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Abstract

Integral equation theory techniques are applied to evaluate the structuring of the polymer when

large solid particles are embedded into a bulk polymer melt. The formalism presented here is

applied to obtain an insight into the filler particle aggregation tendency. We find that with the

employed polymer-particle interaction model it is very unlikely that the particles will aggregate.

We believe that in such a system aggregation and clustering can occur when the filler particles are

dressed by tightly bound polymer layers.
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I. INTRODUCTION

The authors are pleased to dedicate this paper to Keith Gubbins on the occasion of his

birthday at the midpoint of his career.

One of the most pronounced features of polymer melts (for instance, various silicones

such as polydimethysiloxane or PDMS) is its ability to dramatically change its mechanical

properties with the addition of an inorganic filler to the pure polymer phase. In particular,

the strength of the polymer/particle system increases as the filler concentration increases.

This reinforcing mechanism is poorly understood and consequently, the rational control of

the resulting mechanical properties is difficult and usually is based on empirical assumptions.

Currently, it is believed that the primary reinforcing mechanism in this polymer/particle

system has its origin in some peculiar features of particle-polymer interactions. At the same

time, there are arguments indicating that taking into account particle-polymer interaction

alone is not enough to explain the reinforcement. In particular, the interaction between

a single particle surface and polymer molecules does not depend how many particles are

embedded into a polymer melt. But, on the other hand, the properties of polymer strongly

depend on the fraction of filler particles1,2. The latter observation suggests that, besides the

polymer-filler interaction, geometrical restrictions imposed on the polymer by the presence

of particles has a major impact on the resulting polymer properties.

Computer simulations are the most efficient tool to deal with system with complex chem-

ical structures using a full atomistic level of modelling. Computer simulations for the par-

ticular polymer/particle system experience problems that involve the consideration of the

simultaneous presence of a large number of filler particles. In fact, the length scale (di-

ameter) of filler particles usually is much larger than the equivalent polymer length scale

(diameter of a polymer bead or radius of gyration or transverse diameter of the polymer

chains). Therefore, simulations of polymer/particle system with an experimental volume

fraction of the particles will require an extremely large number of polymer molecules. In

contrast, an integral equation theory study of a system of complex chemical structures re-

quires the involvement of some approximations and the effect of these approximation often

is not known in advance. However, integral equation theory techniques do allow one to deal

with the system comprising realistic numbers (densities) of both the filler particles and the

surrounding polymer melt.

The purpose of the present note is to apply the integral equation theory (IET) to deal

with the polymer/particle system with the aim of obtaining a deeper insight into the nature

of the reinforcement. By performing atomistic (or if necessary even ab initio) computer

simulation for bulk polymer solution and for polymer with a single particle surface we can

obtain the necessary information concerning the nature of the polymer-particle interactions

and then incorporate this information into integral equation calculations by means of effec-

tive parameters of the surface-polymer interaction. In such a case, the level of the modelling

within the framework of IET can be simplified. For instance, we will not need to include

explicitly the presence of the water on the silica surface since the effect of water is incorpo-
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rated already into the parameters of the surface-polymer interaction. The outcome of our

IET calculations will be in a form that will show the sensitivity of the physical properties

of the polymer to variations in the interfacial region.

II. INTEGRAL EQUATION APPROACH AND ITS IMPLICATION TO POLY-

MER/PARTICLE SYSTEM

Typically the integral equation technique is based on the Ornstein-Zernike (OZ) equation3

hλµ(r12) = cλµ(r12) +
∑

ν=s,p

ρν

∫

hλν(r13)cνµ(r32)dr3 , (1)

where the Greek subscripts range over all the system components, i.e. polymer (p) as well

as particles ( s ), and rα is the position of particle α . Finally, rλµ = |rλ−rµ| . The function

hλµ(r) = gλµ(r) − 1 is the total correlation functions for a pair of particles of component

λ and µ that are separated by the distance r . The function gλµ(r) is the pair or radial

distribution functions (RDF). The function cλµ(r) is the direct correlation function.

One of the important features of this polymer/particle system is the simultaneous pres-

ence of the different length scales that characterize the polymer species and filler particles.

Two different approaches developed within the IET can be employed to deal with the is-

sue of different length scales. The first approach relates to the reduction of the initial

polymer/particle system to an effective one-component particle system with an effective

particle-particle interaction that incorporates the properties of polymer. The second ap-

proach assumes that different length scales result in a different mobilities of the filler particles

and polymer. This suggests treating the filler particles as the immobile species, while the

polymer is considered as being adsorbed into a disordered particle environment. However,

this approach is beyond the scope of the present study.

To proceed with the first approach let us assume in equation (1) that there are only one

or two particles in the mixture. Thus, the particles are present at infinite dilution with zero

concentration, ρs = 0 . Further, we assume that the product of the particle density and

the particle size D , which is large, vanishes, i.e., ρsD3 = 0 ; otherwise, the particle would

affect the entire polymer matrix. In other words, the particles are part of the bulk polymer

at vanishingly small density, i.e. ρs → 0 . Using this fact, equation (1) results in a system

of three equations

hpp = cpp + ρpcpp ⊗ hpp , (2)

hps = cps + ρpcsp ⊗ hpp , (3)

and

ho
ss = co

ss + ρpcsp ⊗ hps . (4)

This limiting procedure is called the Henderson-Abraham-Barker approach. For notational

convenience, in all the equations above we have omitted the dependence on r ; the symbol
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⊗ denotes a convolution in r-space. The first equation, (2), is just the OZ equation for

the homogeneous polymer melt. Equations (3) and (4) involve the filler particles and, due

to this, play an important role in the statistical mechanics of inhomogeneous systems, i.e.,

systems involving diluted mesoscopic objects. Namely, equation (3) describes the polymer

inhomogeneity by means of the local density profiles ρp(r) = ρpgps(r) of the polymer species

near the particle or surface. In turn, equation (4) describes the correlations between only

two filler particles mediated by the polymer, and consequently yields information that can

be used to evaluate the effective pair interaction between a pair of silica particles. Because

the particles are large, the region between pair can be approximated as a slit.

III. BRIEF REVIEW OF THE INTEGRAL EQUATION THEORIES FOR A PURE

POLYMER SYSTEMS

The integral equation technique that is to be applied to deal with polymer molecules

differs from the ordinary IET approach that deals with simple molecular liquids. Currently

several integral equation theories that enable one to predict the structure and thermody-

namical properties of the fluid of chain molecules in a bulk phase are available. Among

those, the most promising are the theories, that are based either on the reference interac-

tion site model (RISM) approach4 or on the multi-density approach for associating fluids5,6.

The theories of the first type are known under the general name polymer RISM (PRISM).

Originally PRISM has been developed by Curro and Shweizer7,8 as a simple application of

the RISM approach of Chandler and Andersen4 to a fluid of flexible ring molecules. Since

then several modifications have been proposed and used in a large number of applications.

Two review papers9,10 give a reasonable insight into the older developments of PRISM. Later

developments have been reviewed recently11.

Originally, the PRISM approach appeared not to be a self-contained theory, i.e. certain

input information other than the intramolecular distribution functions, was needed. Several

different approximations for the intramolecular correlations have been proposed. Later,

a self-consistent version of the theory was developed with the intramolecular distribution

function obtained from a one-chain computer simulation, i.e. the simulation of one molecule

with an effective potential between the monomers of the chain that is obtained from the

solution of the PRISM equation during the previous iteration cycle. Other self-contained

versions of the theory are also available; however, they appear to be less successful. In

general PRISM provides reasonable qualitative, and sometimes quantitative, predictions for

the structure of dense polymer systems (melts and alloys), polymer-colloidal mixtures. It is

not utilized extensively that in the prediction of thermodynamical properties.

The version of the multi-density theory that is represented by thermodynamic per-

turbation theory (TPT)6,12 and its modifications, i.e. statistical associating fluid theory

(SAFT), proves to be very successful in predicting thermodynamical properties of a fluid

of chain molecules and its mixtures. An integral equation version of Wertheim’s multi-
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density theory for associating fluids5,6 has been also developed and applied to study the

properties of the chain molecule fluids13,14. This extension of the Wertheim’s theory is

known as a product-reactant Ornstein-Zernike approach (PROZA). The PROZA is a general

statistical-mechanical theory of reacting mixtures in which the product molecules and re-

acting molecules are treated on the same footing. When applied to polymerizing monomers,

PROZA yields the mean monomer-monomer pair correlation function, from which the ther-

modynamics of a fluid of polymerizing molecules can be obtained directly. In the complete-

association limit, the PROZA becomes a theory for the structure and thermodynamics of

a fluid of fully polymerized chain. Several different approximations (PY-like, MSA-like and

HNC-like) have been proposed and applied to a different macromolecular systems which

include hard-sphere chain fluids15–17, hard-sphere ring fluids18 and star molecule fluids19,20,

chain fluids with Yukawa21,22 and Coulomb23 interactions between monomers, etc.

Unlike the PRISM approach, PROZA is a self-contained theory and provides predic-

tions for both intermolecular and intramolecular correlation simultaneously. While PRISM

requires the application of numerical methods of solution, analytical solution of the Percus-

Yevick (PY) and mean spherical approximation (MSA) versions of PROZA are available

for most of the cases. Thus, within PROZA one can have analytical expressions for both

thermodynamics and structural properties. However, PRISM has an advantage of being

applicable to a fluid of long chain molecules, while so far PROZA-based theories have been

used mostly for fluids of relatively short chain molecules. The application of the latter

approach is restricted by the increasing dimensionality of the matrices involved into the cor-

responding multidensity Ornstein-Zernike (OZ) equation, which appears to be proportional

to the length of the chain molecules. We will attempt to remove this obstacle and reduce

the dimensionality of the matrices by neglecting the chain end effects, i.e. assuming that

all intermolecular site-site distribution functions are equal regardless of their position in the

chain. This allows us to treat the molecules of any length using corresponding OZ equation

of the same dimensionality.

In the present study PROZA integral equation approach is applied to study the effect of

the hydration level of the silica surface on the interaction between filler particles. We start

from PROZA approach for the bulk structure of PDMS and extend it on the inhomogeneous

PDMS melts including the presence of a single confining surface and a pair of surfaces, i.e.

slit pore of a variable thickness.

IV. PROZA MULTI-DENSITY FORMALISM FOR POLYMER MELTS

A. Fluid of linear homo-nuclear chain molecules

We start with the simplest case of chain molecule fluids – a melt of linear homo-nuclear

chain molecules. Each homo-nuclear chain molecule consists of m identical repeated

monomer units. Each monomer units is composed of a single atom modelled by a hard
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sphere with two interacting sites, A and B . Each of these sites bond one site of two dif-

ferent atoms from two neighboring monomers to form the monomer chain. The number m

of repeated monomer units serves as a measure of the length of the chain.

The multi-density OZ equation for such a model chain fluid reads,

ĥαβ(k) = ĉαβ(k) + ρ
∑

γ

(

ĉαγ(k) + ∆̂αγ(k)
)

α

(

ĥγβ(k) + ∆̂γβ(k)
)

, (5)

where ρ is the number density of chain molecules, subscripts α, β, γ stand for the monomers

in the system. The notation ĥαβ(k) and ĉαβ(k) is used for the matrices whose elements are

the Fourier transforms of the elements of the matrices hαβ(r) and cαβ(r), respectively. In

particular,

cαβ(r) =







cα0β0
(r) cα0βA

(r) cα0βB
(r)

cαAβ0
(r) cαAβA

(r) cαAβB
(r)

cαBβ0
(r) cαBβA

(r) cαBβB
(r)






,

and similarly for hαβ(r) . The functions hαmβn(r) and cαiβj
(r) are the partial pair and

direct correlation functions. The subscripts i, j characterize the bonding state of the site

of the monomer α , namely, 0 means unbonded site, A – site A is bonded, B – site B is

bonded.

In contrast, matrices α and ∆̂αβ(k) are defined as follow,

αij = 1 − δij + δ0iδ0j ,

and

∆̂αβ(k) = δα,β+1







0 0 0

0 0 ∆̂(k)

0 0 0






+ δα,β−1







0 0 0

0 0 0

0 ∆̂(k) 0






, (6)

where δαβ is the Kronnekker symbol,

∆̂(k) =
1

ρ

sin(kL)

kL
,

with L being the bond length.

Taking the sum over α and β from both sides of the OZ equation (5) and assuming, that

both the direct and total correlation functions are independent of the indices α and β, we

have

ĥ(k) = ĉ(k) + ρ
(

ĉ(k) + ∆̂(k)
)

α

(

ĥ(k) + ∆̂(k)
)

, (7)

where

ĥ(k) =
1

m2

∑

αβ

ĥαβ(k), ĉ(k) =
1

m2

∑

αβ

ĉαβ(k),
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∆̂(k) =







0 0 0

0 0 ∆̂(k)

0 ∆̂(k) 0






(8)

with

∆̂(k) =
1

mρ

(

m − 1

m

)

sin(kL)

kL
.

The dimensionality of the set of OZ equations (7) is 3×3 regardless of the chain length m .

B. Application to the bulk PDMS melts

All calculations that will be reported here have been performed for a model polymer

system that mimics polydimethylsiloxane (PDMS) melt. As for filler prototype we consider

silica particles.

1. United atom model

The chemical formula of polydimethylsiloxane is (C2H6OSi)n . This means that the

molecules of this melt are modelled by the chain composed of the repeated monomer units

composed of four species: two of them are associated with O and Si atoms while another

two are CH3 groups. This model is the united atom (UA) approach since the methyl group

CH3 is treated as a single atom while O and Si atoms are treated explicitly. The parameters

of the model have been given24,25.

To keep the theory treatable, we simplify the UA model in the following way: (i) removing

bending and torsional interaction, (ii) adding one more oxygen atom, so that the chain from

one end starts with, say, a Si atom and ends up with ,say, a O atom (for symmetry), (iii) on

both ends of the chain we have two CH3 groups, instead of three as in the original model.

2. OZ equation

The modified version of the multidensity OZ equation for such a model has the following

form,

ĥab
αβ(k) = ĉab

αβ(k) + ρ
4

∑

c=1

∑

γ

(

ĉac
αγ(k) + ∆̂ac

αγ(k)
)

αc

(

ĥcb
γβ(k) + ∆̂cb

γβ(k)
)

. (9)

Now all the functions additionally have superscripts a, b and c that denote the type of

atoms comprising the chain monomer unit. Because of this, in contrast to equation (5)

there is an extra summation over the species of monomer units where 1 stands for the O

atom, 2 – for the Si atom, and 3 and 4 – for both the CH3 groups treated as a single atom.
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The chain length is m , which equals the a number of either oxygen or silicon atoms. For

the sake of convenience this set of equations can be rewritten as follows,

ĥ(k) = ĉ(k) + ρ
(

ĉ(k) + ∆̂(k)
)

α

(

ĥ(k) + ∆̂(k)
)

, (10)

where

ĥ(k) =





























































h11
00 h11

0A h11
0B h12

00 h12
0A h12

0B h12
0C h12

0D h13
00 h13

0A h14
00 h14

0A

h11
A0 h11

AA h11
AB h12

A0 h12
AA h12

AB h12
AC h12

AD h13
A0 h13

AA h14
A0 h14

AA

h11
B0 h11

BA h11
BB h12

B0 h12
BA h12

BB h12
BC h12

BD h13
B0 h13

BA h14
B0 h14

BA

h21
00 h21

0A h21
0B h22

00 h22
0A h22

0B h22
0C h22

0D h23
00 h23

0A h24
00 h24

0A

h21
A0 h21

AA h21
AB h22

A0 h22
AA h22

AB h22
AC h22

AD h23
A0 h23

AA h24
A0 h24

AA

h21
B0 h21

BA h21
BB h22

B0 h22
BA h22

BB h22
BC h22

BD h23
B0 h23

BA h24
B0 h24

BA

h21
C0 h21

CA h21
CB h22

C0 h22
CA h22

CB h22
CC h22

CD h23
C0 h23

CA h24
C0 h24

CA

h21
D0 h21

DA h21
DB h22

D0 h22
DA h22

DB h22
DC h22

DD h23
D0 h23

DA h24
D0 h24

DA

h31
00 h31

0A h31
0B h32

00 h32
0A h32

0B h32
0C h32

0D h33
00 h33

0A h34
00 h34

0A

h31
A0 h31

AA h31
AB h32

A0 h32
AA h32

AB h32
AC h32

AD h33
A0 h33

AA h34
A0 h34

AA

h41
00 h41

0A h41
0B h42

00 h42
0A h42

0B h42
0C h42

0D h43
00 h43

0A h44
00 h44

0A

h41
A0 h41

AA h41
AB h42

A0 h42
AA h42

AB h42
AC h42

AD h43
A0 h43

AA h44
A0 h44

AA





























































(11)

The matrix for ∆̂(k) has the same 12 × 12 dimensionality with all elements equal zero

except,

∆̂12
AB(k) = ∆̂21

BA(k) = ∆̂12
BA(k) = ∆̂21

AB(k) =
m − 1

m

sin(kL12)

mρkL12
, (12)

∆̂23
CA(k) = ∆̂32

AC(k) =
sin(kL23)

mρkL23
, (13)

and

∆̂24
DA(k) = ∆̂42

AD(k) =
sin(kL24)

mρkL24
. (14)

Here superscript 1 stands for the O monomers, 2 – for the Si monomers and 3 and 4 – for

both CH3 monomers. The chain length is m , which equals to the number of either oxygen

or silicon atoms.

The partial pair correlation functions hαβ(r) that result from the solution of equation (7),

do not have an immediate physical meaning. The usual physical meaning has the atom-atom

(the same in the case of homo-nuclear chain) total pair correlation function or atom-atom

total radial distribution function,

gtotal
ab (r) =

∑

ij

hab
ij (r) + 1 , (15)

where the sum is over the bonding states of the sites of the atoms a and b .
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3. Closure conditions

To solve OZ equation (9) we have used polymer PY (PPY) and polymer HNC (PHNC)

closures. The PPY closure reads,

cab
00(r) = fab(r)

(

tab
00(r) + 1

)

(16)

cab
0K(r) = fab(r)t

ab
0K(r), cab

K0(r) = fab(r)t
ab
K0(r), cab

MK(r) = fab(r)t
ab
MK(r) (17)

and the PHNC closure

cab
00(r) = gab

00(r) − tab
00(r) − 1, (18)

cab
0K(r) =

(

gab
00(r) − 1

)

tab
0K , cab

K0(r) =
(

gab
00(r) − 1

)

tab
K0, (19)

cab
MK(r) = gab

00(r)
(

tab
M0(r)t

ab
0K(r) − tab

MK(r)
)

− tab
MK(r), (20)

where

tab
αβ(r) = hab

αβ(r) − cab
αβ(r), fab(r) = exp (−ULJ(r)/kT ) − 1, (21)

gab
00(r) = exp

(

−ULJ(r)/kT + tab
00(r)

)

, (22)

ULJ(r) is the nonbonded Lennard-Jones potential of the UA model of the PDMS.

C. Application to the confined PDMS melts

Within the framework of integral equation theory the equation for polymer partial density

profiles has the form,

ya
i (z) = δi0 + 2πρ

4
∑

b=1

∑

j

∑

k

∫ z+ 1
2
[σa+σb]

z− 1
2
[σa+σb]

(

∫ 1
2
[σa+σb]

|z1−z|

rcab
ij (r)dr

)

αjkh
b
k(z1)dz1, (23)

where ya
i (z) are the partial cavity distribution functions. The coefficients αjk in equation

(23) are the elements of the normalized density matrix while the subscripts i, j and k

run over the bonding states of the sites of the corresponding atoms O, Si and CH3. The

most important ingredients of equation (23) are the partial direct correlation functions cab
ij

that characterize the bulk system. These functions are the input for the inhomogeneous

fluid calculations and have been obtained in previous section, together with the partial pair

correlation functions.

By applying the PPY approximation to the partial polymer-surface correlations, the

relation between ya
i (z) and polymer-surface correlation functions, ha

i (z) , reads,

ha
i (z) + δi0 = e−βUpW

a (z)ya
i (z) . (24)

The functions UpW
a (z) in equation (24) represent potentials of the polymer-surface interac-

tion. There are a few different ways to characterize this interactions. In present calculations
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we have used the polymer-surface potentials that are representative of a surface containing

oxygen atoms to represent an amorphous silica surface. These potentials have the form26

UpW
a (z) = Aaw

[

2

7

(σaw

z

)7

−
3

4

(σaw

z

)4
]

for a = Si, O

= Aaw

[

2

5

(σaw

z

)10

−
(σaw

z

)4
]

for a = CH3 , (25)

where the coefficient Aaw = 2πρwsσ2
awεaw . This potential has been obtained by integrating

over the surface plane that is assumed to consist of a given density of oxygen atoms, rep-

resenting the OH groups on the surface. The surface density of OH groups was taken to

be ρws = 0.039 Å−2 . This number was obtained in an atomistic simulation of amorphous

silica27. The parameters of the wall-atom interactions are chosen to be the same as in the

hybrid/UA model for the bulk PDMS, assuming that σaw = σaO and εaw = εaO .

The corresponding normalized density profiles, ga(z) = ρ(z)/ρbulk
a , that are the subject

of interest in this section, can be written as follows,

ga(z) = 1 +
∑

i

ha
i (z) , (26)

where the sum is over the bonding states of the sites of the atoms a .

V. RESULTS

The solutions of integral equations were obtained at a room temperature T = 300 K and

a number density of PDMS molecules ρ = 0.0004 Å−3 . The PPY and PHNC closures give

practically the same results. Therefore, only PHNC results are presented and discussed.

A. Radial distribution functions of a bulk PDMS melt

In figure 1 the total atom-atom radial distribution functions, that consist of both in-

tramolecular and intermolecular contributions, are displayed. The symbols correspond to

the simulation data. According to the parameters of the PDMS model, the bonding dis-

tances between methyl group and silicon, L23 and L24 , and especially between oxygen and

silicon, L12 , are rather short. This creates some problems for the PROZA theory by mak-

ing the chains less flexible than they are in reality. As a result, the structural properties

of a four-atom model of the PDMS, that follows from the PROZA theory seem to be not

very accurate when compared against simulation data where the chain flexibility is treated

properly. In contrast, the PRISM theory, that takes the intramolecular part (i.e. chain flex-

ibility) of the radial distribution function as an input, seems to provide a better description

of the PDMS structure as follows from the results reported by Curro et al7–11.

However, the subject of our interest in the description of bulk polymer is the intermolec-

ular correlation functions. Figure 2 shows the results for intermolecular functions that have
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been calculated from PROZA theory using the simplified PDMS model when the presence

of oxygen atoms was counted in an effective way. We can see, that the theoretical curves re-

produce general features of the simulated radial distribution functions, but fail to reproduce

the details.

B. Local density of a PDMS melt near a single surface

The normalized local density distributions of silicon and carbon atoms next to a single

surface, that represents a filler particle, follow from our calculations are presented on figure 3.

The similar results have been obtained from computer simulations of the full hybrid/UA

model of the PDMS melt next to an atomistic silica surface. It can be seen that the pendant

methyl groups of the PDMS chains seems to be closer to the silica surface than the silicon

atoms on the backbone. This might be expected since the methyl group are more exposed

and tend to shield the polymer backbone atoms.

We can see that interface between PDMS and silica consists of densely packed and partly

ordered layers in which the polymer segments tend to run preferentially parallel to the solid

surface. This perturbation of the polymer density and polymer ordering does not extend

into the bulk phase more than three times the transverse diameter of the PDMS chain.

C. PDMS between two surfaces

The normalized local density distributions of silicon and carbon atoms across a slit formed

by two surfaces each representing a filler particle, at different separations are shown on

figure 4. The calculations have been performed in the way that the density of polymer in

the slit was not fixed a priori, but is allowed to vary with the slit thickness in such a way

that the contents of the slit is always in equilibrium with the bulk PDMS that is kept at

fixed conditions.

Figure 4a shows the case when the slit thickness allows only for one polymer layer to

be accommodated in a slit. Whenever more than one layer is present, the layers are not

layers of single PDMS molecules, in the sense that monomers of a given polymer molecule

participate in several layers and bridge them. It is clearly seen for the slit with two and

three layers where the polymer density at the middle of the slit is not zero. From these

results we can see that silicon atoms are responsible for polymer stratification while carbon

groups result in bridging effect.

In particular, we can see that local density distribution indicates very high probability

for the polymer to be adsorbed on the silica surface by means of a single CH3 methyl group

while the second CH3 group is placed away from the surface as it is shown schematically

on figure 3. The pendant methyl groups of the PDMS chains are closer to the filler surface

than the silicon atoms on the backbone. Again this seems to be physically correct result

since the methyl groups are more exposed and tend to shield the polymer backbone atoms.
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As follows from our calculations, in the immediate vicinity of the particle surface there

is a shell around filler particles formed by an adsorbed polymer. The thickness of this shell

does not exceed 1.5 nm; the shall is strongly attached to the surface of filler particle and

can be associated with the immobile layer. That may result in the limiting of the mobility

of adsorbed molecules. This agree well with numerous experimental evidence which suggest

that the restriction of chain mobility does not extend throughout the material but affects

only the chains within a few nanometers of the filler surface.

D. Solvation pressure

Once density profiles are known, some other properties of the composites can be calcu-

lated. In particular, an equilibrium property of the fluid confined by a slit-like pore is the

pressure acting on the particle surfaces in the direction perpendicular to the surfaces, or

local stress or normal pressure, PN . It can be calculated from the density profiles, and as

a function of gap width between filler particles by28–30

βPN(H) = −β
∑

a

∫ H/2

0

∂UpW
a (z,H)

∂z
ρa(z,H)dz , (27)

where H is the separation between surfaces of two particles, while z is the distance from

the center of the polymer unit from to the particle surface. The normal pressure, PN(H) ,

measured relative to the bulk pressure, PB , i.e., pressure of a pure polymer that is at the

same conditions as a composite, will define the solvation pressure, Π(H),

Π(H) = PN(H) − PB. (28)

The bulk pressure is one of the parameters that determine the thermodynamic state of the

bulk polymer melt. It can be calculated independently or can be identified as a limiting value

of the normal pressure acting between surfaces at infinite separation, i.e. at very low content

of the filler particles. To satisfy the self-consistency of the numerical procedure, we used

the second possibility i.e., we assume PB ≡ PN(H → ∞). Particularly, to calculate bulk

pressure we used suface-to-surface separation of 50 nm, that according to figure 3 provides

us well defined homogeneous region.

We can see that there is large repulsive barrier at the separation between surfaces around

10Å. If we look for the density distribution at that separation we find that this gap allows

for a single polymer layer.

VI. DISCUSSIONS AND CONCLUSIONS

One further aspect that should be taken into account concerns the aggregation of silica

particles embedded into the PDMS melt. Quite recently31 it has been shown experimentally

that the aggregates of nanometric silica spheres have a strong influence on the mechanical
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properties of the latex/silica nanocomposite. Usually it is assumed that clustering of filler

particles occurs because of strong attractive van der Waals forces that are always present

between particles at short distances. For this case the aggregation (vdW aggregation) will

occur if the separation between filler surfaces will be smaller than 10Å when no polymer

will be in the gap. Another possibility for the vdW aggregation can be expected when the

polymer structuring (layering) near surface will be diminished by tuning polymer-particle

interaction (25). Indeed, it was observed31 that average aggregation number to be tuneable

via the precursor solution pH that in fact may influence polymer density distribution in the

particle’s neighborhood36.

On other hand, the average spacing 〈δ〉 between silica particles as function of volume

fraction,

φ =
π

6

Nf

V
D3 , (29)

occupied by Nf filler particles can be estimated from:

〈δ〉 = D





(

1

6

π
√

2

φ

)1/3

− 1



 , (30)

where D is the hard-core diameter of the silica sphere. It follows that at the same loading

(the same volume fraction), particles with larger diameter D will be separated by larger

gaps. For example, in the case of particle diameter D = 10nm and particle volume frac-

tion φ = 0.35 , the average gap width between particles is around 30Å while in the case

D = 100nm gap width increases up to 300Å. Interestingly, experimental studies show that

smaller particles are much more effective at reinforcing polymers than large particles. Thus,

the separation between particles and conditions of the geometrical confinement in the gap

between them can be one of the important ingredients for reinforcement to occur.

Finally, similarly to the monatomic molecular liquids, polymer chains next to the con-

fining surfaces form layers. The layers in molecular liquids are formed by the individual

molecules, i.e. one molecule participate in the formation only one layer. In contrast, the

polymer molecule usually participates in few different layers. Because of this, the part of

polymer matrix that forms layered structure has very low mobility or even are immobilized;

such polymer chains can be associated with tightly bound polymer. From the same reason,

polymer in the region that follows layered region still does not represent bulk polymer since

some of the chains from this region are parts of the immobile polymer; such polymer chains

can be associated with loosely bound polymer (see figure 2 and figure 6).

The existence of these two regions in confined polymer melts has been suggested by

Tsagaropoulos and Eisenberg32 in their model to explain experimental data on two glass

transitions in the polymer/particle systems. According to their measurements, a tightly

bound polymer has very low spin-spin relaxation time (T2 ) that does not change significantly

with temperature. This has been explained that tightly bound polymer does not participate

in either of two glass transition. On the other hand, a polymer beyond this layer exhibits

a usual glass transition but the T2 value was notably lower than the T2 of the unfilled

polymer. This observation was attributed to the existence of a restricted mobility layer.
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The thickness of of the interfacial polymer layer reported in the literature in experimental

studies of PDMS/silica systems is: 5 nm using neutron scattering33, 0.8 nm using NMR34,

1-25 nm using dielectric relaxation spectroscopy (DRS)35. If the interfacial layer will be

defined as a region where local polymer density oscillates, then both our earlier simulation

data36 and present integral equation results are within the range of observations.
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TABLE I: Estimate of the average separation between filler particles in a polymer/particle mixture

particle diameter volume fraction weight fraction separation, eq (30)

D, nm φ 〈δ〉, nm

10 6.1 9.7 13

10 9.9 15.3 10

10 15.7 23.5 6.8

10 25 - 4.4

10 35 - 2.8
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Figure captions

Fig. 1 Total radial distribution functions gtotal
ab (r) as calculated from PROZA/PHNC

theory (solid lines) and MD simulations (open circles) using united atom model.

Fig. 2 Intermolecular part of the total radial distribution functions gtotal
ab (r) as calculated

from PROZA/PHNC theory (solid lines) and MD simulations (open circles) using

united atom model.

Fig. 3 Normalized local density of silicon and united carbon atoms of the PDMS melt

next to a single silica surface as calculated from the integral equation theory. The

right-hand side shows a schematic interpretation of the density profiles.

Fig. 4 Normalized local density of silicon and carbon atoms of the PDMS melt in the four

different slits formed by a surfaces of a pair of filler particles as calculated from the

integral equation theory. The notation of lines is the same as in figure 3.

Fig. 5 The solvation pressure exerted by a model PDMS melt on filler particles as function

of the separation between filler surfaces.

Fig. 6 Normalized local density of silicon and carbon atoms of the PDMS melt in a wide

slit formed by a surfaces of a pair of filler particles. We can see the coexistence of

tightly bound (region with density oscillations) and loosely bound (region without

oscillations) polymer. The notation of lines is the same as in figure 3.
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