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Abstract

Stability of cylindrical localized ideal pressure-driven interchange plasma modes
is revisited. Converting the underlying eigenvalue problem into the form of the
Schrödinger equation gives a new simple way of deriving the Suydam stability crite-
rion and calculating the growth rates of unstable modes. Near the marginal stability
limit the growth rate is exponentially small and the mode has a double-peak struc-
ture.

Stability of ideal cylindrical interchange pressure-driven plasma modes is a
classical problem. The well-known Suydam stability criterion [1–3] written as

Ds ≡ −
q2

q′2
β′

r
< 1/4, (1)

states the necessary conditions for stability, thus for Ds ≥ 1/4 unstable modes
must exist. Here the notation is β = 8πp/B2

z , q = rBz/R0Bθ, where R0 is the
radius of equivalent torus, prime stands for d/dr.

Previous analyses indicated exponentially small growth rates as the marginal
stability boundary is approached [4–7].

In this paper we present analysis of ideal cylindrical interchange modes looking
at the problem at a new angle. By choosing an appropriate transformation of
independent and dependent variables we transform the underlying eigenvalue
problem to the Schrödinger equation form. This allows to analyze the problem
and calculate the growth rates of unstable modes using simple calculations
based on elementary quantum mechanics.

We start with the equation analyzed in [4]

d

dx

[
(ω̂2 − x2)

dφ

dx

]
− [ω̂2 − x2 +Ds]φ = 0 (2)



Here ω̂ = ω/(VA/Ls) is normalized frequency and x = k⊥(r−r∗) is normalized
radial coordinate measured from the resonant surface. As was pointed out in
[4] this equation can be derived from ideal MHD screw pinch model for low β
or incompressible plasma. Essentially the same equation is derived in [3] from
high-beta reduced MHD model in cylindrical geometry.

As our interest is the unstable situation we rewrite it using γ̂2 = −ω̂2, where
γ̂2 is assumed positive

− d

dx

[
(x2 + γ̂2)

dφ

dx

]
+ [x2 + γ̂2]φ = Dsφ (3)

Eq. (3) is in the form of the classical Sturm-Liouville problem that can be
transformed by Liouville’s transformation into the Liouville normal form (or
Schrödinger form) [8].

For our case the transformation is as follows

x = γ̂ sinh t (4)

v(t) = φ(x(t))
√
γ̂ cosh t

Then our eigenvalue problem, Eq.(3), transformed in the normal form becomes

−d
2v

dt2
+ U(t)v = Ev, (5)

where E = Ds − 1/4 and the potential energy function is

U(t) = γ̂2 cosh2 t+
1

4 cosh2 t
, (6)

see Fig. (1).

An important issue is the asymptotic behavior of v(t) at infinity. The original
equation, Eq. (3), in the limit x→∞ becomes

1

x2

d

dx

[
x2dφ

dx

]
= φ (7)

This equation has solutions φ(x)→ exp (±x)/x, so it decays at infinity faster
than 1/x, which in the t coordinate corresponds to decaying at infinity faster
than exp (±t). Asymptotically, for t→∞, the transformed function is v(t) =
φ(x(t))

√
γ̂ cosh t → φ(t) exp (t/2), so we conclude that it decays to zero at

infinity, as is normally assumed for solutions of the Schrödinger equation.
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Now, as the potential energy function is positive, U(t) > 0, then using the
conventional argument of quantum mechanics we infer that the energy E must
be positive [9]. Thus one can immediately arrive at the conclusion that for an
unstable solution (γ̂2 > 0 was our initial assumption) it is necessary that
E = Ds − 1/4 > 0. This means that E = Ds − 1/4 ≤ 0 is sufficient for
stability of considered localized modes.

On the other hand, using physical arguments one can prove the Suydam nec-
essary condition, Eq. (1), in a new way. One just needs to observe that for
any E > 0 some γ̂2 > 0 can be found such that E is the ground state energy
for Eq. (5). Below we demonstrate how such a ground state solution can be
constructed in a simple WKB approximation.

Analyzing the form of the potential energy function, Eq. (6), one can draw
several observations concerning the energy E of the ground state solution of
Eq. (5): (i) there is a discrete spectrum which implies a functional relation
between E and γ̂2, (ii) for γ̂2 → ∞ the energy E also goes to ∞, (iii) for
γ̂2 → 0 the energy E also goes to zero, (iv) for E � 1/4 the eigenstate is a
function with a single maximum at t = 0, (v) for E � 1/4 the eigenstate is
a function with two symmetrically located maxima [9]. The transition occurs
near E equal to the peak value Umax = 1/4 that corresponds to Ds = 1/2. This
explains the observation made in [4] that the solution changes its character
when the Suydam parameter Ds is about twice its marginal stability value.

For the case E � 1/4 one can readily estimate the eigenvalue by the WKB
method. Let t0 be the turning point for a given value of E, see Fig. (1),

t0 =
1

2
lnE − ln γ̂ (8)

As the potential function is very steep one can neglect the potential energy
between the turning points, like for a square-well potential, and write the
WKB turning point condition

4
√
E
(

1

2
lnE − ln γ̂

)
= π (9)

This gives the asymptotic relation

γ̂ ∝
√
E (10)

Note that this asymptotic relation (rather obvious from the form of Eq. (3))
is not linear, as stated in [4], it looks linear only for relatively small values of
t.

Now turning to the opposite limit E � 1/4. Eq. (5) can still be treated as a
two turning point problem with turning points t1 and t2, see Fig. (1),
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t1 = ln
1

2
− 1

2
lnE (11)

t2 =
1

2
lnE − ln γ̂

Now again neglecting the potential energy between the turning points one can
write the WKB condition as

2
√
E(t2 − t1) = π (12)

Then the growth rate is

γ̂ = E exp

(
−π/2√

E

)
(13)

Near marginal stability the growth rate is exponentially small, as was estab-
lished in [4], however our asymptotic relation Eq. (13) is slightly different from

that derived in [4], γ̂ ≈ exp
(
−π/
√
E
)
.

The double-peak form of the eigenfunction is an interesting feature. The dis-
tance between the peaks of the eigenfunction is

∆t ≈ t1 + t2 ≈ ln (1/
√
γ̂) (14)

In the original space that corresponds to

∆x = γ̂ sinh t ∝
√
γ̂, (15)

so the peaks are getting arbitrarily close as the marginal stability boundary is
approached. That makes it difficult to capture the double-peak form, especially
numerically, if the original spatial variable x is used.

In conclusion, we have shown a new simple way of deriving the Suydam cri-
terion for stability of ideal, cylindrical, pressure-driven, localized, interchange
modes, and calculating the growth rates of unstable modes. The character of
solution changes markedly from the limit Ds � 1/2 where the eigenfunction
has a single peak and γ̂ ∝

√
Ds, to the marginal stability limitDs → 1/4 where

the eigenfunction has a double-peak form and the growth rate is exponentially

small, γ̂ = 2(Ds − 1/4) exp
(
−π/2

√
Ds − 1/4

)
.
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Figure captions

Fig. 1. Shown schematically the form of the potential energy function U(t) and the
lowest eigenstates v(t) for E � 1/4 and for E � 1/4.
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