particle in the system and treat its interactions with the neighboring particles as
an average molecular field exerted by the atom’s environment. This significantly reduces
the degrees of freedom in the problem. The variational framework for deriving generalized
mean field theories is implemented as follows: First a simplified functional form with free
unspecified parameters is chosen as the trial probability distribution function. We denote
it by p. We also let the approximate free energy obtained using this trial function be Fp.
Since the effect of the ambience of a particle is approximated as a “mean field”, the particles
are treated as being statistically independent and hence the trial probability distribution is
obtained as a product of local probability distribution functions

p =
N∏

a=1

pa . (2.3)

As will be described in the next section, the trial functional form for p (q, p) may be derived
using the principle of maximum entropy. Then, the trial probability distribution function
that best approximates the actual probability distribution function is determined by mini-
mizing Fp with respect to the unspecified parameters in p. This claim is based on a result
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known as the Bogoliubov’s inequality, which states that the approximate free energy based
on any probability distribution provides an upper bound for the exact free energy of the
system [2]. That is,

F ≤ Fp (2.4)

for any p satisfying the basic properties of a probability distribution. The exact free energy
of the system, F , is defined by the relation [17]

e−βF = 〈 e−βH 〉 , (2.5)

where

β =
1

kBT
,

while Fp is obtained as a Legendre transformation of the internal energy as

Fp = Ep − T Sp (2.6a)

= 〈H 〉p + kBT 〈 log p 〉p (2.6b)

where we have made use of the statistical definitions of the internal energy and entropy of
the system. The temperature and entropy are related by the equilibrium relation

T =

(
∂E

∂S

)

q

(2.7)

For details of the proof of the inequality, we refer the readers to [2].

3 Local max-ent distribution

We now wish to determine a trial probability distribution function for the system under
consideration based on the principle of maximum entropy [10, 12, 31, 5]. To this end, we
define the global entropy of the system as postulated by Boltzmann

S = − kB

N !h3N

∫

Γ

p log p dq dp , (3.1)

where kB is the Boltzmann constant introduced as a proportionality constant. The principle
of maximum entropy is very well established in the field of statistical mechanics and has
its origin in the information-theoretical point of view of the notion of entropy. Information
theory was first introduced in statistical mechanics by Jaynes [10]. From this perspective,
entropy is defined as a measure of the uncertainty in the information about a system of
particles. For instance, let us consider a thought experiment of observing a given system at
an arbitrary instant of time. Any point (q,p) in the phase space accessible to the system
constitutes an outcome. Then, the entropy defined by eq. (3.1) is the uncertainty associated
with the experiment. The principle of maximum entropy then states that the least biased
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probability distribution function maximizes the entropy of the system subject to all the imposed
constraints or the information about the system which is already known.

Thus, our objective is to find the probability distribution that maximizes the entropy of
the system subject to certain constraints. First, the probability distribution should satisfy
the normalization condition

1

N !h3N

∫

Γ

p dq dp = 1 , (3.2)

Suppose in addition that we have additional knowledge of the configuration of the ensemble.
In particular, suppose that we know that atom a moves in the vicinity of point q̄a with
standard deviation

√
3 τa and has momentum in the vicinity of p̄a with standard deviation√

3 σa. Thus, q̄a and p̄a are the mean position and the mean momentum of atom a defined
as the first moment of qa and pa, respectively,

〈 qa 〉 = q̄a , 〈pa 〉 = p̄a , ∀ a = 1, . . . , N . (3.3)

Physically, q̄a and p̄a may be interpreted as variables on the continuum scale following the
dynamics of the system on the macroscopic time scale. For instance, for a quasistatic process,
p̄ = 0 and q̄ represents an equilibrium configuration of the system. Taking second moments
of qa and pa introduces the following constraints:

〈|qa − q̄a|2〉 = 3τ 2
a , ∀ a = 1, . . . , N , (3.4a)

〈|pa − p̄a|2〉 = 3σ2
a , ∀ a = 1, . . . , N . (3.4b)

The factor of 3 is included merely to keep the subsequent expressions simple and to moti-
vate the physical interpretation of these parameters. In order to simplify the interpretation
further, we replace the parameter τa by ωa defined as

ωa =
σa

τa

, (3.5)

and having the unit of frequency. Since σa and ωa are defined as phase averages, they are
also macroscopic variables. As we shall see in section 4.5, they establish a link between the
energetics of the microscopic scale and the thermodynamic quantities. Using the expression
for ωa in eq. (3.4a) and adding the resulting equation to eq. (3.4b), we have

〈|pa − p̄a|2〉+ ω2
a 〈|qa − q̄a|2〉 = 6σ2

a , ∀ a = 1, . . . , N . (3.6)

Introducing the N + 1 constraints given by eq. (3.2) and eq. (3.6) as Lagrange multipliers
[16], the extremum problem may be stated as

sup
p
− kB

N !h3N

∫

Γ

p log p + pλ + p

N∑
a=1

βa

[|pa − p̄a|2 + ω2
a|qa − q̄a|2

]
dq dp , (3.7)

where λ corresponds to eq. (3.2) and the N Lagrange multipliers βa correspond to eq. (3.6).
Taking the variation of eq. (3.7) with respect to p and enforcing stationarity yields the desired
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probability distribution function

p(z|z̄, {σ}, {ω}) = Z−1 exp

[
−

N∑
a=1

βa{|pa − p̄a|2 + ω2
a|qa − q̄a|2}

]
, (3.8)

where Z = exp [1 + λ] is known as the partition function of the system. For economy
of notation, we have also introduced z ≡ (q,p) to denote the microstate and z̄, {σ} and
{ω} to represent the corresponding arrays of macroscopic variables. Thus, z̄ ≡ (q̄, p̄) and
{σ}, {ω} ∈ RN . “|” is used to separate the microscopic and the macroscopic variables. Z
may be evaluated analytically by substituting eq. (3.8) in eq. (3.2). The integration yields

Z =
1

N !h3N

N∏
a=1

(√
π

βa

)3 (√
π

βa

1

ωa

)3

. (3.9)

By substituting eq. (3.8) in either eq. (3.6) or eq. (3.4b) and using eq. (3.9) we obtain the
Lagrange multipliers as

βa =
1

2σ2
a

. (3.10)

The final expressions for the max-ent probability distribution and partition function are

p(z|z̄, {σ}, {ω}) = Z−1 exp

[
−

N∑
a=1

|pa − p̄a|2 + ω2
a|qa − q̄a|2

2σ2
a

]
, (3.11a)

Z =
1

N !h3N

N∏
a=1

(√
2πσa

)3
(√

2π
σa

ωa

)3

. (3.11b)

It may be striking to note that p and Z do not depend on the interaction potential of the
system. However, the dependence is implicit in the {ω} which are unspecified so far. We
also observe that owing to the local constraints, the global partition function and probability
distribution are derived naturally as products of terms associated with each atom. This
enables us to write eq. (3.11a) and eq. (3.11b) as

p(z|z̄, {σ}, {ω}) =
N∏

a=1

pa(za | z̄a, σa, ωa) , (3.12a)

Z =
N∏

a=1

Za . (3.12b)

We wish to emphasize that the local-equilibrium hypothesis [12, 31, 5] is implicit in the
statement of the constraints, (3.4a) and (3.4b), and forms a basis of all our later work.
It postulates that if a system can be hypothetically split into subsystems, each very close
to thermal equilibrium, then the thermodynamic relations hold within each cell. Thus, it
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assumes the existence of two relaxation times – the relaxation time for the establishment
of statistical equilibrium in the whole system and another, much shorter, for establishing
equilibrium within a small cell. This enables a rigorous definition of thermodynamic state
variables such as temperature and entropy locally. Hence, the local-equilibrium hypothesis
forms a fundamental premise of classical irreversible thermodynamics. Likewise, in our
approach, it enables us to define phase averages locally and also introduce atomic notions of
entropy and temperature.

The constraints also distinguish the max-ent distribution from the canonical distribution
of Gibbs in that the latter is derived by imposing a constraint on the global energy of the
system. For a system in thermal equilibrium, this may be stated as

〈H(q,p) 〉 = E , (3.13)

where H is the Hamiltonian, and E the total internal energy of the system. The resulting
probability distribution function has the form

p(q,p) = Z−1 exp

[
− H

kBT

]
. (3.14)

This form may also be used to derive local thermodynamic quantities by assuming local
thermal equilibrium [12]. However, due to the difficulty of integrating this function in the
case of anharmonic interaction potentials, the partition function and the thermodynamic
potentials may be obtained analytically only for the harmonic approximation. In contrast,
the probability distribution function given by (3.11a) involves Gaussian functions. Conse-
quently, the phase averages may be computed analytically for many functions, or at least
numerically by Gauss quadrature while retaining the anharmonic effect of the interatomic
potentials in the macroscopic thermodynamic properties.

We also note that in this process of determining a simplified solution for the probability
distribution by imposing additional constraints, we have introduced into the problem 2N
additional unknowns, {σ} and {ω}, referred to as the mean field parameters. Based on
the variational theory of mean field approximation outlined earlier, these parameters are
determined by minimizing the free energy of the system.

4 Thermodynamic potentials

Having constructed a suitable probability distribution, we can obtain the local forms of the
desired thermodynamic potentials, namely, the entropy, the internal energy, and the free
energy as described below.
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4.1 Entropy

Substituting eq. (3.11a) and eq. (3.11b) in the expression (3.1), the integral for the global
entropy evaluates to

S = kB

[
− log N ! + 3N + 3

N∑
a=1

log
σ2

a

~ωa

]
. (4.1)

For a system with a very large number of particles, we use Sterling’s formula [3]

log N ! ≈ N log N −N (4.2)

to reduce eq. (4.1) to

S = kB

[
−N log N + 4N + 3

N∑
a=1

log
σ2

a

~ωa

]
. (4.3)

Since entropy is an extensive property of the system,

S ≡
N∑

a=1

Sa , (4.4)

where

Sa = 3kB log
σ2

a

~ωa

+ 4kB − kB log N (4.5)

can be interpreted as the contribution of atom a to the total entropy. The relation (4.5) can
be inverted to yield

σa =
√
~ωa exp[

Sa

6kB

− 4

6
+

1

6
log N ] . (4.6)

This is an explicit expression for σa, and we use it henceforth to replace σa by a function of
Sa and ωa.

4.2 Internal energy

In order to derive the internal energy of the system, we suppose that the atoms move ac-
cording to a Hamiltonian H(z). Then, the internal energy is defined as the phase average of
the Hamiltonian of the system [28]. Suppose that the Hamiltonian has an additive structure

H(z) =
N∑

a=1

Ha(z) , (4.7)

and let Ha(z) be of the form

Ha(z) =
1

2
|pa|2 + Va(q) . (4.8)
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Then, the expression for the internal energy becomes

E(z̄, {S}, {ω}) =
1

N !h3N

N∑
a=1

∫

Γ

[
1

2
|pa|2 + Va(q)

]
p (z|z̄, {S}, {ω}) dq dp . (4.9)

The phase average of the kinetic energy can be computed analytically atom by atom and
reduces to

〈1
2
|pa|2〉 =

1

2
(3σ2

a + |p̄a|2) . (4.10)

Unlike kinetic energy, the integration of Va(q) involves all the neighbors of atom a, and in
most cases, cannot be computed analytically. Traditionally, the harmonic approximation
is used in order to facilitate analytical calculations. However, in our approach, the phase
integrals may be computed numerically even for anharmonic potentials by way of Gauss
quadrature, and we defer the discussion on the numerical integration of the potential energy
till section 5. Thus, for a system undergoing a quasistatic process, the internal energy has
the form

E(q̄, {S}, {ω}) =
3

2

N∑
a=1

~ωa exp[
Sa

3kB

− 4

3
+

1

3
log N ] +

N∑
a=1

〈Va(q) 〉 , (4.11)

where we have made use of eq. (4.6) to replace σ2
a.

4.3 Equipartition of energy

The equipartition of energy is a fundamental result of statistical mechanics which states
that for a system in thermal equilibrium, each quadratic term in the Hamiltonian contributes
kBT/2 to the mean Hamiltonian or the internal energy of the system, where the phase average
is taken with respect to the canonical distribution [28]. In the max-ent method, we enforce
the equipartition of energy through the local kinetic energy as

〈1
2
|pa|2〉 =

3

2
kBTa . (4.12)

Comparing this relation with eq. (4.10) for a quasi-static process yields a direct interpretation
of σa in terms of the local temperature:

σ2
a = kBTa (4.13)

Using this definition of σa in eq. (4.5) gives an equilibrium relation between the local entropy
and the local temperature:

Sa = 3kB log
kBTa

~ωa

+ 4kB − kB log N . (4.14)

As we shall see later, although the above expression is local, it is not independent of the
atom’s surrounding since ωa contains the effect of the interactions of the atom with its
neighbors.

10
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4.4 Helmholtz free energy

The Helmholtz free energy is defined as a Legendre transformation of the internal energy
with respect to the entropy:

F (q̄, {T}, {ω}) = inf
{S}

{
E(q̄, {S}, {ω})−

∑
a

TaSa

}
. (4.15)

The minimization with respect to Sa yields the equilibrium relation

Ta =
∂E

∂Sa

(q̄, {S}, {ω}) . (4.16)

Other thermodynamic potentials such as the Gibbs free energy and the enthalpy of the
system may similarly be derived by appropriate Legendre transformations [3, 16]. We also
recall that the optimal value of the mean field parameters that we introduced can now be
determined by minimizing the free energy. Thus, the complete problem of ascertaining the
equilibrium configurations of a system undergoing a quasistatic process at finite temperature
may be enunciated as

inf
q̄

inf
{ω}

F (q̄, {T}, {ω}) , (4.17)

where F is the Helmholtz free energy of the system evaluated above.
As a concluding remark, we note that for a dynamic process, i.e., with p̄ 6= 0, the mini-

mization problem may be replaced by the canonical equations derived from the macroscopic
Hamiltonian:

˙̄q =
∂H̄

∂p̄
; ˙̄p = −∂H̄

∂q̄
, (4.18)

where H̄ = 〈H 〉. However, we shall not pursue this direction in our current work and shall
restrict ourselves to quasistatic processes.

4.5 Interpretation of the mean field parameters

In this section we investigate the connection between our approach and statistical mechanics
in order to obtain an interpretation of the mean field parameters. To this end, we consider a
quasi-harmonic approximation for the potential energy of the system about an equilibrium
configuration. By further assuming weak interactions between the atoms, the potential
energy may be reduced as

V (q) ≈ V (q̄) +
∑

a

1

2
xT

a Ka(q̄)xa =
∑

a

Va(q) , (4.19)

where Ka is the 3× 3 local dynamical matrix associated with each atom and defined as

Ka(q̄) =
∂2V

∂q2
a

∣∣∣∣
qa=q̄a

. (4.20)
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and
xa = qa − q̄a .

This is known as the local quasi-harmonic approximation. It assumes the system to be in
weak interaction so that each atom is regarded as a harmonic oscillator with its neighbors
fixed at their current mean positions. This approximation is found to be adequate for
temperatures up to half the melting point of the material [18]. We note that the coupling of
an atom with its neighborhood is retained through the dependence of the local dynamical
matrix on the macroscopic variables q̄. Then, the phase average of the potential energy may
be computed analytically as

〈Va〉 = Va(q̄) +
1

2

σ2
a

ω2
a

Tr Ka(q̄) . (4.21)

where Tr denotes the trace of the matrix. On substituting the above in eq. (4.11) the internal
energy of the system becomes

E(q̄, {S}, {ω}) =
∑

a

Va(q̄) +
∑

a

1

2

[
3 +

1

ω2
a

Tr Ka(q̄)

]
hωa

2π
exp[

Sa

3kB

− 4

3
+

1

3
log N ] , (4.22)

The equilibrium relation (4.16) yields

Ta =
1

6kB

[
3 +

1

ω2
a

TrKa(q̄)

]
hωa

2π
exp[

Sa

3kB

− 4

3
+

1

3
log N ] . (4.23)

We invert the above relation to obtain Sa in terms of Ta. Substituting it in eq. (4.22) gives
the internal energy as a function of the local temperatures:

E(q̄, {T}, {ω}) = V (q̄) +
∑

a

3kBTa , (4.24)

which is a well known result from statistical mechanics in agreement with the equipartition
of energy. By substituting these expressions for the internal energy and the entropy as
functions of the temperature in eq. (4.15), the free energy becomes

F (q̄, {T}, {ω}) = V (q̄)−3kB

∑
a

Ta

[
log

6kBTa

~
− log

{[
3 +

1

ω2
a

TrKa(q̄)
]
ωa

}
+

4

3
− 1

3
log N

]
.

(4.25)
Minimizing F with respect to ωa gives

ω2
a =

1

3
TrKa =

1

3

3∑
i=1

ω̄2
ia(q̄) , (4.26)

where ω̄ia denotes the three frequencies associated with the atom a. This implies that for a
quasi-harmonic approximation, ω2

a equals the arithmetic mean of the squares of the quasi-
harmonic frequencies associated with that atom. Furthermore, substituting this in eq. (4.23)
verifies that at equilibrium

σ2
a = kBTa , (4.27)
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as derived in section 4. Thus, for a system with a general anharmonic potential energy, ωa

provides an approximate average of the local frequencies of the atom a. This is an important
result since it reveals the physical nature of the parameters ωa and confirms that the arrays
{ω} and {σ} establish a link between the energetics of the microscopic dynamics and the
effective macroscopic energy of the system.

As a closing remark, we would like to mention that for a perfect, infinite, isotropic crystal
with a local quasi-harmonic approximation which is subjected to uniform temperature, the
max-ent probability distribution and the thermodynamic potentials are identical to those
furnished by the Gibbs canonical distribution [15].

5 Phase averages by Gauss quadrature

Sections 3 and 4 describe the procedure for arriving at temperature-dependent effective
potentials based on the local max-ent approximation scheme. Recalling eq. (4.11), we now
wish to evaluate the phase average of the potential energy V (q). To this end, we suppose
that each function Va(q) involves a small number of neighboring atoms. Then, the integrals
in 〈Va(q) 〉 are likewise of small dimensionality and can effectively be computed by means of
Gaussian quadrature, i.e., with integration points and weights corresponding to a Gaussian
weight function. This is due to the specific form of the max-ent probability densities. We
begin by considering an n-body interaction potential, φ(q1, . . . , qn). The expectation value
of this function is computed as

〈φ(q1, . . . , qn)〉 =
1

N !h3N

∫

Γ

φ(q1, . . . , qn)
n∏

a=1

pa dpa dqa (5.1a)

=

(
1√
π

)3n ∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̃(x1, . . . , xn) exp(−|x1|2 − · · · − |xn|2) dx1 · · · dxn ,

(5.1b)

where
φ̃(x1, . . . , xn) = φ(q1(x1), . . . , qn(xn)) .

Eq. (5.1b) is the result of a change of variables:

xa =
1√
2

ωa

σa

(qa − q̄a) . (5.2)

The multiple integral in eq. (5.1b) is of dimension 3n and may be computed by using the
Hermite-Gauss quadrature rule appropriate for the dimension of the space [25, 8]. An M -
point quadrature reduces the integral to

〈φ(q1, . . . , qn)〉 ≈
(

1√
π

)3n M∑

k=1

φ̃(ξk)Wk , (5.3)

13
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where k denotes a quadrature point in phase space, Wk is the corresponding weight and ξ is
a vector of dimension 3n:

ξ = (x1, . . . , xn) ∈ R3n . (5.4)

In our calculations, we use quadrature rules for multiple integrals developed by Stroud
[25, 24]. A limiting factor in the choice of quadrature formulae is the dimension of the
domain of integration which is the configurational phase space of the interacting atoms.
Thus, for a pair potential, we may use 3rd and 5th degree quadrature rules whereas for many-
body potentials, we are restricted to 3rd degree quadrature. An overview of the quadrature
rules is presented in Appendix A.

Thus, the max-ent distribution provides a way to compute an approximate internal en-
ergy of the system, which should be exact for up to 3rd or 5th order Taylor expansion of
the potential energy about an equilibrium configuration. An important implication of this
higher order approximation is the ability to account for the anharmonicity of the interaction
potential in studying the thermodynamic behavior of materials.

We now demonstrate the above calculations for the Lennard-Jones pair potential and the
embedded atom method involving many-body interactions. Since our goal is the minimiza-
tion of free energy, we also provide the expressions for the derivatives of the energy with
respect to the atomic positions and the mean field variables, {ω}. We also remark that these
are mere examples to illustrate the generality of applying the max-ent distribution to any
empirical interatomic potential and crystal structure.

5.1 Lennard-Jones potential

The phase average of the potential energy based on the Lennard-Jones pair potential is of
the form

〈V 〉 =
1

2

∑
a

∑

b

〈φ(rab)〉 , (5.5)

where
φ(r) = 4ε

[
(
σ

r
)12 − 2(

σ

r
)6

]
(5.6)

represents the bond energy and rab denotes the distance between atoms a and b. Typically,
b denotes the nearest neighbors of atom a. Since the potential involves only pairwise in-
teractions, the phase averages can be computed over individual bonds involving two atoms.
Consequently, the dimension of the domain of integration is 6. Applying the change of
variables given in eq. (5.2), we have

rab = |qa − qb| (5.7a)

= |
√

2
σa

ωa

xa −
√

2
σb

ωb

xb + q̄a − q̄b| . (5.7b)

Then, the energy of each bond calculated by quadrature is

〈φ(rab)〉 ≈
(

1√
π

)6 M∑

k=1

˜φ(ξk)Wk . (5.8)

14
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Taking the derivative of the energy with respect to the atomic positions yields

∂

∂q̄a

〈V 〉 =
∑

b

∂

∂q̄a

〈φ(rab)〉 (5.9a)

=

(
1√
π

)6 ∑

b

M∑

k=1

φ′(rab(ξk))
rab

rab

Wk , (5.9b)

where prime denotes differentiation with respect to r. Taking the derivative of the internal
energy with respect to ωa yields

∂

∂ωa

〈V 〉 =
∑

b

∂

∂ωa

〈φ(rab)〉 (5.10a)

= − 1√
2

(
1√
π

)6 ∑

b

M∑

k=1

σa

ω2
a

φ′(rab(ξk))

rab

[rab · xk
a] Wk (5.10b)

and
∂

∂ωa

〈1
2
|pa|2〉 =

3

2
~ exp[

Sa

3kB

− 4

3
+

1

3
log N ] , (5.11)

where eq. (5.11) gives the contribution of the kinetic energy.

5.2 EAM potential

The potential energy based on the embedded-atom method [4, 11] is of the form

V =
∑

a

F (ρa) +
1

2

∑
a

∑

b

φ(rab) . (5.12)

In addition to a pair potential, we now have a term F (ρa) for each atom, which is known as
the embedding function and which depends on the electron density at site a due to all its
neighbors. Here, we present the expressions only for the embedding term. Let us define

V2 =
N∑

a=1

F (ρa) . (5.13)

Then,

〈V2〉 =
N∑

a=1

〈F (ρa) 〉 =
N∑

a=1

(
1√
π

)3n M∑

k=1

F (ρa(ξk)) Wk , (5.14)

where n includes the atom a and its contributing neighbors. For an fcc crystal with nearest-
neighbor interactions, n = 13 for an atom having all its neighbors. The derivative of 〈V2〉

15
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with respect to the atomic positions is of the form

∂

∂q̄a

〈V2〉 =

(
1√
π

)3na ∑

b

Ma∑

k=1

F ′(ρa(ξk))f
′(rab(ξk))

rab

rab

Wk

+
∑

b

(
1√
π

)3nb Mb∑

l=1

F ′(ρb(ξl))f
′(rab(ξl))

rab

rab

Wl ,

(5.15)

where

F ′ =
dF

d ρ
, f ′ =

d f

d r
.

Similarly, the derivative of 〈V2〉 with respect to the local mean field parameters is

∂

∂ωa

〈V2〉 = − 1√
2

(
1√
π

)3na σa

ω2
a

∑

b

Ma∑

k=1

F ′(ρa(ξk)) f ′(rab(ξk)) [rab · xk
a] Wk

− 1√
2

∑

b

(
1√
π

)3nb σa

ω2
a

Mb∑

l=1

F ′(ρb(ξl)) f ′(rab(ξl)) [rab · xl
a] Wl .

(5.16)

In eq. (5.15) and eq. (5.16), na is the total number of atoms in the neighborhood of atom
a, and Ma is the number of quadrature points used to compute the phase average 〈F (ρa)〉.
Using the 3rd degree quadrature formula for an atom in an fcc crystal with all its nearest
neighbors present requires 78 quadrature points.

It bears emphasis that although ω is introduced as a local parameter associated with
each atom, eq. (5.10b) and eq. (5.16) show that the minimization of the free energy with
respect to ωa cannot be achieved atom by atom. This reaffirms the non-local nature of {ω},
indicating that it is related to the atomic interactions.

6 Numerical validation

For the purpose of numerical validation, we present our calculations of the specific heat and
the coefficient of thermal expansion for solid argon and copper. Solid argon is modelled
using the Lennard-Jones pair potential whereas two different potentials are used for copper,
namely, the EAM potential proposed by Johnson [11] and another proposed by Sutton and
Chen [26], both of which are based on the embedded-atom method [4].

The sample used for these tests is a cube of an fcc crystal consisting of 108 atoms with
periodic boundary conditions. The crystal is assumed to be perfect and isotropic. Only the
first nearest-neighbor interactions are considered. Since the crystal, subjected to a uniform
temperature, undergoes a uniform thermal expansion, we use the change in lattice parameter
as the only mechanical degree of freedom for the whole system.
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Figure 6.1: Change in internal energy of a perfect infinite Lennard-Jones crystal under NVT
conditions based on the max-ent method using 3rd and 5th degree quadrature rules. The material
used is solid Ar.

6.1 Specific heat

The specific heat of a system in thermal equilibrium at constant volume is defined as [28]

Cv =
1

N

∂E

∂T

∣∣∣∣
V

(6.1)

where N is the number of atoms in the crystal. Cv is evaluated as the instantaneous slope of
the internal energy versus temperature curve which is obtained by fixing the configuration
at the initial state and equilibrating the system at the prescribed temperature T . The
minimization problem becomes

min
ω∈R

F (a0, T, ω) . (6.2)

The results are compared with experimental data [6] as well as the classical law of Dulong
and Petit which yields

Cv = 3kB (6.3)

irrespective of the material. Figures 6.1 and 6.2 show that the max-ent predictions for
Cv are in very good agreement with the Dulong and Petit model at low and intermediate
temperatures. The deviation from experimentally observed values at low temperature range
is expected as the quantum mechanical effects dominate. As the temperature increases
and approaches the melting temperature (Ar: 83 K, Cu: 1337 K), the anharmonic terms
dominate and the predicted Cv begins to deviate from 3kB as expected. Figure 6.1 also

17
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Figure 6.2: Change in internal energy of a perfect infinite Cu crystal under NVT conditions based
on the max-ent method using Sutton-Chen and EAM-Johnson potentials.

shows that the results are consistent in the sense that the the 3rd degree quadrature rule
always predicts higher energy than the 5th degree quadrature and is closer to the Dulong
and Petit model. From figure 6.2, very little difference is observed between the results based
on the EAM-Johnson potential and the Sutton-Chen potential.

6.2 Thermal expansion

The thermal expansion test is performed by prescribing a uniform temperature T and equi-
librating the sample under isothermal conditions. The minimization problem becomes

min
a∈R

min
ω∈R

F (a, T, ω) (6.4)

where a is the lattice parameter at temperature T . The minimization is performed using the
non-linear version of the conjugate gradient method. The coefficient of linear thermal expan-
sion is then given by the instantaneous slope of the thermal expansion versus temperature
curve:

α(T ) =
∂ε

∂T
where ε =

a

a0

− 1 . (6.5)

Figure 6.3 shows the thermal expansion of solid argon with temperature based on the
max-ent approach using different quadrature rules and compared with MD simulations [29]
and experimental data [21]. Since the max-ent method and molecular dynamics are both
based on classical theory, they cannot capture the low temperature behavior, as observed in
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Figure 6.3: Thermal expansion of a perfect infinite Lennard-Jones crystal based on the max-
ent method using 3rd and 5th degree quadrature rules. The material used is solid Ar.

the experiments, which is governed by quantum effects. The results clearly indicate that the
max-ent approach provides a significant improvement over the quasi-harmonic approximation
with increasing degree of quadrature both in terms of accuracy as well as the range of
temperature.

Figures 6.4 and 6.5 show the thermal expansion of Cu with temperature based on
the Sutton-Chen potential and the EAM-Johnson potential, respectively, using 3rd degree
quadrature. The choice of the former was dictated by the availability of molecular dynamics
results in the work of Çağin et al [1]. The experimental data for thermal expansion is shown
only for T > 300 where linear dependence on temperature is observed.

The max-ent curve in figure 6.4 shows a considerable improvement over the prediction of
the local quasi-harmonic approximation at high temperatures and a good agreement with the
MD results. However, since the results for the max-ent approach and molecular dynamics
simulations are not in close agreement with experimental data, it is indicative of a limitation
of the Sutton-Chen potential to model thermal properties rather than that of the proposed
method. This is also observed by Çağin and coworkers [1]. On the contrary, figure 6.5
shows an excellent agreement of the max-ent results with experimental observations for
the range of temperatures for which classical theory is valid [20]. This suggests that the
EAM potential proposed by Johnson does better in predicting thermal properties than the
potential proposed by Sutton and Chen.

Finally, we note that unlike in the case of the Lennard-Jones potential, the 3rd degree
quadrature works very well for the EAM-type potentials and hence suffices for the purpose of
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Figure 6.4: Thermal expansion of a perfect infinite Cu crystal based on the max-ent method with
3rd degree quadrature. The results are based on the Sutton-Chen potential.

these calculations. This could, probably, be an effect of considering many-body interactions
in the latter as opposed to pairwise interactions in the former. This is also suggested by the
better agreement of EAM potential results with experiments and MD results as compared
to those obtained using the Lennard-Jones potential.

This completes the overview of the max-ent approximation scheme. Although the method
eliminates the dependence of the energy, E(q̄, {S}, {ω}), on the microstate, the problem of
determining the equilibrium configurations of the system still involves minimization over all
atomistic degrees of freedom, q̄ ∈ R3N , {S} ∈ RN , and {ω} ∈ RN . We now seek to alleviate
this task by coarse-graining the atomistic description in space using the framework of the
quasicontinuum approach which we describe subsequently.

7 Quasicontinuum method

The chief objective of the quasicontinuum method is to systematically coarsen an atomistic
description by the judicious introduction of kinematic constraints. These kinematic con-
straints are designed so as to preserve full atomistic resolution where required and to treat
collectively large number of atoms in regions where the deformation field varies slowly on
the scale of the lattice. Although different versions of the theory have been developed and
documented [27, 19], here we review the three-dimensional version of the static quasicontin-
uum method developed by Knap and Ortiz [14] for zero temperature conditions, which we
shall extend to the finite temperature case.
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Figure 6.5: Thermal expansion of a perfect infinite Cu crystal based on the max-ent method with
3rd degree quadrature. The results are based on the EAM-Johnson potential.

We consider a crystal with N atoms in reference configuration occupying a subset L of
a simple d-dimensional Bravais lattice. Denoting the basis vectors by {ai ; i = 1, . . . d}, the
reference coordinates of the atoms are

X(l) =
d∑

i=1

liai, l ∈ Z ⊂ Rd . (7.1)

l are the lattice coordinates associated with individual atoms, Z is the set of integers, and
d is the dimension of space. We define q ∈ X ≡ RNd as the array of atomic positions in the
deformed configuration, where X denotes the configuration space of the crystal. We shall
also use q(l), l ∈ L to denote the coordinates of an individual atom.

At zero temperature, since the atoms do not exhibit thermal oscillations, the energy of
the crystal is a function E(q) expressed through the use of interatomic potentials. In the
case of applied loads, we assume them to be conservative and to derive from an external
potential Φext(q). Hence, the total potential energy is

Φ(q) = E(q) + Φext(q) . (7.2)

In addition, the crystal may be subjected to displacement boundary conditions over parts of
its boundary. Then, the problem of determining the metastable equilibrium configurations of
the system is a problem of seeking the local minima of the energy functional Φ(q), consistent
with the essential boundary conditions. This may be stated as

min
q∈X

Φ(q) . (7.3)
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For systems with a very large number of atoms, this minimization problem presents a sig-
nificant computational burden. The essence of the theory of the quasicontinuum lies in
replacing eq. (7.3) by an approximate minimization problem having the flexibility of pre-
serving atomistic resolution in the regions of interest and treating atoms collectively where
deformations are slow varying on the scale of the lattice. There are three key components
of the quasicontinuum framework that impart the method its capabilities. We review these
below.

Constrained minimization

The problem specified by eq. (7.3) is first replaced by a constrained minimization of Φ(q) over
a suitably chosen subspace Xh of X. Xh is constructed by selecting a reduced set Lh ⊂ L of
Nh < N representative atoms or nodes. The selection is done based on the local variation in
the deformation field. Introducing a triangulation Th over Lh, the positions of the remaining
atoms are determined by piecewise linear interpolation of the nodal coordinates

qh(l) =
∑

lh∈Lh

ϕ(l|lh)qh(lh) , (7.4)

where ϕ(l|lh) denotes the continuous and piecewise linear shape function associated with the
representative atom, lh ∈ Lh, evaluated at the point X(l). Its domain is restricted to the
simplices K ∈ Th incident on lh, and it satisfies

ϕ(l′h|lh) = δ(l′h|lh) (7.5a)∑

lh∈Lh

ϕ(l|lh) = 1 , (7.5b)

where δ is the Dirac delta function. Eq. (7.5b) ensures that a constant field is interpolated
exactly by the basis functions. The constrained minimization problem may now be stated
as

min
qh∈Xh

Φ(qh) . (7.6)

The corresponding reduced equations of equilibrium are

fh(lh) =
∑

l∈L

f(l) ϕ(l|lh) = 0 , (7.7)

where

f(l) =
∂Φ

∂q(l)
(q) . (7.8)

Sampling over clusters

For a large crystal, performing full lattice sums as required in (7.7) is also an expensive com-
putation. This difficulty is circumvented by sampling the behavior of the crystal over clusters
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(a) (b)

Figure 7.1: Clusters of atoms in the triangulation Th of the crystal. a) Non-overlapping clusters.
b) Merging of overlapping clusters.

of atoms around the representative atoms, as shown in Figure 7.1. This is demonstrated as
follows. Let C (lh) be a cluster of lattice sites within a sphere of radius r(lh) centered at the
node lh. That is,

C (lh) = {l : |X(l)−X(lh)| ≤ r(lh)} . (7.9)

Let g(l) be a lattice function whose sum over the lattice is

S =
∑

l∈L

g(l) . (7.10)

Then, the cluster summation rule approximates S by

S ≈ Sh =
∑

lh∈Lh

nh(lh)S(lh) , (7.11)

where S(lh) denotes the sum over all atoms in the cluster C (lh), i.e.,

S(lh) =
∑

l∈C (lh)

g(l) . (7.12)

The cluster weights nh(lh) associated with the nodes, lh ∈ Lh, are computed by requiring
that the cluster summation rule (7.11) be exact for all basis functions. Using eq. (7.11), the
equations of equilibrium (7.7) are further reduced to the form

fh(lh) ≈
∑

l′h∈Lh

nh(l
′
h)


 ∑

l∈C (l′h)

∂F

∂q̄(l)
ϕ(l|lh)


 = 0 . (7.13)
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We wish to remark here that the cluster summation rules are so designed that the atomic
forces are recovered exactly in regions with full atomistic resolution.

Adaptive refinement

The flexibility of the quasicontinuum method is further enhanced by the use of mesh adaption
in order to tailor the computational mesh to the structure of the deformation field. Due to
the lack of a rigorous theory relating the mesh size to suitable bounds on the energy for
discrete systems, empirical adaption indicators based on the displacement field of the crystal
are currently used. Specifically, the adaption indicator ε(K) for simplex K is measured as

ε(K) =
√
|IIE(K)|h(K) , (7.14)

where IIE(K) is the second invariant of the Lagrangian strain tensor for simplex K, and
h(K) is the size of K. The element K is deemed acceptable if

ε(K)

b
< TOL (7.15)

for some prescribed tolerance TOL < 1 and is targeted for refinement otherwise. b denotes
the magnitude of the smallest Burgers vector of the crystal. Evidently, the value of TOL in-
volves a compromise between conflicting demands on accuracy and computational efficiency.
This summarizes the static theory of the quasicontinuum method. For further details and
study of convergence characteristics, we refer the reader to [14].

8 Extension to equilibrium thermodynamics

As a precursor to the development of the full non-equilibrium finite temperature quasicon-
tinuum method, we present here the framework for modelling equilibrium thermodynamic
processes. One of the merits of our approach is that the finite temperature formulation for
equilibrium problems possesses the same structure as the zero temperature quasicontinuum
method, with the distinction that the energy functional to be minimized is no longer the
potential energy given in eq. (7.2) but a temperature-dependent energy furnished by the
max-ent method. Examples of systems in thermal equilibrium include systems undergoing
thermal expansion at uniform temperature or subjected to quasistatic processes, such as
nanoindentation or void growth under isothermal conditions. For such phenomena, we wish
to determine the metastable configurations of the crystal when it is in thermal equilibrium
at a uniform temperature T under applied loads and boundary conditions. Based on the
max-ent approximation scheme, the minimization problem may be enunciated as

min
q̄∈X

min
{ω}∈RN

Φ(q̄, T, {ω}) (8.1)

with
Φ(q̄, T, {ω}) = F (q̄, T, {ω}) + Φext(q̄) , (8.2)
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F being the Helmholtz free energy of the crystal derived earlier. We now seek to determine
the solutions of eq. (8.1). As before, we first select a reduced set Lh of Nh < N representative
atoms based on the local variation of the displacement field. The positions, temperature,
and approximate frequencies (mean field parameters) of the remaining atoms are interpolated
over the nodes using piecewise linear shape functions defined before:

q̄h(l) =
∑

lh∈Lh

ϕ(l|lh)q̄h(lh) (8.3a)

Th(l) =
∑

lh∈Lh

ϕ(l|lh)Th(lh) (8.3b)

ωh(l) =
∑

lh∈Lh

ϕ(l|lh)ωh(lh) . (8.3c)

We must emphasize that since the mean field parameter ω(l) is an approximation for the
average local frequency of that atom, the variation in {ω} follows the displacement field.
This is because the local frequencies of an atom are computed from the eigenvalues of the
local dynamical matrix associated with that atom, which in turn depends on the deformed
configuration of the neighborhood of the atom. Therefore, in the regions where the displace-
ment field is uniform, {ω} also varies slowly on the scale of the lattice, since all the atoms
experience very similar environment. This provides a rationale for assuming the frequencies
as a continuous field far from the atomistic domain and interpolating it over the represen-
tative atoms. The equilibrium equations are obtained by taking variations of the energy
functional with respect to the nodal unknowns (q̄h(lh), ωh(lh)) and enforcing stationarity.
The computational cost of solving the equilibrium equations can be further reduced by intro-
ducing cluster summation rules, as before. Thus, the final form of the equilibrium equations
becomes

∑

l′h∈Lh

nh(l
′
h)


 ∑

l∈C (l′h)

∂Φ

∂q̄(l)
ϕ(l|lh)


 = 0 (8.4a)

∑

l′h∈Lh

nh(l
′
h)


 ∑

l∈C (l′h)

∂Φ

∂ω(l)
ϕ(l|lh)


 = 0 . (8.4b)

Finally, we require an appropriate adaption criterion in order to refine the mesh according
to the deformation of the crystal while eliminating or reducing the refinement due to thermal
expansion. To this end, we define ε(K) as

ε(K) =
√
|IIEd(K)|h(K) , (8.5)

where IIEd(K) is the second invariant of the deviatoric part of the Lagrangian strain tensor.
The crystal is first allowed to expand freely at the prescribed temperature prior to inden-
tation. The deformed configuration is then used as a reference configuration for computing
IIEd(K) during the subsequent load increments.
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8.1 Convergence analysis

In this section, we seek to understand the effect of coarsening on the energetics of the
system by computing the error introduced by the quasicontinuum approximation. To this
end, we consider a perfect crystal with periodic boundary conditions subjected to uniform
temperature. We show that for a homogeneous deformation, the quasicontinuum approach
gives the exact energy of the crystal irrespective of the degree of coarse-graining.

Theorem 8.1. Consider a perfect crystal with N atoms and periodic boundary conditions
occupying a subset L of a simple d-dimensional Bravais lattice. Let Lh ⊂ L be a collection
of Nh < N representative atoms of the crystal. Then, for a homogeneous deformation under
uniform temperature, the quasicontinuum energy is equal to the exact energy of the atomistic
system. That is,

∑

lh∈Lh

nh(lh)


 ∑

l∈C (lh)

E(l)


 =

∑

l∈L

E(l) . (8.6)

Proof. When an infinite perfect crystal or a perfect crystal with periodic boundary conditions
is subjected to uniform temperature or, more generally, a homogeneous deformation, every
atom sees exactly the same environment and, consequently, has the same energy:

E(l) = E1, ∀ l ∈ L .

Thus, the total internal energy of the system furnished by the max-ent approach becomes

E(q̄, {S}, {ω}) =
∑

l∈L

E(l) = NE1 . (8.7)

The quasicontinuum approximation of the total energy is obtained by using the cluster
summation rule:

Eh(lh) =
∑

lh∈Lh

nh(lh)
∑

l∈C (lh)

E(l) (8.8a)

=
∑

lh∈Lh

nh(lh)N(lh)E1 , (8.8b)

where N(lh) is the number of atoms in the cluster around node lh. We recall that the weights
used in the cluster summation rules are determined such that the shape functions associated
with all the nodes are summed exactly. That is,

∑

l′h∈Lh

nh(l
′
h)

∑

l∈C (l′h)

ϕ(l|lh) =
∑

l∈L

ϕ(l|lh), ∀ lh ∈ Lh . (8.9)

Summing both sides over lh ∈ Lh, rearranging the sums, and using the property
∑

lh∈Lh

ϕ(l|lh) = 1 , (8.10)
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eq. (8.9) reduces to ∑

l′h∈Lh

nh(l
′
h)N(lh) = N . (8.11)

Multiplying eq. (8.11) by E1 and comparing the expressions with eq. (8.7) and eq. (8.8b),
we conclude that

Eh = E (8.12)

and that this equality of energies is independent of the degree of coarsening.

As a concluding remark, we note that this result is valid for infinite crystals and that
for finite crystals, the surface effects should introduce some error. Nevertheless, the result
demonstrates that in the regions within the bulk of the crystal and away from defects, the
atoms experience similar environments and deformations and, consequently, the quasicon-
tinuum energy should be a very good approximation.

9 Variational formulation for thermo-mechanical cou-

pled problems

We now present a review of a variational formulation for coupled thermo-mechanical boundary-
value problems for general dissipative solids proposed by Yang et al. in [30], and which we
shall use to model heat conduction using finite temperature quasicontinuum method.

The aim of this work is to characterize variationally the solutions of equilibrium problems
for an inelastic deformable solid capable of conducting heat. Specifically, the work shows the
existence of a joint potential function whose Euler-Lagrange equations yield the equilibrium
equations, the kinetic relations, and the conservation of energy. A general dissipative solid
may be understood as a deformable solid, undergoing large deformations, possessing viscosity
and internal processes, and conducting heat. However, in the context of the current work,
we shall restrict this review to conducting thermoelastic solids. The only kinetic relation
that we introduce a priori is the Fourier’s law of heat conduction.

We consider a body occupying a region B ⊂ R3 in reference configuration and under-
going a thermodynamic process. The motion of the body is described by a time-dependent
deformation mapping ϕ : B× [a, b] → R3, where [a, b] is the time interval of the motion. The
body may be subjected to essential boundary conditions for the displacement and tempera-
ture over parts of its boundary. Let H̄ be the prescribed outward heat flux on the Neumann
boundary ∂NB, and let T̄ be the applied traction on the traction boundary ∂T B. We assume
that there exists an internal energy density expressed as a function of the local state,

E = E(F , S) , (9.1)

where F = Grad ϕ is the deformation gradient, and S is the local entropy density per unit
undeformed volume. Then, the equilibrium stress is given by

P e ≡ ∂F E(F , S) , (9.2)
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and the local equilibrium temperature is given by the relation

Θ = ∂SE = E(F , S) (9.3)

For the variational formulation, it is necessary to differentiate between the equilibrium tem-
perature Θ and an external temperature field T . Although they are equal everywhere at
equilibrium, the condition is not imposed a priori. We also assume that a Fourier potential
χ(G) exists such that

H = ∂Gχ(G) , (9.4)

where H is the heat flux, and G = −T−1Grad T . χ is assumed to be quadratic and strictly
convex in G, which guarantees a unique minimum.

Variational formulation

A rate problem is understood as a problem of finding the rate of change of the state of
the body given its current state and appropriate forcing and boundary conditions. For a
thermoelastic problem, this means the problem of determining (T, Ṡ) given the current local
state (F , S). To this end, we construct a joint potential function of the following form:

Φ[T, Ṡ] =

∫

B

[(Θ− T )Ṡ − χ(G)]dV

+

∫

B

R Q log
T

T0

dV −
∫

∂NB

H̄ log
T

T0

dS ,
(9.5)

where Q is the distributed heat source per unit mass, and T0 is a reference temperature.
Then, according to [30], the problem of determining solutions for the thermoelastic rate
problem may be stated as a two field variational problem:

inf
Ṡ

sup
T

Φ [T, Ṡ] . (9.6)

Taking variations of this potential with respect to the fields (T, Ṡ) and enforcing stationarity
yields the thermoelastic rate problem in strong form:

T Ṡ = −DivH + R Q in B, (9.7a)

H ·N = H̄ on ∂NB, (9.7b)

T = T̄ on ∂B\∂NB, (9.7c)

T = Θ in B. (9.7d)

Thus, the general rate problem for thermoelastic conducting solids is equivalent to the sta-
tionarity principle:

δ Φ = 0 . (9.8)
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Incremental formulation

We now present a time-discretized version of the variational problem as established in [30].
The purpose of time-discretization is to reduce the modelling of time-dependent phenomena
to a sequence of incremental problems, each characterized by a variational principle. For a
rigorous derivation of the variational updates, we refer the reader to [30]. Below, we give
an outline of the incremental extremum problem formulated by identifying a convenient
joint potential which is consistent with the field equations. To this end, we consider a
sequence of times t0, . . . , tn . . . and seek to characterize the state (ϕ, T, S) of the solid at
those times. Specifically, we wish to determine approximately the state (ϕn+1, Tn+1, Sn+1)
at tn+1 assuming that the state (ϕn, Tn, Sn) is known. We construct a family of incremental
potentials based on the backward Euler finite difference scheme:

Φn[ϕn+1, Tn+1, Sn+1] =∫

B

[En+1 − En − Tn+1(Sn+1 − Sn)−4t χn+1] dV

−
∫

B

R Bn+1 · (ϕn+1 − ϕn) dV −
∫

∂T B

T̄ n+1 · (ϕn+1 − ϕn) dS

+

∫

B

4t R Qn+1 log
Tn+1

Tn

dV −
∫

∂NB

4t H̄n+1 log
Tn+1

Tn

dS ,

(9.9)

with

χn+1 = χ (Gn+1) , Gn+1 = −Grad log
Tn+1

Tn

. (9.10)

Then the incremental variational problem becomes

inf
ϕn+1

inf
Sn+1

sup
Tn+1

Φn [ϕn+1, Tn+1, Sn+1] . (9.11)

Taking variations and enforcing stationarity as before yields the equilibrium equation, the
heat equation, and the natural boundary conditions:

Div P e
n+1 + R Bn+1 = O(4t) in B, (9.12a)

P e
n+1 ·N − T̄ n+1 = O(4t) on ∂T B, (9.12b)

Sn+1 − Sn

4t
= − 1

Tn+1

Div ∂Gn+1 χn+1 +
1

Tn+1

R Qn+1 in B, (9.12c)

∂Gn+1 χn+1 ·N = H̄n+1 on ∂NB, (9.12d)

∂Sn+1En+1 − Tn+1 = O(4t) in B. (9.12e)

All field equations are recovered as 4t → 0. Thus, the time-discretized variational formula-
tion for dissipative solids provides a means of reducing the rate problem to an incremental
problem with a variational structure. Moreover, the incremental potential Φn reflects both
the energetics as well as the kinetics of the material. This time-discretization of the rate
problem provides a way of incorporating the heat equation into the finite temperature qua-
sicontinuum framework that was presented in section 8.
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10 Quasicontinuum method and heat transport

In this section, we develop a full three-dimensional non-equilibrium finite temperature version
of the quasicontinuum theory based on the max-ent approximation scheme. Following the
review in the previous section, we construct an incremental potential based on the backward
Euler finite difference scheme as

Φn[q̄n+1, {Tn+1}, {Sn+1}, {ωn+1}] =

(En+1 − En)−
∑

l∈L

Tn+1(l)[Sn+1(l)− Sn(l)] +

∫

B

∆n+1(Gn+1(X))4t dV

+

∫

B

4t R Qn+1 log
Tn+1

Tn

dV −
∫

∂NB

4t H̄n+1 log
Tn+1

Tn

dS ,

(10.1)

where 4t is the time step, Gn+1 = −T−1
n+1GradTn+1, and En+1 is the global internal energy

of the crystal at t = (n + 1)4t, furnished by the max-ent scheme. B ⊂ R3 denotes the
region occupied by the crystal in the reference configuration. H̄ denotes the outward heat
flux prescribed on the Neumann boundary ∂NB. Qn+1 is the local heat generated at time
tn+1. In the current work, we neglect any heat sources and hence assume Qn+1 = 0. For
general dissipative solids, ∆ may be a kinetic potential which gives the viscosity law, rate
sensitivity, and heat conduction. In the context of this work,

∆ = −χ ,

where χ is a Fourier potential. As before, χ is assumed to be strictly convex and quadratic in
G. We also assume the Fourier law of heat conduction, which furnishes a linear dependence
of the heat flux on the temperature gradient at that point:

∂G∆n+1 = −Hn+1 = κ Grad Tn+1(l) . (10.2)

We wish to note that the Fourier law is a phenomenological relation and, therefore, introduces
the heat conductivity, κ, as an empirical parameter into the model in addition to the empirical
interatomic potential. The incremental variational problem may be enunciated as

inf
q̄n+1

inf
{Sn+1}

inf
{ωn+1}

sup
{Tn+1}

Φn[q̄n+1, {Tn+1}, {Sn+1}, {ωn+1}] . (10.3)

The temperature field and {ω} can take only positive values. Therefore, for the purpose of
numerical implementation, we recast the problem in terms of new fields defined as

vn+1(l) = log
Tn+1(l)

Tn(l)
(10.4a)

µn+1(l) = log
ωn+1(l)

ωn(l)
(10.4b)
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and which can take values on the entire real line R. We follow the same procedure as
presented in sections 7 and 8 to constrain the extremum problem over representative atoms.
As before, we introduce interpolations over nodal variables. Eq. (8.3a) remains the same
while eq. (8.3c) and eq. (8.3b) are replaced by

vh
n+1(l) =

∑

lh∈Lh

ϕ(l|lh)vh
n+1(lh) (10.5a)

µh
n+1(l) =

∑

lh∈Lh

ϕ(l|lh)µh
n+1(lh) . (10.5b)

Finally, we take variations of the incremental energy functional, Φn, with respect to the
nodal unknowns. Enforcing stationarity of the incremental potential yields the following
equilibrium equations:

∑

l′h∈Lh

nh(l
′
h)


 ∑

l∈C (l′h)

∂En+1

∂q̄n+1(l)
ϕ(l|lh)


 = 0 (10.6a)

∑

l′h∈Lh

nh(l
′
h)


 ∑

l∈C (l′h)

(
∂En+1

∂Sn+1(l)
− Tn+1(l)

)
ϕ(l|lh)


 = 0 (10.6b)

∑

l′h∈Lh

nh(l
′
h)


 ∑

l∈C (l′h)

∂En+1

∂µn+1(l)
ϕ(l|lh)


 = 0 (10.6c)

and the energy balance equation:

−
∑

l′h∈L

nh(l
′
h)


 ∑

l∈C (l′h)

(Sn+1(l)− Sn(l)) Tn(l) exp[vn+1(l)] ϕ(l|lh)



−
∫

B

κ4t
[
Grad Tn(X) + Tn(X) Grad vn+1(X)

]
exp[vn+1(X)] Grad ϕ(X|lh) dV

−
∫

∂NB

4t H̄n+1 ϕ(X|lh) dS = 0 .

(10.7)

If external loads are applied, we assume them to be conservative as before, and the energy
functional E in eq. (10.6a) is replaced by

E (q̄n+1, {Sn+1}, {ωn+1}) + Φext (q̄) . (10.8)

We recall from section 4 that enforcing the equipartition of energy and using the relation
σ2(l) = kB T (l) yields a local equilibrium relation between entropy and temperature:

Sn+1(l) = 3kB log
kBTn+1(l)

~ωn+1(l)
+ 4kB − kB log N , (10.9)
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and we use it to substitute for Sn+1(l) in the equations above. Consequently, we do not have
to solve eq. (10.6b). Nevertheless, we do evaluate the left-hand side of eq. (10.6b) in all our
numerical tests and confirm that eq. (10.6b) is satisfied automatically. We also observe from
eq. (10.7) that the rate term of the heat equation is computed using the cluster summation
rule of the quasicontinuum method, whereas the diffusion term in the heat equation is an
integral and is evaluated using Gauss quadrature as in a finite element analysis [9].

Before concluding this section, we wish to emphasize that the backward Euler finite
difference scheme used in eq. (10.1) is unconditionally stable and hence does not impose any
limitation on the time-step, 4t. Nevertheless, an estimate of the critical time-step can be
obtained as

∆ tc ≈ h2

D
, (10.10)

where D is the diffusion constant for the material. h is the element size and, in the regions
with atomistic resolution, is equal to the lattice spacing. This implies that for a coarse-
grained system with a smooth temperature gradient, the critical time-step would increase
as the square of the element size. Consequently, larger time-steps may be used allowing the
simulation of slow processes as well. This is unlike molecular dynamics which is limited to
a time-step of about 10−14 seconds, which is of the order of the time-period of the thermal
oscillations of the atoms.

11 Numerical tests and discussion

In this section, we summarize and discuss our results for numerical tests that demonstrate
the applicability of the non-equilibrium finite temperature quasicontinuum method to mod-
elling thermodynamic phenomena. We take nanoindentation as a convenient test problem
as it is a conventional experimental tool for studying complex material behavior such as
microstructure evolution via defect nucleation and propagation. Here we present the results
for finite temperature nanoindentation tests performed with a rectangular punch for three
different indenter velocities. This problem has been studied as a plane strain problem using
static QC by Shenoy et al [23]. The purpose of the tests is two-fold. First, they serve to il-
lustrate the ability of our method to simulate processes ranging from isothermal or very slow
to adiabatic or very fast (although slow enough for inertial effects to be negligible). Second,
they also enable us to understand the effect of the indentation velocity on the evolution of
the temperature distribution.

Test problem definition

The test sample is an fcc nearest-neighbor Lennard-Jones crystal with 32 × 32 × 32 unit
cells, or a total of 137,313 atoms. Solid Argon is used as a test material since it can be
modelled using the Lennard-Jones pair potential. The surfaces of the sample are aligned
with the cube directions (Figure 11.1). The indenter is a rigid rectangular indenter and is
applied along one of the diagonals of the top surface of the cube, as shown in Figure 11.2
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Figure 11.1: Crystallographic orientation of the test sample used in the simulations.

since the (111) planes are the preferred slip planes for an fcc crystal. ABCD corresponds
to the (110) plane. The initial mesh comprises of atomistic region only in the vicinity of
the indenter and has 3506 representative atoms. Figure 11.3 shows the cross-section ABCD
with the initial triangulation. The boundary conditions are imposed as follows. In order to
allow free thermal expansion, only the z-displacement of the nodes on the bottom surface
is constrained. Using the symmetry of the problem, the node at the center of the bottom
surface is fixed completely in order to avoid rigid motion. No constraint is applied on the
lateral surfaces. The indenter is applied as a displacement boundary condition on a band of
atoms on the top surface corresponding to the width of the punch. In our calculations, we
used the following values for the width of the punch, W , and the incremental indentation
depth, δ:

W = 9 [σ], δ = −0.1 [σ]

where σ is the nearest-neighbor distance for an fcc crystal (σ = 0.34 nm for Ar). The
length of the face diagonal is 64[σ]. Before indentation, the cube is allowed to equilibrate
isothermally at a uniform temperature of T = 0.5Tm, Tm being the melting temperature
(Tm = 83 K for solid Ar).

The first test is performed under adiabatic conditions by imposing 4t = 0. Simply put,
it means that the indentation occurs so fast that there is no time for the generated heat to
dissipate. We wish to remark here that this is a qualitative result since the inertial effects
should also be taken into account for very fast processes. The second test is performed with
4t = 50 [κσ/kB], which is equivalent to a time step of 17.4 ps. The indenter velocity may
be calculated as

V =
δ

4t
= 1.95 m/s . (11.1)

The third test is performed with4t = 5 [κσ/kB] which corresponds to an indentation velocity
of 19.5 m/s.
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Figure 11.2: Geometry of the nanoindentation setup for a rectangular indenter.
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Figure 11.3: Initial mesh for the nanoindentation test with rectangular indenter. A’B’C’D’ is the
region shown in the snapshots of the temperature evolution.

Results and discussion

Figures 11.5 and 11.6 show the snapshots of the temperature profile under the indenter for
the adiabatic test. Figures 11.7 and 11.8 present images of the temperature profile for the
second and third tests. Figure 11.4 presents a comparison of the force versus indenter depth
curves for the two cases with very fast and very slow indentation velocities.

Based on Figures 11.5 and 11.6, we observe the evolution of temperature as the inden-
tation proceeds in the adiabatic case. In the last image in Figures 11.6, when the indenter
depth is −1.2 [σ], the temperature under the edges of the punch is 0.6 Tm, which is a 20 % rise
from the prescribed temperature. The heating under the edges of the indenter is expected
due to high stresses. In addition, we note that this hot region spreads out along the (111)
plane as the dislocation propagates. However, the significant temperature difference at the
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Figure 11.4: Force versus indenter depth plot for a rectangular indenter using the max-ent approach
under adiabatic and isothermal conditions.

dislocation core needs further investigation. It is probable that the temperature difference
is mediated by the deformation field above and below the slip plane. Furthermore, since the
test is adiabatic, the system is unable to dissipate the heat generated.

Figure 11.4 indicates a negligible variation in the force indenter curve for the adiabatic and
isothermal cases. We also note that the dislocation nucleation occurs at the same indenter
depth for both speeds. Furthermore, the drop in the force is much more pronounced due to
higher stress concentration caused by the sharp edges.

Figure 11.7 shows the temperature profile under the indenter for the second test with
heat conduction. The negligible change in temperature implies that the indentation speed
is slow enough to allow dissipation of the heat generated locally. In other words, the time
step used in the test is such that the indenter velocity is less than the critical velocity for the
material, thereby making the process isothermal. We use the diffusivity, D, and the lattice
constant of solid Ar to evaluate the critical velocity as

Vc =
D

a
= 17.3 m/s , (11.2)

which confirms that the indentation velocity, V < Vc. We wish to emphasize that the time
step of 17.4 ps is about 1800 times larger than a typical time step used molecular dynamics
simulations. This demonstrates that the proposed method for modelling non-equilibrium
phenomena using the quasicontinuum framework does not impose any limitations on the
time step. Thereby, it facilitates the simulation of very slow thermodynamic processes which
are not accessible to atomistic models.
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In both these tests, which use a mesh refinement tolerance TOL = 0.008, it is observed
that the stacking fault ends where the coarse-grained region begins, which may be a poten-
tial source of numerical error. This limitation may be rectified by lowering the refinement
tolerance TOL and by allowing the system to relax and remesh at the same load.

The third test is performed with a stricter tolerance for mesh refinement (TOL = 0.004).
Consequently, we observe heavier remeshing and almost full atomistic resolution is achieved
by the time a dislocation nucleates. We would like to emphasize here that since all the
representative atoms are inserted in the vicinity of the indenter, the ratio of nodes to the
total number of atoms can be made arbitrarily small by considering larger samples.

It is also observed in this test that the nucleation occurs at δ = −1.2 [σ] which is delayed
compared to the previous tests wherein the nucleation occurs at δ = −1.0 [σ]. Clearly,
this indicates that there should be an optimal value of TOL that would strike a balance
between accuracy and performance demands. Finally, the small variation in the temperature
distribution in the sample is in agreement with the previous tests and is expected since the
indentation velocity lies very close to the critical velocity.

Figure 11.9 shows the dislocation structure under a rectangular indenter extracted using
the centerosymmetry parameter [13]. As expected, we observe that the first partial dislo-
cation is emitted along the (111) plane followed by a stacking fault ribbon (Figure 11.10).
Since the nearest-neighbor Lennard-Jones potential has zero stacking fault energy, we do not
observe a second partial dislocation and the stacking fault continues to grow in size as the
indentation proceeds.

12 Concluding remarks

In this paper, we have developed a variational approach to coarse-graining of equilibrium
and non-equilibrium atomistic description at finite temperature. This is accomplished by
way of a variational mean field approximation for systematically averaging the dynamics
of the atomistic system and by appending the resulting free-energy minimization problem
to an energy-balance equation including an empirical heat conduction term. The main
advantage of the method is that the max-ent probability distribution and the thermodynamic
potentials are explicit and local in nature, which enables the modeling of non-equilibrium
thermodynamic phenomena. Numerical validation tests reveal that the max-ent distribution,
which can account for the anharmonic effects of the interaction potential, leads to a significant
improvement in the predictions of the specific heat and the coefficient of thermal expansion
over methods based on a quasi-harmonic approximation. The method is also capable of
modeling behavior at high temperatures where the quasi-harmonic approximation fails.

The max-ent approximation scheme has been taken as a basis for developing a non-
equilibrium finite temperature extension of the quasicontinuum method. The resulting
scheme provides a means of seamlessly bridging the atomistic and continuum realms at
finite temperature, including heat conduction. In the spirit of the quasicontinuum theory
a full description of the behavior of the system is achieved once the interatomic potential
and the heat conductivity are provided. A key property of the method is its ability to cap-
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d = -0.9 [s]

d = -0.6 [s]

d = -0.1 [s]

Figure 11.5: Snapshots showing the temperature profile of the cross-section A’B’C’D’ under the in-
denter at different indentation depths during the simulation. The test is performed under adiabatic
conditions.
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d = -1.1 [s]

d = -1.0 [s]

d = -1.2 [s]

Figure 11.6: Snapshots at subsequent load increments showing the temperature of the cross-section
A’B’C’D’ profile under the indenter after a dislocation has nucleated. The test is performed under
adiabatic conditions. 38
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d = -1.2 [s]

d = -1.0 [s]

d = -1.1 [s]

Figure 11.7: Snapshots at subsequent load increments showing the temperature profile of the cross-
section A’B’C’D’ under the indenter after a dislocation has nucleated. The indentation velocity is
1.95 m/s. The negligible variation in temperature shows that the conditions are isothermal.
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d = -1.2 [s]

d = -1.1 [s]

d = -1.0 [s]

Figure 11.8: Snapshots at subsequent load increments showing the temperature profile of the
entire cross-section ABCD under the indenter just before and after a dislocation has nucleated.
The indentation velocity is 19.5 m/s which is close to the critical velocity.
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Figure 11.9: Dislocation structure under a rectangular indenter predicted by the quasicontin-
uum method at indentation depth δ = 1.2[σ] under adiabatic conditions. The figure displays the
energetic atoms (red) under the top surface of the crystal (blue).

ture microstructural evolution and the associated thermo-mechanically coupled behavior. In
particular, the coupling of the free energy of the lattice to heat conduction has the effect of
introducing an intrinsic time scale into the system. This intrinsic time scale in turn differ-
entiates between slow and fast processes, with the response to former being predominantly
isothermal and the response to the latter predominantly adiabatic. The nanoindentation
tests presented in the foregoing exemplify this behavior. Thus, well below a well-defined
characteristic indentation velocity dislocations are punched and move into the crystal in an
ostensibly uniform temperature field, whereas well above the characteristic indentation ve-
locity the dislocation cores carry along an autonomous temperature field resulting from local
adiabatic heating. At intermediate indentation velocities a smooth transition is observed
between these two extreme behaviors.

We close by pointing out possible directions for further extension of the approach. By
allowing for arbitrary mean atomic momenta, the max-ent approach results in a temperature-
dependent Hamiltonian governing the propagation of lattice phonons at finite temperature.
However, there still remains a numerical issue of eliminating the spurious reflection of high
frequency waves at the fine-coarse interface as they radiate into the coarse region and the
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Figure 11.10: Another view of the dislocation structure in Figure (11.9) showing the stacking fault
along the (111) plane. The figure displays the energetic atoms (red) under the top surface of the
crystal (blue).

consequent non-physical heating of the atomistic region. Finally, we note that other transport
phenomena, such as mass transport, should be amenable to a treatment similar to heat
conduction. This extension would require the introduction of additional concentration and
mass flux fields, the use of the max-ent formalism to determine concentration-dependent
free energies and effective interatomic potentials, and the coupling of the resulting free-
energy minimization problem to a mass conservation equation including empirical diffusivity
parameters.
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A Gauss quadrature for multiple integrals

This appendix presents a brief summary of the third and fifth degree quadrature rules for
multiple integrals in a space of dimension n used in our calculations. The expressions and
the quadrature tables were obtained from the work of A. H. Stroud [25]. In particular, we
are interested in the following integrals with gaussian weighting functions:

I(f) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, . . . , xn) exp[−x2

1 − · · · − x2
n]dx1 . . . dxn . (A.1)

An M -point numerical quadrature approximates the integral as

I(f) ≈
M∑

k=1

f(νk)Wk , (A.2)

where νk is an n-dimensional vector at the kth quadrature point:

νk = ν1k, . . . , νnk .

The expressions for the quadrature points and the associated weights are given below.

A.1 Third degree quadrature

This formula has 2n points. The points and coefficients are obtained by requiring that the
formula should integrate all monomials of degree ≤ 3 exactly. Since the domain of integration
is Rn and the gaussian weight has the property

w(x) = w(−x) ,

the distribution of quadrature points is assumed to be fully symmetric. That is, we assume
that the formula consists of 2n points νk and −νk and that the coefficient of νk equals that
of −νk. Thus, for an n-dimensional space, the points are

(± r, 0, . . . , 0)

...

(0, . . . , 0,± r)

with the coefficient

Wk =
1

2n
V, k = 1, . . . , n ,

where
V = I(1) = πn/2, r2 =

n

2
. (A.4)
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A.2 Fifth degree quadrature

This formula has n2 +n+2 points. The formula is obtained by requiring that it be exact for
all monomials of degree ≤ 5. Owing to the symmetry of the domain, the formula consists of
1
2
(n2 + n + 2) points νk and their negatives, −νk. The coefficient of νk equals that of −νk.

For an n-dimensional space, the 5th degree quadrature points and their coefficients can be
written as follows using 8 parameters:

(η, η, . . . , η, η) A

(λ, ξ, . . . , ξ, ξ) B

...

(ξ, ξ, . . . , ξ, λ) B

(µ, µ, γ, . . . , γ) C

(µ, γ, µ, . . . , γ) C

...

(γ, . . . , γ, µ, µ) C

(−η,−η, . . . ,−η,−η) A

(−λ,−ξ, . . . ,−ξ,−ξ) B

...

(−ξ,−ξ, . . . ,−ξ,−λ) B

(−µ,−µ,−γ, . . . ,−γ) C

(−µ,−γ,−µ, . . . ,−γ) C

...

(−γ, . . . ,−γ,−µ,−µ) C .

The values of the eight parameters for different dimensions are provided in [24].
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