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Abstract

Activity coefficient derivatives with respect to molality are presented for the Scatchard Neutral 
Electrolyte description of a ternary common-ion electrolyte system.  These quantities are needed for the 
calculation of "diffusion Onsager coefficients" and in turn for tests of the Onsager Reciprocal Relations in 
diffusion.  The usually-omitted b23 term is included.  The direct SNE binary approximations and a further 
approximation are discussed.  Binary evaluation strategies other than constant ionic strength are 
considered.
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1.  Introduction

There are many ways to represent the osmotic and activity coefficients of single and mixed electrolyte 
systems.  Pitzer's equations and their extensions [1] are currently the most popular representations.  For 
mixed electrolyte systems, other representations include the Scatchard Neutral Electrolyte [2-7], 
Scatchard Ion Component [8,9], Reilly-Wood et al. [10,11,7], and Friedman [7,12].

The goodness of fit to experimental data for φ and lnγi is especially important because the 
thermodynamic applications to transport processes require the activity coefficient derivatives.  However, 
taking derivatives magnifies the errors.  Pitzer's equations and their extensions do provide quite adequate 
values of φ and lnγi for most practical applications.  However, the fits to binary data often show 
considerable cycling of residuals, especially at higher concentrations [13-15].  In this circumstance, the 
use of representations that have more adjustable constants can yield better derivatives for both binary and 
ternary systems.

Our particular concern is thermodynamic analysis of ternary diffusion systems, in particular the 
testing of the Onsager Reciprocal Relations (ORR).  These require the Onsager diffusion coefficients in 
either the volume-fixed reference frame VijL )( [16] or the solvent-fixed frame 0)( ijL [17-19].  These in 

turn require either the four experimental volume-fixed VijD )( or the four solvent-fixed diffusion 

coefficients 0)( ijD , which can be calculated from the VijD )( [18,19].  The Onsager coefficients also 

require the derivatives of the chemical potentials ijµ with respect to the concentration Ci in mol dm-3, 
where 
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∂
=

µµ (1)

These ijµ are obtained from the derivatives of the activity coefficients ji m∂∂ γln multiplied by the 

concentration derivative ∂mj /∂Cj , which can be calculated from densities or partial molar volumes iV
[16]. Here γi is the mean molal activity coefficient and mi is the molality of solute i in mol·(kg H2O)–1.  

Further determination of the ternary ionic Onsager coefficients ijl requires the transference 
numbers ti and the equivalent conductance Λ [20-22].  These ionic coefficients are useful in estimating the 
vector transport properties of multicomponent systems [21,23-25], although experimental values of the 
transference numbers are rarely available.

Ternary diffusion systems composed of electrolytes must have a common ion.  In contrast, a 
solution of two non-common ion electrolytes is a 4-component system for diffusion, unlike ternary 
equilibrium systems [16,26].

In the case of a ternary common-ion system, the Scatchard Neutral Electrolyte (SNE) description 
is simpler than the various ion-component descriptions Scatchard, Reilly et al., Friedman, and Pitzer.  We 
have found that it usually fits ternary osmotic coefficient data better than Pitzer's equations over large 
molality ranges [14,28], given sufficient adjustable parameters in the mixing terms.  There is also the 
advantage that the binary approximation part of the osmotic coefficient and the activity coefficients can 
be based on fits to other binary equations, including Pitzer's, rather than elaborate functional form of 
Scatchard's original formulation.  

The SNE mixing terms are related to the excess Gibbs energy of mixing exG∆ and can be related 
to Friedman's work on pair, triplet, quadruplet, etc. interactions [7,29].  In either case, φ and lnγ are 
derivatives of exG∆ , and their derivatives in turn are our interest.

This work was originally done in 1974 (without the b23 term, see below) in anticipation of testing 
the ORR for various ternary diffusion systems.  The results have been applied to the calculation of the 
( )

0ijL and testing of the ORR from the systematic sets of diffusion results for the NaCl-MgCl2-H2O 
system [30-34].  These tests are now being prepared for publication.  Our 1974 results are contained in 
John Mitchell's thesis [35]. The results below have been extended to include the b23 term.

2  The Scatchard Neutral Electrolyte Equations

Although we are primarily interested in values of the ( )ji m∂∂ γln , we include the general expressions 

for lnγi and φ as well.

It can be shown [28,36] from the elaborate original Scatchard forms [2] that the binary 
approximation for φ can be re-written as

0
22

0
11 φφφ hh += (2)
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where hi is the osmolality fraction of solute i, and 0
iφ is the osmotic coefficient of solute i in its binary 

solution typically evaluated at the ionic strength I of the ternary mixture.  The osmolality O is 
)( 2211 mrmr + , Omrh iii = and ri and mi are defined below.

Then the SNE expression for φ and lnγi can be written in terms of the binary approximation above 
(Eq. 2) and the mixing terms [14,28] as follows.
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where φ is the osmotic coefficient of the ternary, 0
iφ and 0

iγ are the respective osmotic coefficient and 
activity coefficient of the binary system with solute i at the ionic strength I of the ternary, zi is 

iaiciaic zzzz =− , zic is the charge on the cation of solute i, zia is the charge of the anion of solute i, ri = ric

+ ria is the total number of ions of solute i, ric and ria are the number of cations and anions respectively 
from the ionization of solute i, yi is the ionic strength fraction of solute i in the ternary, bij are the mixing 
parameters and are not functions of I, φ is the osmotic coefficient of the ternary, and Φ is the function
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The []ij are as follows:
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Note that we have included the usually-missing b23 term that completes the quadruplet 
interactions as described by Leifert and Wigent [29], and whose contributions to φ and lnγi had been 
previously presented by Rush [6].  Rard and Miller [28] used this term for trial fits to φ data for the 
system NaCl-MgCl2-H2O.

The Friedman gi are related to the bij as follows [29]:

.....
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IbIbbg (13)
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The expressions for the excess part of φ and the excess Gibbs energy as polynomials of 21 yy and 
nyy )( 21 − are also related to the empirical suggestions of Redlich and Kister [37] for non-electrolytes.

3.  Activity coefficient derivatives

We proceed to differentiate eq 4 and 5, making use of a number of auxiliary equations and definitions.  
These are listed below in the Appendix.  After some algebra, we find that 

[ ]













































 ++−

+++++









−

=







∂

∂

∑
=

223
13

03
2
2

2
2313031202

2

2

1

2
0

2
11

1

1

3
102

3
2

2

)(2)(
2

2ln

2
ln

2

Ibbby

IbbbIbby
I
y

dI
d

z
y

zr
m

i

i

i

i

m

Φ
γ

γ
(16)

( )

( ) ( )( )[ ]



















































 −−















 −−+−+

++++++








 −
+

=







∂

∂

∑
=

22303
2
2

223
13

03
12

2

2
231303120201

21
02

1

212

2

1

3
14

3
2

2

3
142

3
22

2

2
1

ln

2
ln

1

Ibby

IbbbIby

IbbbIbbb

I
yy

dI
d

z
y

zzr
m

i

i i

i

m

Φγ

γ
(17)



Lngderm.doc 5 of 14 5/7/07

( )

( ) ( )( )[ ]



















































 −−















 −+++

+−+−++








 −
+

=







∂

∂

∑
=

22303
2
1

223
13

03
12

1

2
231303120201

2

1

21
0

211

1

2

3
14

3
2

2

3
142

3
22

2

2
1

ln

2
ln

2

Ibby

IbbbIby

IbbbIbbb

I
yy

dI
d

z
y

zzr
m

i

i

i

i

m

Φγ

γ
(18)

[ ]













































 +−−

+−+−+









+

=







∂

∂

∑
=

223
13

03
2
1

2
2313031202

1

1
02

1

2
22

2

2

3
102

3
2

2

)(2)(
2

2ln

2
ln

1

Ibbby

IbbbIbby
I
y

dI
d

z
y

zr
m

i

i i

i

m

Φ
γ

γ
(19)

Notice the two cross derivatives look different but are similar in form.  However, they can be shown to 
satisfy the cross differentiation relation
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It turns out that we can get a common and simpler looking result by adding the appropriate terms and 
dividing by 2; namely,
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In Eq. 16–20, the derivatives Idd i
0ln γ of the binary system are functions only of I, and are 

evaluated at the ionic strength I of the ternary.
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4.  Comments on binary approximations

In the absence of mixing data, it is often necessary to approximate the ternary osmotic coefficients, 
activity coefficients, and the activity coefficient derivatives from their binary expressions.  The Scatchard 
Neutral Electrolyte equations for ternary common ion systems are useful here.  We note that the Pitzer 
equations can also be used for binary approximations, but as mentioned earlier, the results can be limited 
by the quality of the binary fits.

Extracting the binary terms from the above equations yields the approximations:
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where again, Φ, a function of the binary osmotic coefficients, is given by Eq. 2.

Equations 22 and 23, i.e., where all the bij are 0, correspond to the conditions on the Harned's 
Rule coefficients that 221112 zz αα −= , 221112 zz ββ −= , etc., as can be obtained by writing Eq. 22 
and 23 in Harned Rule form.  These conditions have often been found to be valid or nearly valid [38,39].

A still further approximation allows us to get the ternary iγln in terms of only the 0ln iγ , without 

needing the binary osmotic coefficients 0
iφ in Φ.  This approximation, also based on Harned Rule studies, 

is that

2
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1 lnln
zz
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where tr
iγ is the activity coefficient of a trace amount of solute i in a in finite concentration of solute j.  

This further approximation has also been found to be valid for some systems [38,39]. 
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With Eq. 27 given in terms of Eq. 22 (with y2=1) and eq 23 (with y1=1),
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Solving Eq. 28 for Φ and eliminating the result from Eqs. 22 and 23 gives expressions for iγln in terms 

of 0
1ln γ and 0

2ln γ .  A little manipulation gives the final result for a ternary common ion mixture:
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This result was obtained for 1-1 ternary common-ion mixtures by the author in ref. [16] using a 
similar argument.  Lietzke and Stoughton [40] subsequently presented an equation for higher valence 
mixtures that is exactly equivalent to Eq. 29 for ternary common-ion mixtures.

The activity coefficient derivatives based on Eq. 29 are also independent of the osmotic 
coefficients:
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5.  Comments on binary evaluation strategies and mixing term functions

There are other binary evaluation strategies (BES) for the binary part of these expressions besides 
constant ionic strength.  Examples are evaluation at constant equivalents E, constant molality m, or 
constant osmolality O.  These arise from the arbitrary choice of “ideal mixing” of the binaries [7,41].  All 
require the use of osmolality fractions for 0

iφ , which are a consequence of the definition of excess Gibbs 
energy.  However, other concentration measures and other fractions could be used in the mixing term.

The issue of binary evaluation strategies has been discussed in detail for volumes [42] and 
conductances [43], and applied earlier to volumes [44] and heats of mixing [45].  It is expected that at low 
concentrations (I<0.1 mol·kg–1), evaluation at constant I will be better.  However, at higher 
concentrations, it has frequently been found that evaluation at constant E yields a better binary 
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approximation (smaller mixing term) than constant I for volumes [42,44], heats [45,46], and osmotic 
coefficients. 

Although the use of equivalents is de-emphasized in elementary chemistry courses, they have an 
important role in electrolyte theory and practice.  For example, Pitzer's equations have terms in E and Ei, 
as do the Reilly and Wood mixing equations.  Also the general expression for chemical potential 
derivatives of common-ion mixtures contains E in one term [16].  Furthermore, Reilly and Wood point 
out that in Young's rule mixings, each ion sees the same number of other ions in constant E mixings 
[45,46], so that the oppositely-charged pairwise interactions nearly cancel.

In this context, we examined in 1986 three large φ data sets at 298.15 K for NaCl-MgCl2-H2O 
[28]; NaCl-SrCl2-H2O [27]; and for NaCl-Na2SO4-H2O from R. F. Platford that was not published until 
recently [47]¸ plus a smaller number of points from [4,48] taken from ref. [6].  We found but did not 
report that the mixing term

0
22

0
11 φφφ hh +− (33)

was smallest overall when 0
iφ is evaluated at constant E for NaCl-MgCl2-H2O and NaCl-Na2SO4-H2O, 

but smallest at constant I for NaCl-SrCl2-H2O.  The overall standard deviations are in Table 1.  Still 
earlier, based on data in Rush's compilation [6], we found in 1974 that the mixing term was smaller for 
constant I at three compositions of NaCl-LaCl3-H2O, whereas for two compositions of NaCl-CaCl2-H2O 
and one of NaCl-BaCl2-H2O the mixing terms were smaller for constant E.

As noted earlier, it is not necessary to use Scatchard's choice of equations to fit the binaries.  The 
choice of concentration function to represent the binary 0

iφ and 0ln iγ can be the choice that gives the best 
fit to each binary system data with the minimum of parameters and minimum cycling of residuals.  This 
means, for example, that Pitzer's equations may be appropriate for both binaries [49], or Pitzer’s 
equations for one binary and a polynomial in I1/2 for the other.  We note that the derivative of the binary 
Pitzer equation for a 2-2 salt is given in Miller et al. [50] Appendix I, and can be specialized for other 
than 2-2 and 3-3 valence types simply by setting β(2) equal to zero.

In general, the binary evaluation strategy that gives the smallest overall deviations from the 
ternary data is important because the mixing terms will be fewer in number and will provide a better fit.  
Consequently, the derivatives will also have smaller errors, and the 0)( ijL obtained both from them and 
the diffusion coefficients will be more reliable. 

However, at high concentrations, a poorer binary approximation may actually be better, with the 
mixing coefficients compensating for the larger deviations.  This situation arises when the concentration 
type in the BES exceeds the solubility of the least soluble or the lowest valence-type electrolyte.  For 
given molalities of the electrolytes, the total osmolality O or ionic strength I are larger than the total 
equivalent concentration E, which in turn is larger than the total molality m.  Consequently, the values of 
O, I, E, or m for a binary corresponding to that of the mixture may exceed the solubility of the binary.  
Therefore the equations describing the binary 0

iφ and 0ln iγ will be extrapolated beyond their region of 
validity. 

For example, consider a solution of that is 0.5 mol·kg–1 in NaCl and 2.5 mol·kg–1 in MgCl2.  The 
total molality m equals 3.0 mol·kg -1, the equivalent concentration E=5.5, I=8, and O=8.5.  The molality 
m1 of the 1-1 binary NaCl corresponding to the total value of m, E, I or O is just the total value of m, E, I
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or O, respectively.  Therefore, the last two are considerably beyond the solubility of NaCl, which is 6.16 
mol·kg–1.  For the 2-1 MgCl2, the corresponding m2 of the binary are 3.0, 2.75, 2.667, and 2.833, 
respectively, and all are within the solubility of MgCl2 (5.81 mol·kg–1).  Consequently, using constant E
or m for the BES avoids the extrapolation of the binary equations for 0

1φ and 0
1ln γ of NaCl.  Then the 

mixture quantities must make up for the possible poorer binary approximation.

Finally, the use of constant molality or equivalents might be used to obtain the data for one of the 
binaries in the supersaturated region as follows.  Consider a system whose total concentration (E or m)
corresponds to a molality in that binary (say binary 1) that exceeds its solubility. Fit the ternary data for 
example at constant molality using the constant molality binary approximation up to a total molality just 
below the solubility of binary 1.  Then assume the mixing terms can be used at higher total molalities.  
From the phi data for the ternary and binary, extract what must be the 0

1φ at that total composition.  Then 
use the existing 0

1φ data below the solubility point plus the extracted 0
1φ data above the solubility point to 

fit a new binary function for the 0
1φ of the whole range.  This concept can be tested for systems which 

have 0
iφ in the supersaturated region.

We now turn to the mixing term functions.

The mixing terms must vanish as the total concentration goes to 0, and must also vanish as the 
composition approaches each binary.  This means that if P is a concentration type, and pi are its fractions, 
the coefficient of the mixing term must be of the form p1p2P.  The rest of the mixing term can be a 
function of P and npp )( 21 − .  Thus in principle, the SNE and Friedman mixing terms, although typically 
written as polynomials in the concentration factor I, could also be polynomials in I1/2 or ln(I), or still other 
functions [51-53].  Furthermore, the concentration factor I could also be replaced by E, m, or O.  
Analogously, the ionic strength fractions yi could be replaced equivalent fractions xi, osmolality fractions 
hi, or molality fractions.  Each of these alternatives gives rise to different constant coefficients analogous 
to the Scatchard Neutral Electrolyte bij.
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Table 1.  Test of Binary Evaluation Strategies
system fraction binary 

evaluation strategy
concentration

range
standard error

NaCl-MgCl2-H2O osmolality I all 0.0187
" " E " 0.0055

" " I I<6.0 0.0144
" " E " 0.0051

NaCl-SrCl2-H2O osmolality I 0.0072
" " E 0.0120

NaCl-Na2SO4-H2O osmolality I I<10 0.0233
" E " 0.0038
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Appendix.  Useful Formulas

The coefficient of the mixing term for φ in eq 3 (the [] ) can be written in several ways:
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