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ABSTRACT 

A spin- and angle-resolved x-ray photoelectron spectrometer for the study of magnetic materials 

will be discussed. It consists of a turntable with electron lenses connected to a large hemispherical 

analyzer. A mini-Mott spin detector is fitted to the output of the hemispherical analyzer. This 

system, when coupled to a synchrotron radiation source will allow determination of a complete set 

of quantum numbers of a photoelectron. This instrument will be used to study ferromagnetic, 

antiferromagnetic and nonmagnetic materials. Some prototypical materials systems to be studied 

with this instrument system will be proposed. 
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Recent studies have demonstrated that excitation of the photoelectrons via circularly polarized 

photons results in additional sensitivity to the element and site specific local magnetic order via the 

dipole selection rules1-6.  The utility of spin resolved experiments have been demonstrated both 

experimentally7- 10 and theoretically11-13. However, combining high angular resolution x-ray 

photoemission with spin resolving capability poses significant experimental challenges.  

A new compact angle resolving spin spectrometer for conducting such double polarization 

experiments was developed for this purpose. This spectrometer combines a large (11 inch) diameter 

fixed hemispherical analyzer with a novel rotatable input lens system allowing data with ±1 degree 

angular resolution to be acquired for any combination of incident and emission angles as shown in 

Figure 1. The analyzer is equipped with both multichannel detection for high resolution (50meV) 

spin integrated spectroscopies and a Mini-Mott detector capable of resolving the photoelectron spin 

polarization along the two perpendicular axes of the horizontal plane which contains the sample 

normal and the incident ray of the photon beam. Switching between spin integrated and spin 

resolved modes is achieved by focusing the photoelectrons through a small hole in the detector of 

the hemispherical analyzer and into a compact Mini-Mott detect behind the channel plates.  

The combination of fixed hemispherical analyzer and rotating lens assembly has advantages over 

other spectrometer designs. The input lens assembly can collect photoelectrons from any emission 

angle while the two measurement axes of the Mini-Mott detector remain fixed. This considerably 

simplifies the interpretation of spin polarization data. The positioning of the analyzer beneath the 

chamber results in a spectrometer footprint that is smaller than most conventional XPS systems. In 

addition, the small, in-situ lens assembly causes minimal obstruction of the area around the sample 

without compromising the resolution and throughput; as would be the case with a conventional 

small, rotating hemispherical analyzer. The addition of a small hole through the first bending 



element also allows for normal incidence / normal emission experiments to be conducted; a high 

symmetry geometry that is important for verification of theoretical models.  

The high energy resolution with high throughput is achieved with an 11-inch diameter 

hemispherical analyzer supplied by Physical Electronics. The novel aspect of the analyzer is that 

the multichannel detector on the exit of the analyzer has a hole in the center, permitting the direct 

passage of energy analyzed electrons into the electron optics of the Mini-Mott detector. The 

presence of the hole does cause an increase in dark counts for non-spin detection but this simply 

adds a constant background to each spectrum.  

Spin resolution is achieved by directing the electrons through the optics and into the Mini-Mott 

detector.  Since the spin resolved detection does not require precise imaging, the burden of high 

resolution spatial imaging is lifted from the 90°sectors. This allows the 90°sectors to be operated at 

high pass energies, optimizing throughput. In the Mini-Mott, the electrons are accelerated to 24 kV, 

with four channeltrons positioned with two measuring the spin component longitudinally along the 

incident photon beam direction and two measuring the spin component transverse to the photon 

beam in the plane of incidence of the photon beam. The spin component perpendicular to the plane 

of incidence is not measured.  Despite a relatively low figure of merit, the Mini-Mott has two 

advantages in our design. First, it provides essentially turn-key operation with the requirement of 

no special preparation. Second, it has been shown that the electron optical matching of a spin 

detector to a large hemisphere can be optimized by the use of a Mini-Mott.   

Figure 2 illustrates a variety of experiments that can be performed with the system. In part A, the 

"double polarization" experiment with circularly-polarized incident photons and spin detection, the 

Mini-Mott detector exhibits a left-right (L-R) asymmetry which inverts upon changing the helicity 

of the radiation from left-circularly polarized (LCP) to right-circularly polarized (RCP).  Part B 



shows the case for a ferromagnetic sample with perpendicular magnetization with normally-

incident linearly polarized (LP) radiation (s-polarized14). Changing the magnetization from –M to 

+M again inverts the left-right asymmetry of the Mini-Mott. In part C, the in-plane magnetized 

sample with s-polarized normally-incident radiation, the asymmetry in the front-back (F-B) 

scattering in the Mini-Mott will be observed.  Since photoemission intensities are modulated by the 

projection of the vector potential of the incident radiation onto the momentum operator, it is also 

desirable to change the angle of incidence for linear polarized radiation to identify the symmetry of 

the initial state.  In part (D), the magnetization vector for both the perpendicular and in-plane cases 

will result in asymmetries for both F-B and L-R channels. The direction of magnetization is simply 

determined from the direction of the applied field which creates an asymmetry reversal.   

This work was performed under the auspices of the U.S. Department of Energy, by the University 

of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.  Work that 

was performed by LLNL, UA and UMR personnel was supported in part by the Office of Basic 

Energy Science at the U.S Department of Energy.
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Figure Captions 

Figure 1. Schematic diagram of the electron optics (side view). (A) Rotating entrance lens assembly. 

(B) Transfer lens. (C) 11-inch diameter hemispherical analyzer. (D) Transfer lens. (E) Spin-

resolving Mini-Mott detector. 

Figure 2. Illustration of possible experimental geometries (top view). (A) "Double polarization." 

(B) Perpendicular and (C) in-plane magnetized ferromagnetic samples with s-polarized radiation. 

(D) Excitation with p-polarized radiation.
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