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Abstract 

 
Plasma dynamics in the divertor region is strongly affected by a variety of phenomena associated with the magnetic 
field geometry and the shape of the divertor plates. One of the most universal effects is the squeezing of a normal 
cross-section of a thin magnetic flux-tube on its way from the divertor plate to the main SOL. It leads to decoupling 
of the most unstable perturbations in the divertor legs from those in the main SOL. For perturbations on either side of 
the X-point, this effect can be cast as a boundary condition at some “control surface” situated near the X-point. We 
discuss several boundary conditions proposed thus far and assess the influence of the magnetic field geometry on 
them.  Another set of geometrical effects is related to the transformation of a flux-tube that occurs when it is 
displaced in such a way that its central magnetic field line coincides with some other field line, and the magnetic 
field is not perturbed. These flute-like displacements are of a particular interest for the low-beta edge plasmas. It 
turns out that this transformation may also lead to a considerable deformation of a flux-tube cross-section; in 
addition, the distance between plasma particles occupying the flux-tube may change significantly even if there is no 
parallel plasma motion. We present expressions describing aforementioned transformations for the general tokamak 
geometry and simplify them for the divertor region (using the proximity of the X-point). We also discuss the effects 
associated with the shape of the plasma-limiting surfaces, both those designed to intercept the plasma (like divertor 
plates and limiters) and those that can be hit in some “abnormal” events, e.g., in the course of a radial motion of an 
isolated plasma filament. The orientation of the limiting surface with respect to the magnetic field affects the plasma 
dynamics via the sheath boundary conditions. One can enhance or suppress plasma instabilities in the divertor legs 
by tilting the divertor plate with respect to the poloidal magnetic field. We concentrate on the instabilities in the 
private flux region and provide stability criteria accounting for the real divertor geometry, going beyond the slab 
approximation used before.  
 

1 Introduction 
 
Plasma dynamics in the divertor region is strongly 
influenced by a variety of effects associated with the 
magnetic field geometry and the shape of the divertor 
plates. One of the most universal effects is the 
squeezing of a normal cross-section of a thin magnetic 
flux-tube on its way from the divertor plate to the 
main SOL [1] (or from one divertor plate to another in 
the private flux region). The other effect is associated 
with the tilt of the divertor plates with respect to the 
poloidal magnetic field: depending on the tilt, the 
instabilities of the divertor plasma can be made 
stronger or weaker [2]. In this paper we consider both 
effects for the X-point divertor geometry, as shown in 
Fig. 1. We discuss two aspects of these effects: first, 
their role in the linear stability analysis of the divertor 
plasma; second, in their effect on the isolated coherent 
filamentary structures (often time called “blobs” after 
paper [3]).  

In the past, both problems of the divertor stability and dynamics of blobs has received a considerable attention. 
The linear plasma stability in the divertor legs has been considered in many details (see Refs. [4,5] and references 
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Fig. 1 The shape of the 
separatix. AB is a major axis, O 
is the magnetic axis, R is the 
major radius of the X point. 
The dotted line represents a 
bisector of an angle formed by 
two branches of a separatrix in 
the X point. The angle γ is the 
angle between the bisector and 
the major axis. Note that in 
tokamaks with a high 
triangularity this angle may be 
close to π/2, meaning that the 
inner divertor leg is almost 
parallel to the major radius, 
whereas the outer leg is almost 
perpendicular to it.  
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therein). The main problem in the stability analysis is the proper accounting for the shearing of perturbations in the 
vicinity of the X-point. This has been done by encapsulating the shearing effect into the boundary conditions applied 
at some “control” surface situated near the X-point. The basic observation was that, in the region where perturbations 
become strongly jagged, cross-field current is formed, and the presence of the finite parallel resistivity leads to decay 
of the potential perturbations along the field lines. Specific mechanisms of the cross-field current formation included 
ion viscosity [5], electron cross-field resistivity [4] (acting in the zone that the cross-field scale becomes smaller than 
the ion gyro-radius), and the ion polarization current [7-9]. In the present article, we provide a solution of the stability 
problem for the X-point geometry with a quantitative description of the magnetic shearing effects in a low-beta 
plasma. We observe details of disconnection process and provide a quantitative description of various unstable 
modes. We go beyond the usually used slab approximation and clarify constraints on the applicability of heuristic 
boundary conditions [4].  

In the area of the blob dynamics, we consider the 
behavior of an “isolated” blob, meaning by that a plasma 
filament whose density is much higher than the ambient 
density. Such objects have been experimentally observed 
in the outer scrape-off layer of tokamaks [10-12]. Our 
primary interest will be in studying the blobs in the vicinity 
of the X-point. Here we apply a technique for isolating the 
global motion of the blob described in Ref. [13]. We 
produce convenient and easy-to-use results describing the 
blob dynamics in the case where the filament extends from 
the zone above the X-point to the zone below the X-point. 
We consider also the situation where the filament is 
terminated by a material surface in the main plasma 
chamber. The surface may be that of a deliberately 
introduced limiter, or a piece of equipment, like the RF 
antenna. The effect of this contact depends on the location 
and the tilt of the surface.  We discuss also effects of a 
plasma redistribution along the moving filament. 

The linear stability analysis is discussed in Sec. 2, 
whereas the blob dynamics in Sec. 3. Sec. 4 contains the 
summary of our findings. Some more lengthy calculations 
are presented in Appendices 1 and 2.  

 
2 Linear plasma stability in the divertor 

 
2.1 The geometry of the problem and plasma model 

 
 The typical shape of a separatrix is shown in Fig. 1. We will be interested in analyzing the area in the vicinity of 
the X-point, which is shown in more detail in Fig. 2. The separatrix here can be presented as an orthogonal 
intersection of two straight lines. We orient the Cartesian coordinate axes along these lines, as shown in Fig. 2. The 
quadrant x>0, y>0 corresponds to the private flux region.  The coordinate z (an analog of the toroidal coordinate) is 
directed towards the viewer.  
 The poloidal magnetic field in the vicinity of the X point can be presented as 

! 

B
x

= const " x , 

! 

By = "const # y , 
with the same constant in both cases. We will relate this constant to the magnitude of the poloidal field BP>0 in the 
vicinity of the divertor plate, i.e., at x=ld, y=0, with ld being the distance between the X point and the divertor plate. 
In other words, we have   

! 

B
x

= B
P
x / l

d
, 

! 

By = "BPy / ld .               (1) 
Clearly, we assume that ld is significantly less than the plasma minor radius, and the major radius of the X-point. 
Wherever possible, we neglect the terms of order ld/R (retaining them only when assessing the curvature drive). In 
particular, when characterizing the field lines in the vicinity of the X point, we assume that the toroidal field is 
uniform, Bz=BT>0. Then, one can easily show that the equation of the field line starting at the point (x0, y0, z0) is (Cf. 
[1]):  

! 

x = x0e
( z" z0 )/L ; y = y0e

"( z" z0 )/L                (2) 
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Fig. 2 The vicinity of the X-point. Dash-dotted lines 
represent two field lines (projected onto poloidal 
plane). Thick lines represent diverotr plates. The dotted 
line is a bisector of the angle formed by two branches 
of the separatrix.  
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where L=BTld/BP. Note that xy=x0y0. We assume that in the divertor region BP<<BT. The scrape-off layer (SOL) 
thickness Δ0 in the strike point (Fig. 2) is assumed to be much smaller than the length ld of the divertor legs.  Dash-
dotted lines in Fig. 2 depict field lines passing at the distance Δ from the separatrix at the strike points.  
 A fluxtube that has a circular crossection in some toroidal location z=z0, becomes an ellips whose major semi-
axis is  

            

! 

e
( z" z0 ) / L

# E                    (3) 
times larger than the initial radius [1]; the minor semi-axis becomes by a factor of E smaller than the initial radius. 
We call the parameter E “elongation”. The squeezing is the manifestation of the magnetic shear effect (Cf. Ref. [1]). 
 The orientation of the divertor plates with respect to the poloidal field in the strike points can be characterized by 
the angles α1 and α2 (Fig. 2). The sign convention corresponds to the situation where positive values of α1 and 
α2 correspond to the situation where the “wetted” surfaces are facing the private flux region (in particular, in Fig. 2 
α1>0, α2<0). The intersection of the divertor plates with the separatrix is assumed to be not too shallow, 

! 

" / | cos#
1,2
|<< l

d
.  

With regard to the plasma properties in the unperturbed state, we assume the simple model used in a number of 
earlier studies of the divertor-leg instabilities [4,5,14]:  all the plasma parameters are uniform, except for the electron 
temperature Te, which varies across the flux surfaces. Thereby, we retain only the drive associated with the gradient 
of Te , neglecting the drive associated with the density and the ion temperature gradients. A justification for this 
model (aside from the convenience of comparing our results with the earlier work) is that the cross-field gradient of 
the electron temperature in the SOL is typically steeper than that of  the density and the ion temperature (regarding 
which we assume that it is of the same order as Te). As the plasma potential (with respect to divertor plates, which we 
assume are grounded) is roughly proportional to Te, there is also the electrostatic potential variation across the flux 
surfaces, and, therefore, the EXB drift in the unperturbed state. The drift velocity is predominantly poloidal.  

 
2.2 Basic equations 

 
 Instability that is studied in the present paper is of the type discussed in Refs. [2, 5, 15, 16], which can be 
described within MHD model in terms of the bulk plasma motion and complemented by the boundary conditions 
relating the plasma displacement and the current on the plasma side of the sheath at the divertor plate. Typical growth 
rate of this instability is much shorter than the ion transit time between the X-point and the divertor leg. Therefore, the 
ion thermal spread is unimportant; it is also unimportant whether the ion mean free path is shorter or longer than the 
connection length L|| between the control surface and the divertor plane: the ions enter the problem just via their cross-
field inertia. With regard to electrons, we assume that their collision frequency is higher than the growth rate. Under 
such conditions, the momentum equation can be presented as:  

! 

min"
dv

dt
= #$"p+

"j% & B

c
+min'$ ("v                    (4) 

where ν is the kinematic viscosity. Why we have retained a (small) viscosity? The pressure perturbation is 

! 

"p = n"Te , 
as the plasma density and the ion temperature are assumed to be uniform in the unperturbed state. The electron 
temperature perturbation can be found from equation 

  

! 

" ˙ 
T 

e
= #"v $ %T

eo                           (5) 
For a low-beta plasma, we will consider only the modes that do not perturb the magnetic field (the finite-beta effects 
have been considered in a slab geometry in Ref. CR-PPCF). Then, the electric field perturbation can be described as 
an electrostatic perturbation, with the parallel component of the electric field related to the finite plasma resistivity 
(allowing thereby for the resistive ballooning [13]). The velocity perturbation is directed across the magnetic field:  

  

! 

"v = c
B # $"%

B
2

                          (6) 

The potential perturbation varies slowly along the field lines compared to the variation in the transverse direction. It is 
convenient to describe it using the coordinates (x0, y0) of the foot-point of the field line at the divertor plate, and the 
coordinate z (which, up to the small terms of order of BP/BT  coincides with the field line): 

! 

"# = "# (x0 , y0,z) . We 
consider an instability with the length scale of perturbations in the direction normal to the flux surfaces small 
compared to the characteristic SOL thickness. This allows one to use an eikonal approximation  

! 

"# ="# 0 (z) exp $i%t + ik0x x0 + ik0y y0( )                    (7) 



 

 4 

As there is an unperturbed electric field directed along the normal to the flux surface, there exists an unperturbed drift 
velocity with the component lying within the flux surface. This leads to that the operator d/dt, when applied to 
perturbations of the type (7), becomes 

! 

d /dt"#i$ , 

! 

" =# $ k
0
v
D 0

, where vD0 is the unperturbed drift velocity near 
the divertor plate.  
 Using the current continuity equation, with δj⊥ determined from Eq. (4), one finds that 

! 

"j||
"z

=
2c

RB
b # $%p+

minc
2

B
2

i&$'

2%( +)$'

2
($'

2%( )[ ]                  (8) 

where R is a major radius in the vicinity of the X-point. We consider it as a constant, which is sufficient if we do not 
depart too strongly from the X-point. We have also consistently used the smallness of the parameter BP/BT (which is 
indeed quite small near the X point).  
 The pressure perturbation can be found from Eqs. (5), (6), with the account for the fact that the unperturbed 
temperature is constant over flux surfaces, i.e., Te= Te(Φ), Φ =(BP/ld)xy: 

! 

"p = ±
icn

#B

Te

$
0
ld

y
%"&

%y
' x

%"&

%x

( 

) 
* 

+ 

, 
-                      (9) 
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T
e

"
0

= ±B
P

#T
e

#$
                             (10) 

An equation for the parallel current is: 

! 

"j
||

= #
1

$

%"&

%z
                              (11) 

Equations (8), (9), (11) form a complete set that determines the spatial structure of the potential perturbations.  
 For the potential perturbation of the form (7), one obtains (by using Eqs. (2) and (3)):  
  

! 

"#

2$% = & kx0
2
E
2 + ky0

2
E
&2( )$%                         (12) 

and 

  

! 

"p = ±
icn

#B

Te

$
0
ld

y
0
k
0y % x0k0x[ ]"&                         (13) 

 
2.3 Flute perturbations. 

 
 Before introducing general sheath BC, we consider an important auxiliary problem of pure flute perturbations. The 
ideal flute instability corresponds to a zero plasma viscosity, zero electrical resistivity, and non-conducting end-plates 
(j||=0 at both plates). The electrostatic potential perturbation is constant along the field line, i.e., the dependence of δϕ0 
on z in () should be suppressed. The drive for the flute instability is predominantly situated in the inner leg, where the 
projection of the pressure gradient on the curvature radius is large. One may naively think that the presence of the 
other leg makes a stabilizing contribution but, as we see, this is not the case.  

Substituting the pressure perturbation (13) into Eq. (8), using Eqs. (2) and (12),  setting δϕ0=const, and integrating 
Eq. (12) between the divertor plates, one obtains the following dispersion relation:  

! 

"2
kx0
2
E
2 + ky0

2
E
#2( )dz =

2Te

miR$0
ld

% y
0
k
0y # x0k0x( ) cos

&

4
+ '

( 

) 
* 

+ 

, 
- kx0E + cos

&

4
# '

( 

) 
* 

+ 

, 
- 
ky0

E

. 

/ 
0 

1 

2 
3 dz%         (14) 

We have written this equation for the instability in the private flux region, with the sign convention corresponding 
to the geometry of Fig. 2. The initial point in the integration is situated at the inner plate, whereas the final point is 
situated at the outer plate. Accordingly, we start from E=1, and end up with some E=E*>1 that corresponds to the 
elongation at the outer strike point.  We ignore effect of tilt of the divertor plates assuming that α1=α2=0 (we will add 
this effect later, in a more general analysis). Note that the term proportional to kx0 in the integrand (which is the main 
driving term) does not change sign between the inner and outer leg.   

Noting that, according to Eq. (3), dz=LdE/E, one can rewrite Eq. (14) in a more convenient way: 

 

! 

"2

2
kx0
2
E *

2 #1( ) + ky0
2
1# E *#2( )[ ] =

2Te

miR$0
ld
cos

%

4
+ &

' 

( 
) 

* 

+ 
, kx0 E *#1( ) + cos

%

4
# &

' 

( 
) 

* 

+ 
, ky0 1# E *

#1( )
- 

. 
/ 

0 

1 
2 y0k0y # x0k0x( ) (15) 

This expression is valid for both “short” and “long” divertor legs, i.e., for both ld~Δ0, and ld>>Δ0. Note that in the 
latter case the inertia scales as E*2 due to a large x component of the displacement in the outer leg (where E>>1). In 
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Eq. (15) we do not assume the equal length of the divertor legs, i.e., it is quite general. For long divertor legs, ld>>Δ0, 
one has x0≈ld, y0≈ Δ0, E*≈ ld/Δ0,>>1,  so that  

! 

"2
= #

4T
e

m
i
R$

0
E
*
cos

%

4
+ &

' 

( 
) 

* 

+ 
,                      (16) 

Note the appearance of the small parameter 

! 

1/ E * in the growth rate 

! 

" # Im$  of the instability.  
 

2.4 Resistive ballooning and the ion gyroradius cut-off 
 
We now consider the possible modification of the flute instability in the presence of finite plasma resistivity. We 
approach this problem by formulating conditions under which the potential variation along the fluxtube becomes 
significant. 
 At a finite plasma resistivity, the potential perturbation will no more be constant along the field line. The 
contribution to the parallel current density (which, at a finite resistivity,  is a measure of the potential variation) arises 
predominantly from the terms in square brackets in Eq. (8), because these terms scale as a high power of E and 
increase dramatically on the way from the inner to the outer divertor leg.  So, the potential perturbations may decrease 
substantially in the outer leg, thereby meaning the appearance of the modes localized in the inner leg. Although we 
have neglected the viscous terms in the analysis of the previous section, we retain them here, as they grow as E4 and 
may become significant in the decoupling. The plasma resistivity per se , under conditions of tokamak divertor, is 
usually not sufficient to cause significant ballooning. Here it is enhanced by the presence of large multipliers 
proportional to the powers of E. Accordingly, the effects of resistive ballooning are enhanced in divertors with long 
legs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Substituting a constant (along the field lines) potential δϕ0 into the terms in the square brackets in Eq. (8) and 
integrating them from one plate to another using the relationship dz=LdE/E, one finds the resistive potential variation 
δϕ1: 

! 

"#
1

"#
0

~
D

M
L

2

v
A

2$
0

2%
0

&

%
0

˜ 
k 

2
+

'

%
0
$

0

2

˜ 
k 

4

( 

) 
* 

+ 

, 
-                     (17) 

where 

! 

˜ 
k  is the dimensionless wave number 

! 

˜ 
k " k

x0
#

0
E ,  Γ0 is a growth-rate of the curvature-driven instability 

without shearing factors included, 

! 

"
0
#

c
S

R$
0

,                          (18) 

and 

! 

D
M
" c 2# / 4$ is the magnetic diffusivity. Consider the numerical value of the coefficient in front of the square 

bracket for the following set of plasma parameters (Cf. Sec. 3 of Ref. 5): Te~Ti~25 eV, n~1013 cm-3, R~ 50 cm, L~ 
300 cm, Δ0~ 1cm, and B~ 5 T. These parameters correspond to the parameters of a compact high-field tokamak, 
although in real machine each of them can vary by a factor of a few. For this set of parameters, the coefficient in front 

10 

10-4 

10-5 

102 1 

10-3 

ε 

! 

˜ 
k  

Fig. 3 On the problem of resistive 
ballooning. The dash-dotted line depicts 
the condition where resistive ballooning 
occurs due to the cross-field current 
leaks in the regime where the wave 
number becomes higher than inverse ion 
gyro-radius. Above this line the heuristic 
BC of Ref. [4] can be applied. Other 
explanations are given in the text.  
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of the square bracket is quite small, ~ 10-4. In other words, the resistive disconnection between the plates may occur 
only at large elongations and/or high wave numbers. The dimensionless parameter in front of the second term in the 
square bracket is also small, of order of 10-3. However, the second term may still become dominant for large E and k.  
 These results are illustrated with Fig. 3, where the parameter space is represented in the k-ε plane, where  

! 

" #
D
M
L
2

v
A

2
$
0

2
%
0

                          (19) 

The solid line represents the  condition where the l.h.s. of Eq. 1 is equal to one. Below this line, resistive ballooning is 
unimportant, whereas above this line it is significant. When plotting this line we assumed that the parameter 

! 

µ "
#

$
0
%
0

2
                           (20) 

is 10-3. The dashed line represents the condition where the wave number at the outer plate becomes (formally) higher 
than the inverse ion gyroradius, under the assumption that parameter Δ0/ρi=20. Our description has to be modified to 
the right of this line.  

  

! 

E =
1

k
x0
"
i

                           (21) 

In the zone between this point and the outer divertor plate the ions do not participate in the drift motion described by 
Eq. (6); their cross-field velocity becomes much less than (6).  
 We concentrated on the flute-type instability. Other instabilities [15, 16] depending on the sheath boundary 
conditions [17-19] can be also included into analysis.  
 
3. Geometrical effects in the dynamics of isolated blobs. 
 
3.1 Blobs in the framework of an ideal magnetohydrodynamics 
 
In this section we consider the global motion of isolated filament in the divertor region, both in the private and the 
common flux region, in the MHD approximation. In the case of a perfectly conducting, zero beta plasma, the only 
type of displacement allowed is the displacement for which the fluxtube in its new location coincides with some 
magnetic flux tube (Cf. [13]).  We concentrate on the dynamics of isolated filaments in the vicinity of the  X-point, 
both in the common and the private flux region and we use a simple model of the magnetic field lines described by 
Eqs. (2), (3). Numerous other aspects of the blob dynamics have been studied in Refs. [20-28]. 

We characterize the initial position of the flux tube by the coordinates of its end point (x0, y0), and its 
displacement by the vector ξ0=(ξ0x ξ0y) see Fig. 3. In the divertor region, this way of characterization of the 
displacement is more convenient than the more general way (based on the use of the normal and geodesical 
displacements) used in Ref. [13] in a general toroidal geometry. Applying Eqs. (15) of Ref. (13), and retaining only 
the leading order terms in the parameter Bp/BT<<1, one finds: 

! 

˙ ̇ " 
0x = #

2p cos
$

4
# %

& 

' 
( 

) 

* 
+ 

,R

E lnE

E #1
;   

! 

˙ ̇ " 
0y =

2p cos
#

4
+ $

% 

& 
' 

( 

) 
* 

+R

lnE

E ,1
,             (22) 
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where 

! 

E = y
1
/ y

0
> 1 . The signs correspond 

to the geometry of Fig. 4. For brevity, we 
consider the plasma pressure and the density 
as constant over the flux tube (although the 
general case can also be easily assessed). 
The elongation enters the problem via Eqs. 
(2) – (3). The displacement of the other end 
of the filament is: 

! 

"
1x

="
0x
E , 

! 

"
1y ="

0y /E . 
Note that, for the fluxtube extending well 
into the divertor area, the displacement is 
predominantly poloidal, with one end of the 
filament moving “up”, and the other moving 
“down”. The normal motion is much slower. 
Can be extended (qualitatively) up to the 
blobs reaching the equatorial plane of a 
tokamak. For reference purpose, we present 
here a relation between the (ξx, ξy) 
component of the displacement and the 
normal and poloidal components (ξn, ξp): 

       
  

! 

"n =
"x y #"y x

x
2

+ y
2

; " p =
"x x +"y y

x
2

+ y
2

     (23) 

 
Also helpful are expression relating the normal and poloidal displacement in an arbitrary point vs. the displacement 
in the reference (“0”) point: 
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"n = "n0

x
0

2 + y
0

2

E
2
x

0

2 + y
0

2
/E

2
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E

2
x

0

2 + y
0

2
/E

2

x
0

2 + y
0

2

+"n0

x
0
y

0
E

2
#1 /E

2( )
x

0

2 + y
0

2
E

2
x

0

2 + y
0

2
/E

2

      (24) 

 
    3.2 Blobs in contact with the divertor plate.  
 
If the blob radius a in the main SOL (at the upper end in Fig. 3) is sufficiently large, then, even with the account of 
the shear squeezing, the minor semi-axis of the blob near the divertor plate, a/E, may remain larger than the ion gyro-
radius, and the macroscopic description would remain valid over the whole blob length. The corresponding condition 
reads as 

! 

a /E > "
i
, or as  

! 

ay
0

> " i y1 .                          (25) 
Previously, in Refs. [5, 19] the situation where this condition is violated by a large margin was considered. Here we 
assess the opposite case, which corresponds to the blob of a not-too-small cross-section and/or divertor with not too 
long legs. 
 The presence of the contact with the wall slows down the blob motion and leads to the situation where the 
acceleration becomes small, and the motion at a constant velocity takes over. The technique for accounting for the 
effect of sheath boundary condition on the global motion was presented in Sec. VI of Ref. [13], where the filament in 
contact with a toroidal limier was considered. In the case of a poloidal divertor the geometry is quite different and 
some rework of the derivation of Ref. [13] is needed. The boundary condition at the wall is: 

! 

c

B

"p

"x
cos#2 $

"p

"y
sin#2

% 

& 
' 

( 

) 
* =

Bp

B
j|| $ jsat

e(+ $+ f )

Te

% 

& 
' 

( 

) 
*                (26) 

where jsat~envTi is the ion saturation current, and ϕf is the floating potential. Applying the technique described in Ref. 
[13], one finds: 
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Fig. 4. The projection of the filament onto poloidal plane. The end 
point of the filament in the main SOL is (x0, y0), whereas the other 
end point (which can be situated both above and below the X point) 
is (x1, y1). For clarity, the end-points are shown by large dots. The 
filament in its new position is situated further from the separatrix.  
The end points are displaced by the vectors ξ0 and ξ1, respectively.  
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where the coefficient w of the dimension of velocity is defined as (Cf. [13]): 
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We consider a filament with a circular cross-section of a radius a in the upper (“0”) point.  
 An interesting new element compared to more qualitative discussion of Refs. [5, 19] is the appearance of the 
additional drive term in the y component of displacement. It is present even in the case of a zero radial tilt (α2=0) and 
may cause a reversal of the normal component of the blob velocity in the upper SOL. 

As was mentioned in Refs. [5,19], the length of the filament may increase because of the parallel thermal 
expansion of a plasma that fills it. This process is particularly important near the end nearest to the divertor plate. It 
may keep the blob end with contact to the plate even if the cross-field motion described by Eqs. (), () tends to move it 
away from the divertor plate. The relative significance of the two processes is determined by the details of the 
geometry. In some cases a detachment of the blob from the plate may occur, leading to a transition to the regime of 
accelerated motion described by Eqs. (22).  
 
    3.3 Blobs in the private flux region.  
 
 Here, again, we concentrate on the case where the plasma filament connects inner and outer divertor plates. 
Referring to the displacement at the inner strike point and imposing the sheath boundary at both ends, one obtains, 
instead of Eq. (27).  
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Depending on the specifics of the geometry, an attachment or detachment of the blob to one or both plates may occur 
(see discussion at the end of Sec. 3.2). 
 
    4. Discussion 
 
The focus of this paper was to discuss various geometrical effects that influence plasma instability and blob 
dynamics in the divertor region. Significant simplification in that regard comes from the fact that the magnetic field 
structure in the vicinity of the X-point is quite simple, and allows one to obtain very convenient mappings of the field 
lines. As an example of the use of these mappings, we considered plasma instabilities in the private flux region. We 
have managed to solve the stability problem in the realistic geometry, not in the slab model used in the earlier 
studies. It turned out that, in the regimes where resistive ballooning is insignificant, the growth rate reduces 
significantly compared to the slab approximation. This happens because the mode wave number grows significantly 
from the inner to the outer divertor plate. Radial tilt of the divertor plate leads to an interesting interplay of effects 
occurring in the inner and outer divertor legs. 
 We have found conditions where resistive ballooning becomes important, and decoupling of the unstable modes 
in the inner and the outer divertor legs occurs. This normally happens only for the modes with a small cross-field 
scale length. The instability in this regime is sensitive to the tilt of the divertor plates. 
 The shearing effect may give rise to a situation where, on the way from one divertor plate to another, the fluxtube 
gets sheared to the length-scale less than the ion gyroradius. In this situation, our MHD description has to be 
modified. The effect of the region with perturbations becoming “choppy” on the ion gyroradius scale can be 
accounted for by introducing an analog of the heuristic boundary condition discussed in Ref. [4]. All the rphenomena 
discussed would occur also in the common flux region (which we have not considered here because of the lack of 
space). 
 Our paper contains also discussion of the blob dynamics in the vicinity of  the X-point. The validity of the simple 
model of the magnetic field used in this paper requires that the blob poloidal extension be not very large (although, 
on the qualitative level, our results could be used for the blobs reaching the equatorial plane). An interesting 
observation is that the presence of the X-point strongly affects the blob dynamics in the main SOL. So, isf one 
watches the blob motion in the main SOL, one can obtain a great variety of blob dynamical patterns for the blobs that 
look identical. This variability finds a natural explanation if one takes into account that the lower end of these blobs 
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can be situated at various locations with respect to the X point. Another interesting effect is that the blob extending to 
the divertor plate experiences a strong additional acceleration in the poloidal direction.  
 In all of the aforementioned problems we included one more geometrical effect, an arbitrary orientation of the 
separatrix quadrant with respect to the major axis (angle γ, Fig. 2).  
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