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ABSTRACT 

We study the thermodynamic states encountered during Shock-Dispersed-Fuel (SDF) 

explosions.  Such explosions contain up to six components: three fuels (PETN, TNT and 

Aluminum) and their products corresponding to stoichiometric combustion with air. 

We establish the loci in thermodynamic state space that correctly describes the 

behavior of the components. Results are fit with quadratic functions that serve as fast 

equations of state suitable for 3D numerical simulations of SDF explosions. 

INTRODUCTION 

 A thermodynamic model of afterburning in explosions was first presented at the 34th 

ICT Conference on Energetic Materials [1]. Six explosives were investigated: PETN, TNT, 

an aluminized charge, a polyethylene-based fuel, an IPN-based fuel and a magnesium-based 

fuel.  At the 36th ICT conference, a thermodynamic model of Aluminum combustion in SDF 

explosions was presented [2]. In these cases, afterburning of the PETN booster charge was 

neglected on the grounds that it caused little change in the system energy.  But subsequently 

we have realized that it can have a dramatic effect on the combustion cloud temperature, 

increasing it by a factor of ten, which causes a three-fold increase in the cloud sound speed, 

and therefore must be taken into account for accurate numerical simulations.  

In this paper we extend model to include afterburning of PETN booster explosion 

products along with the main fuel. We consider the thermodynamic states encountered during 

Shock-Dispersed-Fuel (SDF) explosions studied by Neuwald et al [3-14].  Typical charge 

construction is shown in Fig. 1.  It begins with a 0.5-g booster charge of PETN (C5H8N4O12) 

at a initial density of 0 =1 g/cc. This can be surrounded by a 1-g shell of TNT (C7H5N3O6 , 

0 =1 g/cc), or by a thin paper cylinder with the void filled by a loosely packed Aluminum 

flake (bulk density ~ 0.63 g/cc).  There is a need to build a fast and simple Equations of State 

(EOS) for the detonation products from such explosions, appropriate also during their 

afterburning/combustion with air. We assume for simplicity that reactions PETN-air, TNT-air 

and Al-air are parallel and do not interact with each other. This is a reasonable assumption, 

since as we shall show, the composition of the detonation products are typically frozen for 
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specific volumes v > 28cc /g.  Thus we have six components to consider: three fuels (PETN 

and TNT detonation products gases, and Aluminum), and their corresponding combustion 

products (PETN-air, TNT-air, and Al-air). In this paper we establish loci in thermodynamic 

state space that correctly describes the behavior of these components.  Results are fit with 

quadratic functions formulated to serve as suitable EOS for numerical simulations of SDF 

explosions [15, 16, 17]. When phase transitions take place in the fuels, the functions are built 

in a piece-wise manner. 

THERMODYNAMIC SPACE 

We analyze the detonation and combustion processes occurring in SDF explosions in 

the u T  plane of specific internal energy versus temperature [1, 2]. Figure 2 provides a 

typical example for TNT and PETN charges, as calculated by the CHEETAH code of Fried 

[18].  Curves represent the locus of detonation products states along the expansion isentrope, 

starting at the Chapman-Jouguet (CJ) point, and expanding to 1 bar.  At temperatures above 

1,800 K, products are in thermodynamic equilibrium. According to Rhee [19], detonation 

products composition becomes frozen when temperatures drop below 1,800 K (point F). The 

horizontal line represents the detonation process as a transformation from reactants to 

products at constant energy and volume, terminating at point UV. These so-called Constant 

Volume Explosions (CVE) result in temperatures of 2,700 K and 4,223 K for TNT and PETN 

respectively. The corresponding heats of detonation are Hd = 818  cal/g and 1,423 cal/g for 

TNT and PETN, and are indicated in the figure. These theoretical heats of detonation agree 

with calorimeter measurements of Ornellas [20]. The CJ temperatures are considerably 

higher due to compressive heating by the detonation (3,186 K and 4,600 K for TNT and 

PETN, respectively). 

Figure 3 presents the loci of states for these fuels and air, extended up to 6,000 K. The 

detonation products curves represent composite curves defined as loci possessing the CJ 

entropy, with frozen composition below 1,800 K and equilibrium composition above 1,800 

K.  The air curve corresponds to an equilibrium isobar (10 bars).  Also shown is the locus of 

states for Aluminum.  Jumps in the curves correspond to phase changes. 

Figure 4 presents the Combustion Products (CP) curves for PETN/TNT composite 

charges.  The CP curves correspond to stoichiometric mixtures of TNT-air ( s = 3.35) and 

PETN-air ( s = 0.482) where the combustion products are in thermodynamic equilibrium at a 

pressure of 10 bars. Horizontal lines represent adiabatic combustion (i.e., material 

transformations from reactants to products at constant energy and volume); their intersection 
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with their products curve establishes the adiabatic combustion temperature ( Tc ) indicated on 

the abscissa: 2,900 K for TNT-air and 3,175 K for PETN-air, respectively. The corresponding 

Heats of Combustion are Hc = 840.5 cal/gTNT  and Hc = 1,371 cal/gPETN  for TNT and 

PETN; these theoretical values agree with calorimeter measurements of Ornellas [20]. 

 Figure 5 presents the Combustion Products (CP) curves for Al-SDF charges.  The 

curves correspond to stoichiometric mixtures of PETN-air ( s = 0.482) and Al-air 

( s = 4.03). As in Fig. 4, they represent loci of equilibrium states along the 10-b isobar. 

Horizontal lines correspond to adiabatic combustion; their intersection with their own 

products curve establishes the adiabatic combustion temperature (Tc ) indicated on the 

abscissa: 3,175 K for PETN-air and 4,120 K for Al-air, respectively.  The Heat of combustion 

is H = 1,473 cal/gAl  for Al-air. 

QUADRATIC MODEL 

These states have been fit with quadratic functions: 

    uk (T) = akT
2

+ bkT + ck   ( k = A,DP,R,P ) (1) 

These functions (curves) do an excellent job at fitting the computed thermodynamic states 

(data points) as demonstrated in Fig. 2. (see Appendix for values of ak,bk,ck ). Given the 

internal energy and composition Yk  in a cell, (1) can be solved to find the temperature. For a 

pure cell (Yk =1) one finds: 

    Tk = [ bk + bk
2 4ak (ck uk )]/2ak     (2) 

For computational cells containing a mixture of components, the Intensive-variable Addition 

Law is used to calculate the mixture energy:  

um = Ykukk
= amTm

2
+ bmTm + cm      (3) 

The mixture temperature is calculated from the inversion of (3): 

   Tm = [ bm + bm
2 4am (cm um )]/2am     (4) 

while the mixture properties are determined from: 

am = Ykakk
, bm = Ykbkk

, cm = Ykckk
, Rm = YkRkk

   (5) 

For pure cells (Yk =1) the pressure is calculated from the following: 
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    pk =
kRkTk         k = A,R,P

pJWL ( ,T)    k = DP

 
 
 

     (6) 

In the above, the detonation products (DP) are described by the JWL function: 

  pJWL ( ,T) = A 1
R1v

 

 
 

 

 
 exp( R1v) + B 1

R1v

 

 
 

 

 
 exp( R2v) + RDPT   (7) 

where v represents the specific volume ratio: v = v /v0 = 0 / . In [14] we showed that for 

PETN and TNT, pJWLv /RT =1 when v > 28, so the exponential terms are only important 

during the initial expansion phase. 

In mixed cells, the mixture pressure is calculated from the mixture temperature by the 

Law of Additive Pressures [21]: 

    pm = pk (Vm,Tmk
)       (8) 

where pk (Vm ,Tm )  denotes the pressure that would be exerted by component k if it existed 

alone at the temperature and volume of the mixture. 

DISCUSSION OF ASSUMPTIONS 

We ask the question: “what is the locus of thermodynamic states that properly 

describes expanded detonation products (DP) gases?”  This is explored in Fig. 6 for PETN.  

The black curve is the loci of states with the CJ entropy SCJ =1.96 cal/g  where the species 

are in chemical equilibrium.  Its value at room temperature does not agree with the heat of 

detonation Hd = 1,490  cal/g as measured in a calorimeter [20].  The red curve represents 

an isentrope ( SCJ =1.96 cal/g ) with a fixed composition k
F  (equal to the species composition 

of the CJ isentrope state at TF =1,800 K ). The green curve represents an isobar (p=10 bar) 

with the same fixed composition k
F .  Both curves agree with the measured heat of detonation 

1,490 cal/g. Below 3,500 K, the isobar locus is identical to the isentrope locus (both with 

k
F ), proving that the specific internal energy is only a function of temperature u = f (T, k

F )  

in this temperature regime.  This is a property of a perfect gas.  In other words, the detonation 

products behave as a calorically-perfect gas over the range 300K < T < 3,500K . Above 3,500 

K, the specific internal energy of the detonation products is a function of two thermodynamic 

variables: u = g(T,v).  Since temperatures are rarely above 3,500 K (except at shock 

convergence points), we ignored these imperfect gas effects and defined the u-T relation for 
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PETN and TNT for T>3,500 K as the equilibrium isentrope (thereby avoiding the two-

dimensional fits required to represent u = g(T,v)). 

The loci of states for Combustion Products from a stoichiometric mixture of PETN 

detonation products gases with air is presented in Fig. 7. The Products curves are equilibrium 

isobars.  Below 3,500 K, the curves are identical, proving that the Products behave as a 

perfect gas for T<3,500 K.  For T>3,500 K we used the 10-bar curve to define the u T  

Products relation: u = f (T, p =10bar). 

CONCLUSIONS 

We have established the locus of thermodynamic states encountered in SDF 

explosions. For the detonation products gases, the locus is a composite CJ isentrope (with 

fixed composition below 1,800 K and equilibrium composition above 1,800 K).  For the 

combustion products, the locus is the 10-bar equilibrium isobar.  By CHEETAH code 

calculations we have proven that both the Detonation Products and the Combustion Products 

behave as calorically-perfect gases for temperatures below 3,500 K.   

These loci were fit with quadratic functions suitable for defining the equations of state 

needed in numerical simulations of SDF explosions. 

This formulation allows both the afterburning of the booster charge and the 

combustion of the fuel in SDF explosions (i.e., two combustion processes). This Model can 

accommodate additional combustion processes, such as the combustion of hydrocarbon 

clouds interacting with SDF explosions.  It is therefore an extension and generalization of the 

thermodynamic modeling presented in the previous ICT conferences [1, 2]. 
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Table 1. Air EOS (10 bar): Piece-wise Quadratic Model\ 

Region i aA
i  bA

i  cA
i  

1 (300—2,340K) 2.02768 E-5 0.16498 -71.9172 
2 (2,340—3,700K) 1.34322 E-4 -0.41045 658.24424 
3 (3,700—4,150K) 7.01281 E-5 0.11507 -403.36139 
4 (4,150—4,530K) -1.02084 E-4 1.53731 -3,340.674 
5 (4,530—6,000K) 4.04923 E-5 0.11381 198.38643 
 

Table 2. PETN detonation products EOS (CJ isentrope): Piece-wise Quadratic Model 

Region i aDP
i  bDP

i  cDP
i  

1 (300—2,340K) 3.31674 E-5 0.20867 -1,890.164 
2 (2,340—3,700K) 5.97088 E-5 0.0377 -1,634.868 
3 (3,700—4,150K) 1.9052 E-4 -0.89226 20.04935 
4 (4,150—4,530K) 2.28177 E-4 -1.20053 651.0422 
5 (4,530—6,000K) 1.78281 E-4 -0.774255 -248.616 
 

Table 3. PETN-air combustion products EOS (10 bars): Piece-wise Quadratic Model 

Region i aCP
i  bCP

i  cCP
i  

1 (300—2,340K) 4.745 E-5 0.1549 -1,555.6 
2 (2,340—3,700K) 4.6038 E-4 -1.7722 711.74 
3 (3,700—4,150K) 4.9083 E-4 -1.841 558.87 
4 (4,150—4,530K) -6.1549 E-4 7.3463 -18,515.0 
5 (4,530—6,000K) -2.8216 E-4 3.8022 -9,254.5 
 

Table 4. TNT detonation products EOS (CJ isentrope): Piece-wise Quadratic Model 

Region i aDP
i  bDP

i  cDP
i  

1 (300—2,340K) 5.3244 E-5 0.17393 -941.33 
2 (2,340—3,700K) 7.9903 E-5 0.035886 -760.12 
3 (3,700—4,150K) 0 1.80555 -6211.8 
4 (4,150—4,530K) 4.5108 E-4 -2.7713 5,014 
5 (4,530—6,000K) 2.578 E-3 -22.917 52,697 
 

Table 5. TNT-air combustion products EOS (CJ isentrope): Piece-wise Quadratic Model 

Region i aCP
i  bCP

i  cCP
i  

1 (300—2,340K) 3.5282 E-6 0.25361 -949.3 
2 (2,340—3,700K) 2.5302 E-4 -0.80169 168.08 
3 (3,700—4,150K) -6.1238 E-5 1.5345 -4,178 
4 (4,150—4,530K) -3.9217 E-4 4.2413 -9,713.6 
5 (4,530—6,000K) 2.7654 E-5 0.2432 -195 
 

Table 6. Al inert EOS: Piece-wise Quadratic Model 

Region i aAl
i  bAl

i  cAl
i  

1-5 (300—6,000K) 0 0.28128 -8.3895 
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Table 7. Al-Air combustion products EOS (10 bar): Piece-wise Quadratic Model 

Region i aP
i  bP

i  cP
i  

1 (300—2,340K) 1.76153E-5 0.20186 -1,553.62 
2 (2,340—3,700K) 1.49115 E-5 0.2502 -1,554.5182 
3 (3,700—4,150K) 0.00113 -7.95255 13,553.8 
4 (4,150—4,530K) 0.00826 -67.29752 137,084.51 
5 (4,530—6,000K) 5.03544 E-5 -0.07059 1,216.0279 
 

Table 8. Molecular mass for components 

Component condition MW (g/mole) 
Air p=10 bars, T < 3,000K  28.85 
PETN detonation products isentrope, T =1,800K  28.76 
PETN-air combustion products ( s = 0.482) p=10 bars, Ta = 3,200K  27.75 
TNT detonation products isentrope, T =1,800K  26.93 
TNT-air combustion products ( s = 3.35) p=10bars, Ta = 2,900K  29.65 
Al-air combustion products ( s = 4.03) p=10bars, Ta = 4,120K  40.78 
 

 
(a) PETN Booster 

 

(a) PETN Booster Cross-section 

 
(b) Composite Charge 

 

(b) Composite Charge Cross-section 

 
(c) Al-SDF Charge 

 

(c) Al-SDF Charge Cross-section 

 
 
Figure 1. Charge construction: (a) 0.5-g PETN booster charge; (b) composite charge (0.5-g 
PETN booster + 1-g TNT shell); (c) Al-SDF charge (0.5-g PETN booster + 1-g Aluminum). 
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Figure 2. Detonation products loci for TNT and PETN charges ( 0 =1g /cc ). Curves 
TNT and PETN represent the locus of detonation products states along the expansion 
isentrope, starting at the CJ point, and expanding to 1 bar.  Products composition becomes 
frozen for T<1,800 K (below point F).  
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Figure 3. Loci of thermodynamic states for various fuels (Al; TNT and PETN isentropes) 
and air. 
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Figure 4. Combustion Products (CP) loci for stoichiometric mixtures of TNT-air ( s = 3.35) 
and PETN-air ( s = 0.482) in thermodynamic equilibrium (p = 10 bars). Horizontal lines 
represent adiabatic combustion. 
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Figure 5. Combustion Products (CP) loci for stoichiometric mixtures of PETN-air 
( s = 0.482) and Al-air ( s = 4.03) in thermodynamic equilibrium (p = 10 bars). Horizontal 
lines represent adiabatic combustion. 
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Figure 6. Loci of states for detonation products gases of PETN as calculated by the 
CHEETAH code. 
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Figure 7. Loci of states for Combustion Products from a stoichiometric mixture of PETN 
detonation products gases with air, as calculated by the CHEETAH code. Products are 
assumed to be in thermodynamic equilibrium. 


