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Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex
Networks

Abstract

Complex networks have been used successfully in scien-
tific disciplines ranging from sociology to microbiology to
describe systems of interacting units. Until recently, stud-
ies of complex networks have mainly focused on their net-
work topology. However, in many real world applications,
the edges and vertices have associated attributes that are
frequently represented as vertex or edge weights. Further-
more, these weights are often not static, instead changing
with time and forming a time series. Hence, to fully un-
derstand the dynamics of the complex network, we have
to consider both network topology and related time series
data.

In this work, we propose a motif mining approach to
identify trend motifs for such purposes. Simply stated, a
trend motif describes a recurring subgraph where each of
its vertices or edges displays similar dynamics over a user-
defined period. Given this, each trend motif occurrence
can help reveal significant events in a complex system; fre-
quent trend motifs may aid in uncovering dynamic rules of
change for the system, and the distribution of trend motifs
may characterize the global dynamics of the system. Here,
we have developed efficient mining algorithms to extract
trend motifs. Our experimental validation using three dis-
parate empirical datasets, ranging from the stock market,
world trade, to a protein interaction network, has demon-
strated the efficiency and effectiveness of our approach.

1. Introduction
The study of complex networks has emerged into an ac-

tive interdisciplinary research field. Many complex sys-
tems, spanning from the structures of the Internet, human
social networks, to gene-regulatory “circuitry” in single
cells, have been constructed in the last several years. Sur-
prisingly, these very different networks have several im-
portant features in common, such as a “scale-free” degree
distribution and being “small-world.” Various mathemati-
cal models have been proposed that give rise to such prop-
erties [4], and different clustering or decomposition meth-
ods have been developed to identify sets of small build-
ing blocks that highlight network design principles. In
particular network motifs, which can be loosely described
as over-represented subgraphs, have been demonstrated to
yield significant insight into the composition and function
of networks in biochemistry, neurobiology, ecology, and
engineering [19, 20].

Recently, the dynamic processes taking place in com-
plex networks have attracted much attention. This is be-
cause a complex network in the real world usually corre-
sponds to an evolving system in a state of constant change.
Often, these systems have been described by various epi-
demic modeling approaches, e.g. to simulate the diffusion
of innovation, or to prevent and suppress the spread of com-
puter viruses and sexually transmitted diseases, among oth-
ers [7].

1.1 Motivation

The majority of recent studies have focused on charac-
terizing the topology, or the change in topology, of complex
networks [17, 5, 24]. However, in many real world appli-
cations, weights are often associated with the vertices or
edges of the network. These weights are typically chang-
ing with time, thus forming a time series for each ver-
tex and edge. Thus, knowledge of the network topology,
paired with the time series data, provides a comprehensive
global picture of a dynamically changing system. Gener-
ally speaking, if each vertex of the network has a weight,
we refer to it as a vertex-weighted network or graph, and if
each edge of the network has a weight, we refer to it as a
edge-weighted network or graph. Note that, a network can
be both vertex-weighted and edge-weighted.

In the following, we will consider several systems that
can naturally be represented as weighted networks, and
where the system dynamics are captured in time series of
weights.
Financial Market: In the financial market, companies in-
teract with each other and form various relationships, typi-
cally including competitor, producer-consumer, ownership,
etc. A complex network can be built to represent the inter-
actions of all the companies in the financial market, where
each company corresponds to a vertex, and the relationship
between two companies corresponds to an edge. Each ver-
tex (company) can be weighted by the corresponding time
series of stock value. Since the price change of each stock
is often correlated with or determined by the price changes
of companies with which it has close relations, the network
representation provides a framework to simultaneously an-
alyze the dynamics of an entire financial market.
Collaboration Network: Collaborations between scien-
tists, as reflected in co-authorship on publications, is one of
the widely studied subjects in the field of social networks
and complex network mining. Here, each vertex represents
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a scientist, and two vertices (scientists) are connected with
an edge if they co-authored a paper. The strength of the
collaboration can be estimated by, e.g. the number of pa-
pers the scientists have co-authored in a given time frame.
In the network representation, the measure of collaboration
intensity can be represented as an edge-weight time series.
Protein Interaction Network: In the recent era of sys-
tems biology, new experimental approaches have been de-
veloped with the ability to rapidly measure thousands of
molecular interactions. Among the most heralded are the
so-called high-throughput techniques to characterize all
pairs of proteins with the ability to physically interact. It
has become customary to represent the resulting datasets as
networks, where each vertex corresponds to a protein and
two vertices are connected by an edge if the correspond-
ing proteins can bind. In addition, the high-throughput
microarray technology allow biologists to measure the dis-
tribution of gene products at different conditions and dif-
ferent time points. Thus, associating a time series from
the microarray experiment for each protein provides a more
comprehensive picture of the dynamically changing system
inside a cell.

While we have focused on the possibility that the net-
work weights will change with time in response to a sys-
tem’s dynamic processes, the topology of the underlying
network may change as well. However, for many sys-
tems the typical time scale for weight dynamics is sig-
nificantly shorter than that of the changes in the network
topology. Consequently, it is reasonable to consider the
network as a static entity. We note that, while a network
with time-varying weights contains significantly more in-
formation about the system, few methods have been de-
vised that leverage this information. Specifically, scientists
would like to know what are the basic rules that govern the
evolution and changes of the complex system, and how two
different dynamic systems can be compared.
1.2 Our approach

Our approach to analyze the dynamic complex network
starts from local dynamics. It is based on the observation
that the weight change of a vertex in a complex network is
rarely an isolated event. They are often strongly correlated
with, or possibly determined by, the changes occuring in
its network neighbors. Similar observation can be made
for the edges as well. For instance, in the stock market, the
increase of the Intel stock price is likely correlated with the
increase (or decrease) of AMD’s stock, and both correlate
with the stock price of PC producers such as HP and Dell.
Similarly, in the protein interaction network, a biological
process is very likely to result in the co-changes of several
related proteins [28]. In other words, synchronized changes
of weights over closely related vertices or edges can serve
as a good indication of (local) dynamics or the evolution of
a system.

The central theme of this paper is the introduction and
discovery of trend motifs, which target putative patterns of
changes for a group of closely related entities. Given a
weighted (undirected) complex network, a group of such

entities corresponds to a set of connected vertices. A pos-
sible pattern of change (a trend motif occurrence) is a set
of connected vertices associated with a time span where the
time series of each vertex displays a consistent trend. Here,
we focus on two types of trends: the first corresponds to a
steady increase in the time series, and the second corre-
sponds to a steady decrease (see Section 2 for the formal
definition). Consequently, a putative pattern is likely to
correspond to a major event, or a sequence of events, occur-
ring in the system. Therefore, extracting such patterns can
help scientists identify such events, which often are hidden
in large amounts of data.

Further, we define a frequent trend motif as a putative
pattern which are over-represented in the complex network.
Frequent trend motifs can help reveal the underlying mech-
anism governing the dynamics. For instance, a line sub-
graph with each vertex showing increase may correspond
to a cascade in the system, and a clique subgraph with some
vertices showing increase with others showing a decrease
may indicate these changes are strongly correlated. Finally,
we note that the distribution of trend motifs can be used
to categorize the dynamic networks, as we can expect that
different types of networks will tend to have different types
and distributions of such motifs [20].

Our contribution in the paper is as follows.

1. We formally introduce the concept of trend motif. To
the best of our knowledge, this is the first work which
applies a motif/subgraph mining approach to study the
dynamics in a complex network.

2. We develop a flexible framework and several novel
algorithms to efficiently discover these trend motifs.

3. We demonstrate the effectiveness and efficiency of our
approach through a detailed experimental evaluation
using three empirical datasets on (i) a financial mar-
ket [22, 23], (ii) global trade and GDP [12], and (iii)
a protein interaction network [6] with associated mi-
croarray mRNA expression data [28].

2. Problem Definition
As previously discussed, we can intuitively understand

a trend motif to be a recurring subgraph which, over time,
displays a consistent pattern of increasing or decreasing
weights of the vertices or edges. As two examples of pos-
sible trend motifs, consider an interval of the time series
for which a K3-clique has two vertices with increasing
weights and one vertex with decreasing weight, or a K5-
clique has three vertices with decreasing weights and two
vertices with increasing weights.

In the following, we will formally introduce the notation
of trend motif. We note that the discussion will focus only
on the vertex-weighted graphs for the sake of simplicity,
and the graph notation will be formally used to describe
the complex networks.

2.1. Trends and Trend Intervals

Given a graph G = (V, E) of N vertices V =
{v1, v2, · · · , vN} and a discrete time span [1, T ], the weight
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of vertex vi is denoted as xi(t), for t ∈ [1, T ]. Intu-
itively, we consider a trend as a subsequence of a time
series that shows a consistent increase or decrease. For-
mally, we define an increasing trend as a subsequence
[xi(t1), xi(t2), · · · , xi(tk)], and tj < tj+1, of the time se-
ries xi(t) with respect to two parameters δ and σ, and it
satisfies the following two conditions:

1. Weight constraints: for any time tj , xi(tj+1) −
xi(tj) ≥ δ, δ > 0;

2. Step constraints: for two time points in the sub-
sequence, tj+1 − tj ≤ σ, σ > 0.

Essentially, the movement threshold, δ, means the series
has to continue to make at least δ change over the entire
span of the trend, and the time step constraint, σ, means
that the change δ can not be on opposite ends of the time
series, but has to occur within a shorter amount of time.
These conditions impose that the time series must contain
a consistent increase (δ) within a specified amount of time
(σ) in order to be identified as containing an increasing
trend. Similarly, we define a decreasing trend as a subse-
quence of xi(t) so that, for any time tj , xi(tj+1)−xi(tj) ≤
−δ and tj+1 − tj ≤ σ, δ > 0, σ > 0. If a subsequence
satisfies one of these two definitions, either increasing or
decreasing, it will simply be called a trend.

As a running example, consider the time series xi(t) =
[1, 2, 3, 7, 5, 4, 12, 14, 13, 13, 15] with a threshold parame-
ter of δ = 1 and a maximum time jump parameter of σ = 2.
Among the possible trends in this time series, we can eas-
ily identify the two sets [1, 2, 3, 7] and [4, 12, 13]. Note that
[1, 2, 3] is also a trend. We define a maximal trend as a
trend that is not a subset of any other trend in the time se-
ries, i.e. [1, 2, 3, 7] is a maximal trend while [1, 2, 3] is not.
Formally, a trend S is a maximal trend if @S ′|S ⊂ S′.

To facilitate our discussion, we define an interval [ts, te]
to be an increasing trend interval if it contains a trend
[xi(ts), · · · , xi(te)], where ts and te are the beginning and
ending points of the trend, respectively. We use the no-
tation [ts, te]+ to represent an increasing trend interval
from start time ts to end time te. Similarly, we can define
the decreasing trend interval and denote it as [ts, te]−.
From the example, we can see the increasing trend inter-
val [1, 8]+ which contains the trend [1, 3, 5, 12, 14]. In
addition, we have [1, 11]+ as an increasing trend, since
[1, 2, 3, 5, 12, 13, 15] satisfies the conditions (δ = 1, σ =
2). We note that for the first interval [1, 8]+ is a sub-interval
of the latter one I [1, 11]+. Thus, we define the maximal in-
terval of trend as the longest time span in {xi(t)} such that
the values are consistently increasing or decreasing accord-
ing the definition of a trend. Formally, we refer to [ts, te] as
a maximal interval of increasing trend if it is an increas-
ing trend interval [ts, te]+ and there are no [t′s, t

′

e]+, such
that [ts, te] ⊂ [t′s, t

′

e]. The maximal interval of decreas-
ing trend can be defined similarly.

2.2. Trend Motif

Given the previous definitions, we can identify the
trends which indicate the increasing and/or decreasing in-
tervals for each of the vertices individually over the entire
time series. A particularly interesting pattern, however, is
observed when multiple trends occur simultaneously, and
especially when they occur in nodes that are closely re-
lated through the network topology. To properly describe
this phenomenon, we will formally introduce the concept
of trend motif occurrence. Given the graph G = (V, E) and
a subset of vertex Vs ⊂ V , let G(Vs) be the induced sub-
graph of Vs [11]. Mathematically, the induced subgraph of
Vs, G(Vs), contains all the edges in E that have both ends
in Vs.

Definition 1 Trend Motif Occurrence: Given a graph
G, a trend motif occurrence of G is defined as the triple
(Vs, [ts, te], f) with (ts < te), where G(Vs) is a con-
nected subgraph, f is a function f : Vs → {+,−}, and
[ts, te] = [t1s, t

1
e] ∩ [t2s , t

2
e] ∩ · · · ∩ [tns , tne ], where [tis, t

i
e] is

a maximal interval of trend for vertex vi ∈ Vs, and n is the
number of vertices in Vs.

Note that, if f(vi) = +, the corresponding interval is in-
creasing, otherwise f(vi) = −. Basically, the function f
labels each node of G(Vs). We denote the labeled graph
as Gf (Vs). Additionally, we note that the interval [ts, te]
is the intersection of all maximal intervals of trend, and the
intersection of the maximal intervals on [ts, te] has to be
nonempty. However, this intersection need not be a maxi-
mal trend interval on any of the vertices in Vs.

Based on the above definition, a very large number of
trend motif occurrences may exist in a complex network for
any time span. To reduce the number of motif occurrences,
we introduce two parameters l and w, where l is the min-
imum interval length for a trend interval of each vertex in
the motif occurrence and w is the minimal length for the in-
tersection of the motif occurrence. We denote such a trend
motif occurrence given l and w as (Vs, [ts, te], f)(l, w).

Finally, we introduce the concept of a frequent trend mo-
tif. Given two trend motif occurrences, (V1, [t

1
s , t

1
e], f1),

and (V2, [t
2
s, t

2
e], f2), V1 6= V2, we refer to them as equiv-

alent if their corresponding labeled induced subgraphs are
isomorphic Gf1(V1) = Gf2(V2) [11]. In other words, there
exists a one-to-one mapping between Vs and V ′

s , g : Vs →
V ′

s , such that for any vi, vj ∈ Vs, (vi, vj) ∈ E(G(Vs)) ⇔
(g(vi), g(vj)) ∈ E(G(V ′

s )), and f1(vi) = f2(g(vi)). Here
E(G(Vs)) and E(G(V ′

s )) are the the edge sets of the in-
duced graph of G(Vs) and G(V ′

s ), respectively.

Definition 2 Frequent Trend Motif: Given a support θ,
and two parameters l and w, if there are more than or
equal to θ distinct subset of vertices, V1, · · · , Vt, t ≥ θ,
such that each set has at least a trend motif occurrence
(Vi, [t

i
s, t

i
e], fi)(l, w) being equivalent, then we refer to

Gf
s (l, w, θ) as a frequent trend motif, where Gf

s is a labeled
subgraph that is isomorphic to Gfi(Vi), 1 ≤ i ≤ t.
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Consequently, we can identify the following two related
mining tasks.

1. Extracting Trend Motif Occurrences: Given two
parameters l and w, we would like to find all the trend
motif occurrences (Vs, [ts, te], f)(l, w) in a graph G.

2. Extracting Frequent Trend Motifs: Given the sup-
port level θ and the parameters l and w, we would like
to find all the frequent trend motifs Gf

s (l, w, θ).

Clearly, these mining tasks are different from traditional
subgraph mining tasks [14, 15, 16]. In the subgraph min-
ing, the label of each vertex is known, and the major task is
to enumerate all the possible candidate subgraphs, count-
ing their number of occurrences. Here, each motif occur-
rence is dynamically determined by the time series data. In
addition, each induced subgraph may correspond to differ-
ent types of trend motif occurrences, as each vertex may
display different trends at different time points. If we la-
bel each vertex with either + (corresponding to increasing
trend intervals) or − (corresponding to decreasing trend in-
tervals), a vertex can have both labels. These considera-
tions show that mining trend motifs is a challenging task.

3. Algorithms
In this section, we will introduce efficient algorithms for

the two mining tasks, extracting all the trend motif occur-
rences and extracting all the frequent trend motifs. The
basic idea of our approach for these two mining tasks is
as follows. We will first extract all the maximal intervals
of trends for each vertex, and organize them into two cat-
egories, corresponding to the increasing trend and the de-
creasing trend. Then, we will use the depth-first approach
to traverse the underlying graph to find any induced sub-
graph that are associated with trend intervals which satisfy
the two length constraints l and w. Finally, we will use a
level-wise approach to find all the frequent motifs using the
discovered motif occurrences.

We will first present an algorithm for extracting maxi-
mal intervals of trends in Subsection 3.1, which will be the
basis for these two mining tasks. Then, we will introduce
the algorithm in Subsection 3.2 for the first mining task. In
Subsection 3.3, we will discuss the algorithm which will
use the result from the first task to extract frequent trend
motifs.

3.1 Extracting Maximal Trend Intervals

Consider we have a time series X(t), t ∈ [1, T ] and two
parameters δ and σ, we would like to extract all the max-
imal trend intervals from X(t). A simple attempt will be
to extract all the maximal trends first and then generate in-
tervals defined by the starting time point and the end time
point of these maximal trends. However, this approach can
be rather computationally expensive. First, we note that the
maximal trend intervals are not necessarily the the maximal
intervals of trends. Thus, a much larger number of maximal
trends which will not correspond to the maximal intervals
of trends can be generated. Therefore, our approach tries
to directly generate these maximal intervals of trends.

Algorithm 1 ExtractT rendIntervals(δ, σ, X)

1: Q← ∅ { sorted list holds the last σ elements seen}
2: for t = 1 to |X| do
3: inc(t) ← min{inc(q)|X(q) + δ ≤ X(t), X(q) ∈ Q}

{inc(t) is the earliest time that [inc(t),t] is an interval of
increasing trend}

4: dec(t) ← min{inc(q)|X(q) ≥ X(t) + δ, X(q) ∈ Q}
{dec(t) is the earliest time that [dec(t),t] is an interval of
decreasing trend}

5: Q← Q ∪ {X(t)} {add to the queue}
6: if |Q| > σ then
7: Q← Q \ X(t− σ) {remove the earliest}
8: if ∀X(q) ∈ Q, inc(q) > inc(t− σ) then
9: interval[+]← interval[+]∪{[inc(t−σ), t−σ]}

10: end if
11: if ∀X(q) ∈ Q, dec(q) > dec(t− σ) then
12: interval[−]← interval[−]∪{[dec(t−σ), t−σ]}
13: end if
14: end if
15: end for
16: return interval;

Here, we introduce an algorithm with a linear time com-
plexity to simultaneously extract all maximal intervals of
both increasing and decreasing trends in one pass through a
time series. The ExtractTrendIntervals algorithm is shown
in Algorithm 1. The algorithm maintains a list Q that stores
the last σ seen elements at any time point t, from the given
time series X . We iteratively look at each of the n elements
in Xi (The for loop at line 2). The key of this algorithm is
for each time point t, we will derive two values, inc(t)
and dec(t), which correspond to the intervals of increas-
ing trend and decreasing trend, respectively. Essentially,
inc(t) is the earliest time point which can form an interval
of increasing trend together with t. This is equivalent to
say that [inc(t), t] is the longest interval which contains an
increasing trend starting from inc(t) and end at the current
time point t. This is achieved by appending X(t) to all the
elements in Q, which satisfy the weight increasing con-
straint (Subsection 2.1) between X(t) and X(q), q ∈ Q.
Among those satisfying the constraint, we will choose the
one which has the earliest time point forming the interval
of increasing trends (Line 3). The processing for dec(t) is
similar (Line 4).

Given this, for a time point t, we basically have the
longest intervals of trends which ends with t. The next
question will be under what condition, such longest inter-
vals will become maximal intervals of trends. We begin
testing if there is a maximal interval ending with t when
the Q is full. In other words, we drop the element X(t)
when the t + q time point arrives. This is because starting
from t + q, no other time point will be able to directly con-
nect to X(t) to form a trend based on the step constraint
(Subsection 2.1). The condition for ensuring the maximal
intervals of trends is rather simple: we basically want to
see if the element being removed has a trend interval that
is not a subset of any other trend interval in Q. This can be
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simply achieved through condition in Line 8 for increasing
trends and Line 11 for decreasing trends. This can eas-
ily ensure that no X(q) ∈ Q or (t − σ < q ≤ t), such
that [inc(t − σ), t − σ] ⊂ [inc(q), q]. Based on the above
discussion, we can have the following lemma stating the
correctness of our algorithm.

Lemma 1 Given parameters, δ and σ, the algorithm Ex-
tractTrendIntervals will extract all the maximal intervals
of both increasing trends and decreasing trends from the
input time series X .

Finally, we note that the computational complexity of
this algorithm is |X |σ. This is because for each time point
t, we have to build inc(t) and dec(t). These two opera-
tions will require an upper bound of O(|Q|) = O(σ) time
complexity. Also, this is a one pass algorithm which re-
quires only O(σ) space complexity. Thus, it can be applied
to streaming data.

3.2 Algorithm for Trend Motif Occur-
rence Discovery

One of the major difficulties in enumerating all the trend
motif occurrences is the massive search space which spans
both the topology dimension and the time dimension: any
subset of connected vertices (topology dimension) com-
bining with an interval (time dimension) can be treated as
a candidate of trend motif occurrence. However, only a
small portion of these candidates will become the true oc-
currences.

In order to efficiently discover these motif occurrences,
we have to aggressively prune the search space. Here, we
apply several techniques to reduce the search space. The
first technique is based on the down-closure property: for
any motif occurrence (Vs, [ts, te], f), any subset of con-
nected vertices V ′

s ⊆ Vs will correspond to a motif occur-
rence whose interval contains [ts, te]. This will enable us
to apply a depth-first search strategy to enumerate the mo-
tif occurrences from a single vertex to larger patterns. Sec-
ondly, we will enumerate all the motif occurrences which
correspond to the same subset of vertices Vs and share the
same labeling function f together. We refer to these motif
occurrences as the same type of motif occurrences. This
essentially enables us to enumerate the same type of motif
occurrences in an efficient way.

Further, to reduce the cost of trend interval discovery,
we extract all the maximal intervals of both increasing
trends and decreasing trends for each vertex in the graph
G using ExtractTrendIntervals. Then, for each vertex v,
we record all the maximal intervals of increasing trends
and decreasing trends (whose lengths are no less than l)
in v.interval[+] and v.interval[−], respectively. Thus,
we discover all the intervals of trends for each vertex only
once. In addition, if a vertex does not have any interval, we
remove them from the original graph G. This can help to
reduce the search space.

Algorithm 2 Build(Node v, Set N, Set E)

1: N ← (N ∪ Neighbor(v))−E {N : the set of vertices that
can join to the occurrence; E: the set of vertices that are
neighbors but cannot join to the occurrence; v: parent node;
Neighbor(v): the vertices connect to v}

2: for each n ∈ N do
3: E ← E ∪ {n}
4: for each k = {+,−} do
5: z ← Join(v.interval, n.interval[k], w) {z: inter-

vals of trends; w: intersection constraints}
6: if z 6= ∅ then
7: create a new node v′ for (n, z, k)
8: add v′ to parent’s (v) children list
9: end if

10: Build(v′, N, E)
11: end for
12: end for

The key procedure in enumerating the trend motif oc-
currence is illustrated in the Build method (Algorithm 2),
which employs a depth-first search (DFS) strategy. All the
occurrences are recorded in a tree structure. Each node
of the tree corresponds to a vertex with certain trend, in-
creasing (+) or decreasing (-). A path starting from the
root to the given node v encodes one type of motif oc-
currence, and this node also records all the trend inter-
vals of this type of motif occurrence in v.interval. The
Build() operation begins with a root node r that has no
children, a set of neighbors N of the current motif occur-
rences and an excluded set E that records which vertices
can no longer joined to the current occurrence. Both of
the sets are initially empty (Build(r, ∅, ∅)). In addition,
we assume the root node r has all the vertex in G as its
neighbors: Neighbor(v) = V (G), and r.interval records
only one interval [1,∞], suggesting it can intersect with
any trend intervals without reducing their length.

Given this, each time being invoked, the Build() proce-
dure will find the new neighbors from the last vertex being
added to the current motif occurrence (Line 1). Then, the
algorithm iterates through the vertices in N and decides
which of the remaining vertices can join with it (Line 2).
For each vertex, we have to consider two cases, the increas-
ing trend intervals and the decreasing trend intervals (Line
4). We compute the intersections of the intervals from
the current motif occurrence with these new intervals (Im-
plemented by Join() operation, which will be discussed
shortly). If a vertex with one type of trend intervals can
join with current motif occurrence (the intersection set is
not empty, Line 6), we will create a new node in the tree to
record the vertex together with the trend intervals and we
record this new node as a new child of the current motif oc-
currence(Line 7−8). Thus, a new type of motif occurrence
is being discovered and stored. We will invoke Build() re-
cursively to expand this new motif occurrence (Line 10).
Note that in order to enumerate each motif occurrence only
once, after we visit each vertex in the set N , we will add
to the E list (Line 3). Therefore, this vertex will not be in-
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cluded in the motif occurrences which are being expanded
later (Line 1).

Procedure Join(z1, z2, w)
1: sort(z1), sort(z2); {sort each set of intervals z1 and z2

based on the starting time}
2: z ← ∅
3: j ← 1 {beginning of z2}
4: for i = 1 to |z1| do
5: while (z2[j].end < z1[i].start + w) do
6: j ← j + 1 {skip interval with no valid intersection}
7: end while
8: l← j { begin valid intersections }
9: while z2[l].start ≤ z1[i].end() − w do

10: z ← z ∪ intersect(z1[i], z2[l])
11: l← l + 1
12: end while
13: end for
14: return z

A key operation in the Build() operation is to find the
common intervals of two sets of trend intervals. Suppose
we have two sets of intervals, z1 and z2, the naive method
will simply intersect each pair of intervals, one from z1 and
another from z2. Thus, it will take O(|z1| × |z2|) intersec-
tion operations. Here, we present an efficient algorithm,
which in the best case only requires linear time complexity
O(|z1| + |z2|). The algorithm is illustrated in procedure
Join(z1, z2, w). Note that the parameter w is the minimal
length for the resulting interval. This algorithm utilizes a
simple characteristics of both sets z1 and z2: none of the
intervals is a subset of any other intervals in the same set.
Thus, if we sort each set based on the beginning time of
each trend interval, then, they are sorted by their ending
time as well (Line 1). With this fact, we take each trend in-
terval in the first set z1 and begin to make intersections on
the second set z2 only when z2[j].end ≥ z1[i].start + w,
which means our intersection will be at least w units long
(Line 5 − 7). Similarly, we continue making intersections
on the trend from set z1 while z1[l].start ≤ z1[i].end− w
(Line 9 − 12). We continue iteratively through the set of
trends in z1, only making intersections where appropriate
in z2 (Line 4). The correctness of this algorithm can be
achieved by the following lemma.

Lemma 2 For a given interval z1[i], for any interval z2[l],
such that z2[l].end ≥ z1[i].start + w and z2[l].start ≤
z1[i].end() − w, then the length of their intersect
[max(z1[i].start, z2[i].start), min(z1[i].end, z2[i].end)]
is greater than or equal to w.

Proof:First, we note that z1[i].end − z1[i].start ≥ l ≥
w and z2[i].end − z2[i].start ≥ l ≥ w. Then, we
have z1[l].end ≥ z2[l].start + w and z1[l].end ≥
z1[l].start + l ≥ z1[l].start + w. Similarly, we have
z2[l].end ≥ z1[l].start + w and z2[l].end ≥ z2[l].start +
l ≥ z2[l].start + w. Thus, min(z1[i].end, z2[i].end) −
max(z1[i].start, z2[i].start) ≥ w. 2

3.3 Algorithm for Frequent Trend Motif
Discovery

Before we set up to introduce the algorithm to find all
frequent trend motifs, we will visit the frequency concept
first. In the original Definition 2, any subset of vertices
whose induced subgraphs are isomorphic to each other will
be counted towards the frequency of a motif. However, a
lot of them may have significant overlaps. A slightly dif-
ferent approach will only consider non-overlapped occur-
rences [16]. Here, we will allow any two occurrences share
at most one vertex [26]. In other words, no edge can be
shared between two occurrences for a given trend motif.
Note that such a frequency concept will allow us to use the
down-closure property for the motif enumeration. Given
this, the major challenge in finding frequent trend motif
is how to utilize the motif occurrence tree and the down-
closure property to speedup the mining process.

Algorithm 3 ExtractFrequentMotifs(Root r, Support θ)

1: C1 ← ∅; R← ∅; k ← 1
2: Count(C1, r) {count the first level}
3: while |Ck| 6= 0 do
4: Ck+1 ← ∅
5: for each c ∈ Ck do
6: c.count← max independent set(c.motifocc list)
7: if c.count ≥ θ then
8: R← R∪{c} {record the motif c in resulting set R}
9: end if

10: if c.count ≥ θ or k = 1 then
11: for each v ∈ c.motifocc list do
12: Count(Ck+1, v)
13: end for
14: end if
15: end for
16: k ← k + 1
17: end while
18: return R

Procedure Count(Set C, Node v)
19: for each v′ ∈ v.children do
20: if v′.interval 6= ∅ then
21: code← canonicalcode(v′)
22: c← search(C, code) {c is created if it does not exist}
23: c.motifocc list← c.motifocc list ∪ {v′}
24: end if
25: end for

The ExtractFrequentMotifs() algorithm, shown in
Algorithm 3, takes the root of the motif occurrence tree
r and finds all of the motifs that appear at least θ times.
This is done in a level-wise fashion, similar to Apriori [3].
A key idea in this algorithm is to record each type of motif
occurrence (corresponding to a node in the occurrence tree)
when counting the frequency of each motif. This allows us
to efficiently count the motif frequency for the next level
without repeatedly accessing the same node many times.
Specifically, the algorithm is as follows. It first finds the
single vertex motifs by using the Count() procedure on
the root of the motif occurrence tree (Line 2). In Count(),
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Table 1. Network Characteristics
Dataset Nodes Edges Series Diameter
GDP-Norm 196 375 52 8
Market82-87 116 887 250 5
Market95-00 116 607 250 6
Micro-Array 6105 8815 18 15

each child of r will be visited to expand the current motif
occurrence (Line 19). For each child, we create a canonical
code using canonicalcode() (Line 21). It searches the set
C to see if any motif corresponding to this code has already
been inserted. If not, it will create a new entry for this code
(Line 22). Note that the canonicalcode() function essen-
tially creates a unique string for the isomorphic represen-
tation of the motif (a labeled subgraph). Many methods
have been developed for such a purpose [30, 21]. Finally
each motif occurrence is recored in a the motifocc list
(Line 23). After building the first level, for each set Ck,
ExtractFrequentMotifs() will find the maximal num-
ber of occurrences which can only overlap by no more
than a single vertex for any pair of them (Implemented by
max independent set, Line 6). For any level k ≥ 2, a mo-
tif can be expanded further only if their support is at least
θ (Line 10). For the case when k = 1, the down-closure
property will not hold. Therefore, any single vertex motif
will be expanded.

Note that this algorithm can be easily extended to han-
dle other frequency count. For instance, if we count all the
occurrences by allowing the overlap, we can simply drop
Line 6 and to expand each motif even though they are in-
frequent (drop Line 10). In addition, we note that finding
the maximal number of occurrences which can only over-
lap by no more than a single vertex is essentially the prob-
lem of finding the maximal independent set problem. We
can build essentially a graph such that each occurrence is
a vertex, and two of them are connected by an edge if they
share more than a vertex. Thus, finding the frequency of
the motif is equivalent to finding the maximal independent
set in this graph. Since it is a well-known that this is a
NP -complete problem, we simply use a heuristic to ap-
proximate the true frequency. Our heuristic is similar to
the one described in [26].

4 Experimental Results
In order to find trend motifs in real networks, we tested

datasets from biology, financial markets and global eco-
nomics. The first data set is for the protein interaction
network in the yeast S. cerevisiae [6], and the vertex
time series is derived from mRNA microarray expression
data [28]. The second and third datasets are derived from
the daily market prices of 116 publicly traded companies
spanning nearly twenty years from 1982 to 2000 [22, 23].
The fourth dataset is derived from the global trade and
gross domestic product (GDP) data from 196 countries be-
tween the years 1948 and 2000[12]. The basic characteris-
tics of these datasets are in Table 1 and their detailed con-
struction is as follows. Note that all the underlying net-
works are undirected.

GDP-Norm This dataset is created from the publicly
available Expanded Trade and GDP Data [12]. The data
represents the yearly imports and exports, total trade and
gross domestic product of 196 countries spanning the 52
years 1948-2000. The time series for each county is the
proportion of its share in the global economy according to
its gross domestic product(GDP) for that year. In other
words, the time series for GDP-Norm is the normalized
value of each individual annual GDP, divided by the to-
tal GDP for all countries during that year. The topology for
the graph was created by comparing the yearly total trade
for each country and its trade with each of the other coun-
tries. If the trade between country A and country B in any
given year accounts for more than 10% of either country’s
total trade for that year, an edge is created between the the
two countries.

Financial Stock Market The market data was split into
two 5 year time spans, the first ranging from 1982 to
1987 (Market82-87), and the second from 1995 to 2000
(Market95-00). The time series for each of the 116 stocks
was created by taking the log of the weekly average for
each week in the time span, creating a series 250 units long.
The underlying graph that correlates these stocks was cre-
ated using price correlation coefficients [18]. An edge is
created between two companies if those two comapnies are
among the 150 highest correlated pairs from each 6-month
interval.

Micro-Array The protein interaction network was con-
structed from high-quality multivalued data for yeast, col-
lected from multiple databases [6]. The associated vertex
time series was generated from mRNA microarray expres-
sion data on the yeast cell cycle, for which populations of
yeast cells had been synchronized using α factor [28, 1].
The time series consists of 18 sample points, each 7 min-
utes apart, over the length of the experiment.

Output and Performance In the experiments, all trends
were found with either σ = 2 or σ = 3 as the maximum
time step, since a series that increases or decreases by δ
at least every two or three steps can reasonably be consid-
ered as moving consistently. Additionally, the maximum
depth was constant at six, ensuring that we would enumer-
ate all occurrences of motifs that contain up to 6 vertices.
In Tables 2, 5, 3, and 4 we can see the results of the exper-
iments for each dataset at different support levels. Given
different parameters σ, δ, l and w, we first show the total
number of maximal intervals of increasing trends I+ and
decreasing trends I−. We also show the number of ver-
tices which have intervals of both increasing and decreas-
ing trends, denoted as |N+,−|, and only have intervals of
increasing trends, decreasing trends and none, denoted as
|N + |, |N−|, and |None|. Then, we vary the support level
from high to low, and report the total number of frequent
trend motifs at each support level (Count) and the run-
ning time T ime. Clearly, as the support level is reduced,
more motifs are being discovered and the running time is
increasing. However, throughout all these experiments, the
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running is consistently less than 3 minutes even when the
support level is as low as 1.

Significant Trend Motifs For each of the datasets, many
frequent trend motifs were discovered. Here, we show
several representative examples from our experimental re-
sults, and list them in Tables 8, 7, and 6. Besides provid-
ing their frequency (count) in the corresponding datasets,
we also compare them with randomized networks. Since
our datasets combine both network topology and time se-
ries data, we will construct three types of randomized net-
works. The first type of randomization, referred to as RS,
shuffles the time series data for each vertex and the un-
derlying network topology remains the same. The second
type, referred to as RN , shuffles the edges and labels (cor-
responding trends) among the vertices while preserving the
degree distribution of each vertex [19], and the time series
data remains the same. Finally, the third type of random-
ization, referred to as RS/RN , is a combination of the first
two. We build 200 randomized networks for each type of
randomization, and compute the average and standard de-
viation of frequencies for each trend motif in the 200 net-
works. Finally, we compute the Z-score for the significance
of each motif as compared to the specific type of random-
ization.

The GDP-Norm dataset contains very interesting mo-
tifs. In the GDP-Norm motifs shown in Table 6, we see a
very distinct dependence relationship among the countries.
Very few motifs were found where all vertices were well
connected, leading to the notion that the country with the
highest degree can greatly affect its dependent neighbors.
This would be further validated when we look at the spe-
cific trend motif occurrences.

In Table 7 we see two motifs that have increasing in-
tervals on all vertices. Because we are taking the abso-
lute value of the stock prices over five years, we can ex-
pect that the major trends in the market present the stock
prices as increasing. In addition, these motifs are relatively
well-connected as we expect that the related companies are
likely to affect each other at a higher degree. Also, these
motifs were found to be significant in both the Market82-87
network as well as the Market95-00 network. These motifs
show that the underlying dynamic of the market trends is
similar, regardless of the time period and that we have very
similar movement between companies that are highly cor-
related.

Two motifs from the Micro Array dataset are shown in
Table 8. These motifs display configurations of interacting
proteins that are significantly co-regulated over longer pe-
riods of time. Note that, no vertices with increasing trends
take part of trend motifs that contain a cycle. Also, for
single edge motifs, increasing trend vertices appear to be
underrepresented. Consequently, we hypothesize there ex-
ists an effective ”repulsion” between nodes with increasing
trends. Future research will be aimed at investigating pos-
sible biological mechanisms for this effect.

Table 2. GDP-Norm
δ = 0.00014, σ = 2, l = 10, w = 8

I+ I− |N+,−| |N + | |N − | |None|
48 79 18 24 48 106

Support 60 40 15 6 1
Count 66 193 301 405 1055
Time 0.01s 0.07s 1.01s 50.27 128.7

δ = 0.0002, σ = 3, l = 15, w = 10

I+ I− |N+,−| |N + | |N − | |None|
21 69 6 14 59 117

Support 40 20 10 3 1
Count 65 134 154 202 322
Time 0.01s 0.02s 0.11s 3.38s 9.10s

Table 3. Market82 Performance
δ = 0.019, σ = 2, l = 12, w = 8

I+ I− |N+,−| |N + | |N − | |None|
86 22 9 54 10 43

Support 60 30 15 6 1
Count 166 211 308 452 744
Time 0.1s 0.42s 3.10s 29.52s 33.44s

δ = 0.05, σ = 3, l = 12, w = 8

I+ I− |N+,−| |N + | |N − | |None|
74 26 10 42 12 52

Support 40 20 10 6 1
Count 226 342 427 597 892
Time 1.03s 9.86s 63.56 118.1s 138.9s

Table 4. Market95 Performance
δ = 0.025, σ = 2, l = 10, w = 6

I+ I− |N+,−| |N + | |N − | |None|
161 91 48 40 13 15

Support 50 30 15 6 1
Count 360 409 560 828 1173
Time 0.59s 0.64s 22.58s 57.78s 71.6s

δ = 0.04, σ = 3, l = 12, w = 12

I+ I− |N+,−| |N + | |N − | |None|
195 121 63 33 10 10

Support 50 30 15 6 1
Count 448 478 583 918 1202
Time 1.15s 1.52s 48.25s 160.1s 170.1s

Table 5. MicroArray
δ = 0.02, σ = 2, l = 10, w = 5

I+ I− |N+,−| |N + | |N − | |None|
208 633 15 190 590 5310

Support 60 30 15 6 1
Count 913 954 1001 1112 1331
Time 0.07s 0.23s 0.76s 11.15s 19.27s

δ = 0.06, σ = 3, l = 12, w = 5

I+ I− |N+,−| |N + | |N − | |None|
153 646 27 123 593 5362

Support 60 30 15 6 1
Count 990 1069 1216 1399 1944
Time 0.56s 2.62s 43.85s 63.67s 82.16s
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Table 6. GDP-Norm Motifs
δ = 0.00014, σ = 2, l = 10, w = 8

Motif RS RN RS/RN
+

+ +

Count: 15
µ± σ : .12 ± .68 2.30 ± 2.55 .01 ± .16
Z score: 21.9 4.99 96.6

+

− − −

Count: 7
µ± σ : 0 ± 0 .65 ± 1.49 0± 0
Z score: 7 4.26 7

−

− −

− −

Count: 7
µ± σ : 0 ± 0 1.82 ± 2.44 0± 0

Z score: 7 2.12 7

Table 7. Market82-87/Market95-00 Motifs
Market82: δ = 0.019, σ = 2, l = 12, w = 8

Market95: δ = 0.025, σ = 2, l = 10, w = 6

Motif RS RN RS/RN

+

+

+

+

Count: 14 (Market82), 12 (Market95)

µ± σ : 0.09 ± 0.9 3.39 ± 2.06 .09 ± .54

Z score: 13.6 4.18 22.15

+

+ +

+

+

Count: 10 (Market82), 9 (Market95)

µ± σ : .06 ± .60 3.05 ± 2.05 .05 ± .50

Z score: 15.0 2.89 17.87

Table 8. Micro Array Motifs
δ = 0.02, σ = 2, l = 10, w = 5

Motif RS RN RS/RN
−

− −

Count: 11
µ± σ : .19 ± .74 .23 ± .50 .01 ± .12
Z score: 14.7 21.8 91.5

−

−

−

−

Count: 10

µ± σ : .03 ± .42 8.91 ± 4.0 0 ± 0

Z score: 23.9 2.52 11

Figure 1. Example Motif Occurrences

Interesting Trend Motif Occurrences In Figure 1 we
show some interesting trend motif occurrences that were
found in each dataset. In (a), (b), and (c) we find mo-
tifs that occurred in the GDP-Norm dataset. The first mo-
tif (a), displays the partnership between the United States
(USA), United Kingdom (UK), and Japan (JAP) during the
1980’s which shows significant market share growth for
all three countries. In (b), however, we see that countries
that depended on the United States (USA), such as Mexico
(MEX), Argentina (ARG), and South Africa (SAF), were
losing global market share during that same period. We be-
lieve this displays a shift in the global economic structure.
Finally, in (c), we note that several regional patterns also
developed as motifs. Here we see a trend where the United
Kingdom (UK) is decreasing, while the European coun-
tries that depend on it, such as Germany (GFR), Switzer-
land (SWZ), Poland (POL), and Hungary (HUN), are also
decreasing during the 60’s. Another interesting fact is that
major motif occurrences found in GDP-Norm were occur-
ring on approximately the 1955-1965 time span, and then
again in the 1980 to 1990 time span. We believe that these
two distinct time-based patterns can be due to the recon-
struction efforts and emerging countries after World War II
and then again during the waning years of the Cold War.
Both eras marked major changes in the global economy
and are portrayed through our identified motifs.

The second set of examples in Figure 1, are from the
financial market dataset. The first, (d) from the Market82-
87 dataset, displays the partnerships between US Air-
ways Group (LCC), General Motors (GM), Boeing Com-
pany (BA), and AMR Corproation (AMR), the owner of
American Airlines. The second motif in (e), from the
Market95-00 dataset, shows the partnerships between three
technology companies and a consumer company, namely
Int’l Business Machines (IBM, computer hardware), Texas
Instruments (TXN, semiconductors), Unisys Corporation
(UIS, computer services) and a consumer retail company,
Wal-Mart Stores, Inc (WMT). The third motif in (f), also
from the Market95-00 dataset, shows the partnership be-
tween four healthcare companies and one major investment
firm. These companies are Pfizer (PFE, major drugs), Bax-
ter International Inc (BAX, medical equipment), Bristol-
Myers Squibb (BMY, major drugs), Medtronic Inc (MDT,
medical equipment) and finally, Merrill Lynch & Co
(MER, investment services).

The third set of example motifs is taken from the yeast
protein interaction network. In Figure 1 (g), the identified
trend motif takes part in the small nucleolar ribonucleopro-
tein in yeast, which is a complex involved in the processing
of rRNA found in the nucleolus of eukaryotic cells. If ei-
ther of the identified genes are disrupted, the yeast cells are
no longer viable. While the trend motif in (h) is isomorphic
to that in (g) and its constituents are also essential for the
survival of the cell, these proteins are all involved in the
60S ribosome biogenesis. The trend motif in panel (i) con-
sists of four proteins that take part in the SWI/SNF chro-
matin remodeling complex that regulates transcription of
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many genes. In contrast to (g) and (h), these genes are not
essential for the survival of the organism, however, their
impairment induces multiple growth defects on the yeast
cells.

We are convinced that these motifs not only are statisti-
cally significant, but they identify key characteristics about
the underlying dynamics of these complex systems. The
yeast motifs highlight protein complexes with important
cellular functions during different parts of the cell cycle,
the GDP-Norm motifs display highly correlated subgraphs
that show the major shifts in global economics, while the
financial market motifs display interesting partnerships be-
tween companies and their performance similarities.

5. Related Work
The ability to model and analyze dynamics on complex

network has recently attracted significan research interests.
An important set of problems is related to spreading phe-
nomena on complex networks, such as epidemics and dif-
fusion processes [7, 2]. Many studies have also focused on
characterizing the topological change or cluster evolution
of a system [17, 5, 24, 22]. However, the effects of time-
evolution of vertex- or edge-weights have not previously
been explicitly considered.

The correlation and pattern discovery of multiple time
series has recently also gained a lot of attention, e.g. Sun
et al. [29] applies tensor analysis to study co-evolving time
series. Their approach is essentially a high-dimensional
extension of the well-known PCA/SVD techniques. In ad-
dition, several algorithms have been developed to quickly
identify strong correlations within a large number of time
series [8, 25]. However, these analyses do not effectively
utilize the underlying topology among the basic units of
the complex system, and their time-series analysis can-
not address the interplay between dynamics and systems-
organization, as is captured by our motif analysis.

The problem of identifying network motifs, or frequent
subgraphs, has been studied in large complex networks or
collections of graphs [19, 27, 14]. The early efforts in graph
mining apply heuristic algorithms to discover useful pat-
terns from graph datasets [9, 10], and the down-closure
property has been extensively applied to find frequent in-
duced and/or connected subgraphs [16, 14, 15, 30, 13, 21].
However, these approaches only consider the topology of
the graphs and therefore, will not capture dynamic effects
as described in this paper.

6. Conclusions
In this paper, we have developed a data mining ap-

proach, making it possible to analyze evolving weighted
complex networks. A list of new concepts and new al-
gorithms enable the analysis from individual vertex (trend
discovery), to a group of correlated vertices (trend motif
occurrence), and to the common patterns of change (fre-
quent trend motif) in a dynamic complex network. The
detailed experimental study on three real datasets have
demonstrated the significance of these patterns in uncover-
ing significant events in the dynamic system, and to under-
stand their characteristics. We hope our methodology will

open a new avenue in applying motif mining to analyze the
dynamics of complex systems.
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