
UCRL-JRNL-231834

Qualification of Automated Low-Field
NMR Relaxometry for Quality Control of
Polymers in a Production Setting

S.C. Chinn, A. Cook-Tendulkar, R.S. Maxwell, H.
Wheeler, M. Wilson, Z.H. Xie

June 16, 2007

Polymer Testing



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Qualification of Automated Low-Field NMR Relaxometry for Quality 

Control of Polymers in a Production Setting 

 
Sarah C. Chinn*, Angela Cook-Tendulkar, Robert Maxwell 

Lawrence Livermore National Laboratory 

7000 East Ave, Livermore, CA 94550 

 

Hilary Wheeler, Mark Wilson 

Honeywell Federal Manufacturing & Technologies, Kansas City Plant,  

Kansas City, MO  64141 

 

Z. Harry Xie 

Bruker Optics, minispec Division, The Woodlands, TX 77381 

 

  
Abstract 

Implementation of a low field time-domain NMR scanner as a diagnostic tool in 

the production of new polymer components is described in the context of qualification of 

a new QA/QC device. A study to determine the optimal experimental parameters was 

performed and a robotic autosampler was built to enable scanning of multiple pads.  

Relationships between T2 values and physical properties of DC745 slabs were 

investigated, and the appropriate sampling parameters for the production setting were 

determined.  Two versions of a robotic autosampler were built, and for the component 

described here a fourth radial axis was required in addition to traditional X, Y, and Z 

movement to eliminate the large variability in T2 due to inconsistent sample coverage 

caused by complex rib geometry of the component.  Data show that with appropriate 

choice of experimental conditions of the NMR detector and the detection geometry of the 
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robotic autosampler, sufficient resolution of variations in crosslink density on the 

millimeter scale could be determined.  All data to date demonstrates that low-field NMR 

devices are a feasible tool for use in production settings for non-destructive quality 

control of polymer components. 
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1. Introduction: 

 Nuclear magnetic resonance (NMR) spectroscopy is routinely used to investigate 

structural and dynamic properties of polymers [1] and has found extensive use in  

investigating the effects of long-term exposure to chemically, thermally, or radioactively 

harsh environments on polymeric materials. [2-7] In the last decade, low-field, single 

sided time-domain NMR experiments using equipment such as the NMR MOUSE®1 or 

the Bruker minispec ProFiler have become popular in the area of material 

characterization.  Numerous applications of low-field relaxometry for non-destructive 

testing of polymers have been reported. [8-12]  Much of the recent work in the area of 

low-field NMR has been to develop novel NMR pulse sequences to enhance the amount 

and resolution of the NMR information available from the system.  For example, work 

has been done using Ex-Situ NMR techniques [13] to obtain liquid-like NMR spectra 

from a single-sided magnet. [14,15]  Additional efforts have been made in the areas of 

multiple quantum NMR, [16,17] low-power selective excitation, [18,19] and numerous 

magnetic resonance imaging (MRI) applications. [20-22]  Recent incorporation of a 1D 

adjustable magnet stage using the Profile NMR-MOUSE® has allowed for depth profiling 

within a sample.  Modifications to the magnet system as well as the ability to make 

minute changes in the distance between the magnet surface and the sample has afforded 

very high resolution depth profiles on the order of ~2 µm. [23] 

In cases of elastomer degradation, low field instruments have been able to 

reproducibly detect polymer deformation, [11,12] increased crosslinking due to aging or 

to manufacturing imperfections, [24-26] or detect defects in large materials such as 

                                                 
1 NMR-MOUSE® is a registered trademark of RWTH-Aachen, Germany 
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vehicle tires.  Much of the time, the handheld magnet unit can be held up to the surface of 

the polymer part for analysis, or the test coupon can be placed directly on the magnet 

face.  For some specific applications, a custom magnet unit has been built to match the 

geometry of the part. [8,11]  However, in certain applications where testing of numerous 

large parts requires accurate test patterns to provide higher resolution testing, a hand-held 

sensor becomes inefficient.  Here we present a combination of a robotic autosampler with 

low-field NMR spectroscopy for applications of quality control of elastomers.  The 

autosampler allows 3-dimensional testing capabilities along with a rotational axis to 

allow for a reproducible test footprint for components that possess a unique radial 

geometry.  

 It has recently been shown that low-field time-domain NMR can be used to detect 

chemical changes in the deformed sections of damaged components made from a PDMS-

based polymer called DC745 via changes in the T2 relaxation time. [12]  These changes 

can be rendered two-dimensionally via T2-weighted magnetic resonance images, and it 

has been shown that high resolution is not necessary for macroscopic defects. [12]   In 

fact, it was shown that low-field NMR could be a valuable tool in the production of new 

polymer parts by screening new pads and identifying potentially defective pads, since the 

defects are thought to originate from inhomogeneities in the initial mixing process during 

component production.  Fine control of the experimental parameters used in the analysis 

can be used to optimize the sensitivity of the measurement, [9,27] essentially tailoring the 

diagnostic specifically to the test sample. However, in most quality control and 

production settings, thorough evaluation and qualification of the test methods are often 

required, though detailed optimization of the parameters is not feasible due to time 
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constraints or lack of NMR experience by the production or QA/QC engineer.  In this 

paper we identify the necessary experimental variables that must be considered by a 

novice technician in optimizing the low-field NMR test method and introduce the 

automation capability for non-destructive screening of multiple polymer production parts, 

significantly reducing the need for human interaction. 

 

2. Experimental:  

Low field time-domain NMR relaxometry uses the same principles of traditional 

NMR spectroscopy, but since only relaxation information is obtained, the normal high 

resolution that is typically required for complete structural analysis is not needed. In the 

application of NMR relaxometry used here, the initial rf pulse is applied followed by a 

separate train of pulses that refocuses the magnetization into a series of “echoes”.  The 

intensity of the echoes decays in time with a time constant T2 as the magnetization is 

transferred to neighboring spins as a result of internal motion of the polymer network.  

Detailed analysis of the relationship between T2 relaxation time and polymer dynamics 

has been described elsewhere. [1,28]  

The Bruker minispec ProFiler, used in this study, consists of a computer, tabletop 

spectrometer console and preamplifier, and a magnet unit.  The magnet unit consists of 

two permanent magnets with anti-parallel magnetization producing a B0 field parallel to 

the surface of the unit, as shown in Fig. 1.  B1 irradiation is applied with a surface rf coil 

in the center producing a smaller magnetic field perpendicular to the surface.  The 

magnet unit can be held by hand or by a robotic controller and scanned systematically 

over the entire surface of the polymer component.  The spatial resolution is 
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approximately 1.5 cm2, about the width of two ribs, which is of comparable size to the 

deformed areas of the pads.   

 

2.1 Sample preparation  

DC745 was obtained from Dow Corning as Silastic® 745U and crosslinked with 

0.55 wt% peroxide curing agent.  Samples were cured from Dow Corning 745U silicone 

cured with 2,5-dimethyl-2,5-di(t-butylperoxy)hexane peroxide curing agent supported on 

CaCO3.  Curing was performed by thermal activation at 170 °C for ten minutes. DC745 

also contains ~30 wt.% mixture of quartz and high surface area reinforcing fumed silica 

fillers and small amounts of CaCO3 remaining from the curing agent.  A number of 

components which were deformed during their service life were tested in addition to 

newly produced components.  Samples for the experiments and instrument qualification 

presented here were intact polymer pads either placed on top of the magnet unit or placed 

on a table with the magnet unit lowered to the component surface.   

 

2.2 Low field time domain NMR experiments 

Static, uniaxial NMR relaxation times were measured using the Carr-Purcell-

Meiboom-Gill (CPMG) [29] pulse sequence on a Bruker minispec ProFiler from Bruker 

Optics operating at 16 MHz.    Unless otherwise indicated, the experimental parameters 

were set as follows: 128 scans, 600 echoes, and 0.5 ms echo time.  These parameters 

were optimized as described below for ideal production settings.  The echo times were 

systematically increased until the T2 remained consistent to avoid the interfering spin-

locking effects of T1ρ in the CPMG experiment.  The pulse attenuation, receiver gain, and 
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recycle delay were set to 6 dB, 103 dB, and 1 s, respectively, unless otherwise indicated.  

Decay curves were fit to a two-component exponential decay 
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using the Bruker software.   

 

2.3 Automated robotic autosampler 

 The automated robotic system was developed joint with Bruker Optics, Inc., 

Minispec Division (The Woodlands, TX). The magnet of the NMR ProFiler, also called 

the NMR sensor, was mounted to a modified commercial Autosampler (Duratech, 

Waynesboro, VA) for automated NMR experiments (Figure 5). The Autosampler is a 

three-axis (XYZ) gantry-type robot. Each axis is controlled through Bruker minispec 

software. A special glass platform with 6 sample locating PTFE discs is used to 

accommodate up to 6 polymer sample pads for one session of analysis. Each sample pad 

is scanned by the automated NMR sensor according to a pre-defined scan pattern to 

obtain the NMR T2 relaxation time. An advanced version of the automation system was 

developed for this study to include the rotational control of the NMR sensor so that each 

scanned spot can be described by X,Y (the location on the pad), Z (the vertical height or 

the thickness of the pad) and W (the NMR sensor rotational orientation). A 7th sample 

position is available for irregularly shaped samples. Coordination and orientation 

information of each scan together with NMR measurement parameters and relaxation 

time results are logged into a spreadsheet during the automated measurement. The results 

can then be easily utilized for further data analysis. 
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3. Results & Discussion: 

An initial investigation of the applicability of low-field NMR has been published 

previously. [12]  In short, it was determined that the ProFiler was able to distinguish 

between damaged and undamaged sections from a damaged part in a nondestructive 

fashion.  Fig. 2 shows an image of the damaged section and the corresponding difference 

in T2 relaxation time.  Here, a difference of ~20 ms was observed between the damaged 

and undamaged section of the damaged component, demonstrating that the damage is 

easily discernable with the NMR ProFiler. 

 

3.1 Determination of Optimal Experimental Parameters 

Additional studies were performed to determine the amount of variability of the 

ProFiler measurements from the same section of a pad.  A section of the polymer pad was 

placed on the NMR ProFiler for inspection and the scan was performed ten separate 

times. The pad was not moved or disturbed in any way between these consecutive tests. 

The average variability in the measurement was shown to be 3.22%, which was assumed 

to be acceptable since, as seen above, the expected decrease in T2 relaxation time 

between the damaged and undamaged sections was roughly 20%.  

Though the data obtained from the same spot on a pad displayed adequate 

reproducibility, a larger discrepancy was observed while measuring different pads or 

different sections of the same pad.  One potential source for the scatter was considered to 

be the effect of varying signal to noise ratios between different measured sections.  As the 

signal intensity or sensitivity of the NMR detection increases by either signal averaging 
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or detecting a larger sample volume, the echo decay curve measured by the NMR 

ProFiler displays less scatter and a more accurate fit to an exponential decay curve is 

obtained.  Alternatively, if the noise level of the measurement increases, the decay curve 

shows more scatter and the data does not fit as well to an exponential decay.  Both of 

these circumstances were considered by varying the number of scans to investigate the 

effect of signal to noise on the T2 time and repeating these measurements after placing 

the NMR ProFiler inside an aluminum box to eliminate noise from external sources.  The 

results, shown in Fig. 3, show that the T2 indeed increases with increasing number of 

scans, though in this case the effect of the shielding box was negligible.  [Note that one 

data point was eliminated in the 512 scan, with shield plot due to an errant measurement.]    

It was determined that efforts must be taken to ensure that the S/N ratio of each 

measurement is similar to produce appropriate T2 measurements across a single pad or 

between pads.  

Finally, the number of echoes and the delay time between echoes were optimized 

to provide the highest signal intensity while avoiding losing data at the tail end of the 

decay curve.  As mentioned in the experimental section, the CPMG experiment proceeds 

via a 90º pulse followed by a series of 180º pulses which refocus the magnetization into a 

series of echoes.  The time between 180º pulses in the echo train and the number of 

pulses determines the overall length of the NMR experiment.  The optimal decay curve 

would result in a complete decay after six time constants have elapsed.  Too few echoes 

or echo times which are too short result in incomplete decay and lost data, as shown in 

Fig. 4(a).  Conversely, if the echo time is too long or too many echoes are obtained, the 

curve would decay too fast, resulting in a less accurate fit to the decay curve due to the 
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abundance of signal from the noise itself, as evidenced in Fig. 4(b).  The optimal 

parameters for the material in this study were determined to be an echo time of 0.5 ms 

and acquisition of 600 echoes, as determined by the decay curve which decayed to zero in 

six time constants in Fig. 4(c). It was determined that these parameters would be used in 

all subsequent measurements of this material.

 

3.2 Robotics and Autosampler:  

In order to reduce the opportunities for human error and reduce the amount of 

time needed to physically operate the NMR ProFiler in a production setting, a robotic 

autosampler was developed.  This automatic inspection system was developed in 

collaboration with Bruker Optics, Inc. and is shown in Fig. 5.  The autosampler was 

designed to measure six DC745 components automatically without the need for human 

interaction.  The original design included a triple axis robotic arm that held the ProFiler 

magnet unit and lowered it down onto the pad and moved it in a pre-programmed pattern 

around the entire pad, sampling each section of the pad.  After an entire pad was scanned, 

the ProFiler moved onto the surface of the next pad and continued until all six pads had 

been scanned.   

Initial tests were performed using the robotic autosampler to determine if a 

damaged section of a pad could be distinguished.  Using the intended sampling pattern 

which took advantage of the three-axis robotic arm, a large amount of scatter or variance 

was observed across each pad.  As demonstrated in Fig. 6, the expected difference of 

roughly 20 ms in T2 value between the damaged and undamaged section of the pad was 

within the variance of the measurement, so the damaged sections could not be observed.  
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In this case the large variance in the data was assumed to be due to the complex rib 

geometry of the DC745 component and the result that the magnet unit is sampling both 

the polymer material and the air gaps between the ribs.  The significant difference in 

magnetic susceptibility between air and the polymer drastically changes the T2 

measurement.  It was determined that the rib geometry led to inconsistent coverage by the 

three-dimensional robotic movement of the ProFiler magnet unit, as demonstrated in Fig. 

7(a).  As the ProFiler unit moved to different sections of the pad, the total detection 

volume contained a different overall volume of the sample.  However, by adding a fourth 

axis in a radial dimension, the same amount of polymer and air in the active volume of 

the surface coil of the magnet could be detected all around the pad, as demonstrated in 

Fig. 7(b).   The ideal design would allow the magnet itself to rotate as demonstrated in 

Figure 7(c) such that the total coverage was the same for every position on the 

component.  In an initial trial to simulate the effects of the fourth axis, the magnet unit 

remained in the same x and y position, raised in the z dimension slightly, the pad was 

rotated underneath the magnet, and the magnet lowered to the surface.  Using this method 

a visible decrease in variance in the T2 measurements was observed, and the expected 

~20 ms drop in T2 was clearly observed in a section where damage was visible to the eye, 

as shown in Fig. 8.  While the example shown in Fig. 8 was a rough measurement with 

only a few data points, it is clear that the addition of the radial axis would yield an 

observable difference between damaged and undamaged sections of the component.  

With the ultimate goal of eliminating defective parts from going into service, a 

number of new components were tested.  Fig. 9 shows the results of scanning fifteen pads 

using the 4-axis autosampler.  In the individual value plot shown here, each T2 value 
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measured around the pad was plotted on the same corresponding x-axis point 

representing each pad, showing the distribution of T2 values on each individual part.  It is 

obvious that one pad showed potential defect sites due to the outlying data points roughly 

20 ms lower than the majority of the points, while several additional pads displayed 

outlying data points roughly 10 ms lower than the rest.  It is uncertain whether these sites 

would eventually lead to deformation after an extended time in service, and more 

investigation is needed in this area.  The individual points are plotted as a function of 

position in Fig. 10(a), with position 1 being the top, 0 degree position on the circular part 

and each additional point is taken every 25 degrees, with finer sampling increments being 

used in areas of particular interest.  The red and black points are two scans over the same 

region to demonstrate the reproducibility.  The plot clearly shows an area between points 

7 and 9 with a 20 ms decrease in T2, indicate a potential defect site.  In the case of this 

polymer component, it was not possible to test the pad to see if the deformation would 

form, but Shore M hardness tests were performed and indeed revealed a decrease in 

hardness in the area identified by the low field NMR minispec ProFiler.  A comparison 

between the T2 results and the Shore M hardness results is shown in Fig. 10(b).  Finally, 

upon highly detailed visual inspection, it was determined that a void was present in the 

material, which would ultimately lead to the decrease in hardness and permanent 

deformation of the material.  The void was not observed during the routine visual 

inspection performed as part of the acceptance testing of the component.  This clearly 

demonstrates an inhomogeneity in the production process leading to defects unobservable 

to the naked eye and identifies the usefulness of low-field NMR in a production setting. 
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4. Conclusions 

The NMR ProFiler is a benchtop NMR spectrometer that can be used to perform 

relaxation measurements on intact polymer parts.  A detailed investigation into the 

optimal experimental parameters for use as a QA/QC tool in the production of new 

polymer components has been performed.  For the component studied here, the 

appropriate sampling parameters for the production setting was determined to be 128 

scans, 600 echoes, and 0.5 ms echo time.  A three-axis robotics system was built and 

tested for measurement reproducibility, though the inconsistent coverage of the NMR 

sensor due to the complex rib geometry of the components led to a large amount of 

scatter in the measurement.  A fourth radial dimension was added to allow the sensor to 

rotate to match the curvature of the component, which successfully eliminated the large 

variability in T2 due to inconsistent sample coverage.  The low-field NMR ProFiler has 

been successful in identifying potentially problematic polymer components, suggesting 

that low-field NMR devices are a feasible tool for use in production settings for non-

destructive quality control of polymer components. 
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Figure Captions: 
 
Fig. 1.  Photo and schematic of ProFiler magnet unit, showing the B0 (black dashed) and 
B1 (red dashed) magnetic field lines and the DC745 sample (dark grey). 
 
Fig. 2.  Photo of damaged and undamaged spots from damaged DC745 component with 
corresponding T2 relaxation times. 
 
Fig. 3.  Effect of number of scans and effects of noise shield. 
 
Fig. 4.  Effect of varying echo time and number of echos on the relaxation curve.  
Optimal curves should be fully decayed in after 6 time constants, indicated by vertical 
lines in the plots. 
 
Fig. 5.  Photo of Robotic Autosampler designed by Bruker Optics, Inc. 
 
Fig. 6.  Large amount of scatter in damaged component observed using 3-axis robotics 
system.  The red circle indicates the area of visible damage on the pad. 
 
Fig. 7.  Active detection volume of NMR sensor with a 3-axis (a) and 4-axis (b) robotic 
autosampler, and (c) demonstration of rotation of NMR sensor. 
 
Fig. 8.  NMR ProFiler scan from damaged pad using 3-axis autosampler and physically 
rotating the component to simulate 4th rotational axis. 
 
Fig. 9.  Individual value plot of fifteen new production parts obtained with advanced, 4-
axis robotic autosampler. 
 
Fig. 10.  (a) Scan from new pad showing potentially damaged area using advanced 4-axis 
robotic autosampler and (b) comparison of low-field NMR results to Shore M hardness 
tests. 
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Fig. 1 
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Fig. 2 
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 Fig. 3 
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Fig. 4 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10  
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