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The fully nonlinear (full-f) 4D TEMPEST gyrokinetic continuum code produces frequency, colli-
sionless damping of GAM and zonal 
ow with fully nonlinear Boltzmann electrons for the inverse
aspect ratio �-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST
simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gra-
dients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-
Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains
experimental BES measurements on the edge q scaling of the GAM amplitude.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.35.Ra, 52.65.Tt

The Geodesic-Acoustic Mode (GAM) is a poloidally
asymmetric mode with a coherent and radially localized
poloidal 
ow oscillation that is dominant in the outer re-
gions of the magnetically con�ned toroidal plasmas [1,2].
This mode is characterized by oscillations of the plasma
column in the vertical direction with a characteristic fre-
quency !G � vTi=R0, where R0 is the major radius of

a torus and vTi =
p
2Ti=Mi the ion thermal velocity.

The GAM has been clearly identi�ed experimentally in
tokamak and stellarator plasmas [3,4]. GAMs and zonal

ows are driven by the turbulence, damped by collision-
less Landau wave-particle resonances and by the colli-
sional friction between trapped and circulating ions [5].
The turbulence 
uctuation levels and transport are in
turn regulated by the GAM and zonal 
ows via the time-
varying E � B 
ow shear de-correlation [6]. This letter
will focus on the new GAM damping mechanism induced
by the �nite-orbit-width (FOW) e�ect, its parametric de-
pendence, and its relevance to the experiments.
The GAM is a normal mode, involving particle parallel

ion dynamics, cross-�eld drifts, and acceleration. Earlier
GAM theory and simulations focused on the large aspect
ratio and small orbit regime. Recently the damping rate
is found to be sensitive to k?�i at large q [7,8], where �i is
the ion gyro-radius and q is the tokamak safety factor. An
enhanced damping is induced by promoting the second
resonant condition vk = qR!G=2 due to the FOW e�ect
of passing particles Æi � �iq. In fact, as k Æi increases,
a series of resonance at vk = qR!G=n becomes e�ective
[8]. When the resonance velocity is reduced, more passing
particles participate in the resonance due to the shape of
Maxwellian distribution, thus the damping is enhanced.
The enhanced damping explains experimental measure-
ments on the scaling of the GAM amplitude with edge
safety factor, q95 [9].
We report on application of TEMPEST, a fully non-

linear (full-f) initial-value gyrokinetic code, to simulate
the GAM relaxation in edge plasmas. This 5-dimensional
( ; �; �; E0; �) continuum code represents velocity space
via a grid in equilibrium energy (E0) and magnetic mo-
ment (�) variables, and con�guration space via a grid
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FIG. 1: Time evolution of the zonal-GAM potential shows
GAM oscillation, collisionless damping, and zonal 
ow resid-
ual for a circular geometry with q = 3 and � = 0:2 with two
di�erent poloidal resolutions. Red solid line: n = 32; n� =
16; nE0 = 30, and n� = 60; Black line: n = 32; n� =
64; nE0 = 50, and n� = 100.

in poloidal magnetic 
ux ( ), poloidal angle (�) and
toroidal angle (�). The geometry can be circular annulus
or that of a diverted tokamak and so includes bound-
ary conditions for both closed magnetic 
ux surfaces and
open �eld lines. The same set of gyrokinetic equations
are discretized for both geometries. The equations are
solved via a Method-of-Lines approach and an implicit
backward-di�erencing scheme using a Newton-Krylov it-
eration to advance the system in time. The spatial
derivatives are discretized with �nite di�erences while a
high-order �nite volume method is used in velocity space
(E0; �). A fourth-order upwinding algorithm is used for
parallel streaming, and a �fth-order WENO scheme is
used for particle cross-�eld drifts. Boundary conditions
at conducting material surfaces are implemented on the
plasma side of the sheath. The code includes fully nonlin-
ear kinetic or Boltzmann electrons. The gyrokinetic Pois-
son equation in the long wavelength limit �i=L � 1 is
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FIG. 2: GAM frequency !G vs q for � = 0:2. The black solid
curve comes from theory [7] and the points are TEMPEST
simulation results. The error bar covers a full width at half
maximum of a spectral peak.

solved self-consistently with the gyrokinetic equations as
a di�erential-algebraic system involving a nonlinear sys-
tem solve via Newton-Krylov iteration using a multigrid
preconditioned conjugate gradient (PCG) solver for the
Poisson equation. Here L is the radial box size. The de-
scription of the TEMPEST equations, numerical scheme,
and veri�cation tests have been given in Ref. [10].

In our 4D TEMPEST GAM simulations for a homo-
geneous plasma, the initial ion distribution is a local
Maxwellian. The charge is radially separated by an ini-
tial sinusoidal perturbation of the ion density with no
variation within the 
ux surfaces Æni = Æn0 sin(2�r=L ).
The electron model is fully nonlinear Boltzmann ne =
hni( ; �; t = 0)i exp(e�=Te)=hexp(e�=Te)i, where hi rep-
resents the 
ux surface average. This choice of coeÆ-
cient for Boltzmann electron model means that there is
no cross �eld electron transport. Both radial and poloidal
boundary conditions are periodic. We consider a simple
axisymmetric tokamak with the magnetic �eld in a cir-
cular geometry, given by B = B�e� + B�e�, where �
and � are the toroidal and poloidal angles of a torus,
respectively. The poloidal angle � is chosen such that
� = 0 corresponds to the outboard midplane of the torus.
The inverse aspect ratio � = r=R0 is not assumed to
be small, where r is the minor radius. The major ra-
dius is given by R = R0(1 + � cos �) and toroidal mag-
netic �eld B� = B0R0=R. The equilibrium parameters
used are toroidal magnetic �eld B0 = 15T, major ra-
dius R0 = 1:71m, and temperature Ti = Te = 3keV
with deuterium ions. The magnetic �eld B�(r) is radially
uniform in the simulation domain to facilitate the radial
periodic boundary conditions. The typical resolution is
n = 32; n� = 64; nE0

= 30 and n� = 60.

The full-f, self-consistent TEMPEST simulation results
for collisionless damping of geodesic acoustic modes and
zonal 
ow are shown in Fig. 1 for q = �B0=B�=3 and
� = 0:2. The time unit corresponds to one GAM period

FIG. 3: GAM damping rate 
G vs q for � = 0:2. The black
(red) solid curve comes from theory with (without) the �nite-
orbit-width (FOW) e�ect [7] and the points are TEMPEST
simulation results.

(R0=vTi). One can see the presence of GAM oscillation,
a strong collisionless Landau damping of GAM oscilla-
tion, and a nonzero undamped poloidal 
ow residual.
The di�erent curves corresponds to two poloidal resolu-
tions: red solid line for n = 32; n� = 16; nE0 = 30, and
n� = 60; black line for n = 32; n� = 64; nE0 = 50, and
n� = 100. The high resolution run yields the same fre-
quency, a slight improved damping rate, and eliminates
the recurrence. Excellent agreement has been obtained
between theory [7,8] and simulations for the GAM fre-
quency and damping rate, and for the Rosenbluth-Hinton
residual in the large aspect ratio limit.
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FIG. 4: GAM frequency !G (left) and damping rate 
G (right)
vs � for q = 3. The black solid curve with points are TEM-
PEST simulation results and red solid line is a least-squares-�t
to the data.

Two series of TEMPEST simulations are conducted to
investigate the scaling characteristics of the GAM as a
function of q and �. One is a q-scan for a �xed � = 0:2,
while other is a �-scan for a �xed q = 3. In Fig. 2 we plot
the frequency of GAM !G vs q for the case � = 0:2. The
black solid curve comes from theory and the points are
TEMPEST results. The error bar here and in the rest of
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paper covers a full width at half maximum of a spectral
peak. As one can see, excellent agreement is found be-
tween theory and simulations. The damping rate of GAM
vs q is plotted in Fig. 3. The black solid curve comes from
theory of Sugama and Watanabe [7] with the FOW e�ect.
The red solid curve omits the FOW e�ect. The points
are TEMPEST simulation results. The FOW e�ect dra-
matically enhances the GAM damping rate by inducing
the multiple resonances in phase space. In general, the
damping rate increases for all q as k �i increases. How-
ever, for a given k �i ' 0:14 the enhancement is not
monotonic as q increases, and especially strong in the
range of 1:5 < q < 4. For the same parameters, the
damping rate is almost zero if the FOW e�ect is ignored.
Although the simulation results are the qualitative con-
sistent with the theory, the simulations yield a higher
damping rate. The theoretical expression assumed �� 1
and q2 � 1 expansions while retaining an additional
damping at the 2nd resonance vk ' !GqR0=2 accurate
for passing ions only. This may give a quantitative er-
ror when q < 2 since the 2nd harmonic resonance with
trapped particles might further enhance the damping due
to its FOW e�ect Ætr � q�i=

p
�. A simple estimate shows

that this trapped particle resonance might increase the
GAM damping by as much as a factor of 2, which is con-
sistent with our simulations. The large damping leads
to a few oscillations in the time series of the TEMPEST
simulation data, which yields a large error bar in spectral
analysis. For large q, one would expect a close compar-
ison between TEMPEST and theory. However, increas-
ing resolution or the top of energy meshes just improves
a little on the comparisons. Therefore this leads to a
possibility that a series of resonance at higher harmon-
ics vk ' !GqR0=n with n > 2 become e�ective since

they are proportional to Rn / (k �iq)
n exp(��0q2=n2)

when q increases, where �0 � 1 . For our simulation
parameters, k �i ' 0:14, Rn ! R2 when q � 4. These
resonances exist in the TEMPEST simulations, but they
are not retained in the recent theories [7,8]. The con-
tour plots of the perturbed ion gyrocenter distribution
function ÆF = F ( ; �; E0; �; t) � F ( ; �; E0; �; t = 0)
on the (vk; v?) space obtained by simulations clearly
show the boundary of the trapped and passing ions, and
the multiple vertical stripes at the resonance velocities
vk ' !GqR0=n (n ' 2; 3; � � �) in the passing region.

In Fig. 4 we plot the frequency !G and damping
rate 
G of GAM vs � for the case q = 3. The points
are TEMPEST results and a least-squares-�t is the red
solid line. The �t is given by the following formula:
! � i
 = !0 � i
0 + ��2 with !0 = 5:44 � 105=s; 
0 =
1:77� 104=s; � = �4:54� 105=s� i0:99� 105=s. We can
interpret !0 and 
0 as an extrapolation of our �nite � data
back to � = 0. Hence, we would expect them to equal
the � ! 0 theory values: !SW = 5:42 � 105=s; 
SW =
1:85 � 104=s. As one can see, the agreement is to bet-
ter than 1% for !G, and better than 5% for 
G. The
damping rate rises for � = 0:1 because the radial orbit
size is greater than the radial box size, so that the radial

periodic boundary condition is no longer a good approx-
imation. The �-dependence may come from the e�ect of
the mirror force on the passing ions, which have been
omitted in the theoretical analysis.

h=(ε  /q )1/2 2

 RH theory

◊ ε scan, q=3
∗ q scan, ε=0.2 

 XC theory, q=3 

FIG. 5: Residual 
ux surface averaged 
ow fraction �(t =
1)=�(t = 0) versus Rosenbluth-Hinton parameter h =p
�=q2. The diamond points are gyrokinetic code TEMPEST

results and the black curve is the prediction of Ref. [5] and
the yellow curve is the the prediction of Ref. [11].

Rosenbluth and Hinton's (RH) analytic calculation has
shown that the linear collisionless kinetic mechanisms
damp the GAM oscillation, but do not damp the zonal

ows completely due to the trapped ion dynamics [5].
For the large aspect ratio, circular tokamak geometry
with k �i � k ��;i � 1, the theoretical prediction for
the ratio of the late time residual potential to the ini-
tial potential is given as a function �(t = 1)=�(t =
0) = 1=(1 + 1:6=h) of the single parameter h =

p
�=q2,

The reduction of an initial zonal 
ow potential is due
to the neoclassical enhancement of polarization shield-
ing. Here ��;i is the ion gyro-radius at the poloidal mag-
netic �eld. When explicitly evaluating plasma shaping
e�ects on the collisionless residual zonal 
ow, Xiao and
Catto (XC) found an expression with higher order � cor-
rections retained that act to reduce the residual zonal

ow level [11]. Figure 5 shows the fractional residual
potential for two scans (varying q with � = 0:2 and �
with q = 3, respectively) from TEMPEST simulations
along with the predictions of Ref. [5,11]. An excellent
agreement is observed for q scaling with RH and for �-
scaling with XC. The contour plots of the perturbed ion
gyrocenter distribution function ÆF at this stage on the
(vk; v?) space obtained by simulations show �ne coherent
structures along the boundary of the trapped and pass-
ing ions in the trapped region (neoclassical polarization)
and ballistic-mode structures along the v? direction due
to the phase mixing. A small amount ion-ion collision in
a collisionality scan is found to eliminate the �ne phase-
space structures and therefore damp the residual zonal

ows.
In an inhomogeneous plasmas with the density
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FIG. 6: Integrated GAM amplitude versus q95 within one dis-
charge near r=a = 0:9 during the current ramp up (acquired
at 100ms intervals) from Ref. [9].

and temperature pro�les for the edge pedestal
plasmas the simulations are carried out for large
aspect ratio circular geometry with magnetic �eld
Bt = 7:5T;R0 = 45:6m; q = 3 and � = 0:1. The
ion density and temperature pro�les are initial-
ized as a hyperbolic tangent (tanh) function of
radius centered around the middle of simulation do-
main [N( ) = n0 + nm tanh(( �  m)=�n)], where
 m = ( w �  c)=2 and �n = Æn ln(Nc=Nw). The
Æn is a parameter to control the radial scale length.
In this simulation Æn = 50:5 and a Krook colli-
sion model is used with �ii = 0:15vTi=R0. The
boundary ion distribution is a �xed Maxwellian
with Nc = N( c) = 1 � 1020m�3; Nw = N( w) =
5 � 1019m�3; Ti( c) = 3keV , and Ti( w) = 1:5keV
during a simulation. The radial boundary condition for
the potential is @�( c)=@ = �( w) = 0. The electron
model is the fully nonlinear Boltzmann model. The radial
electric �eld from TEMPEST simulations agrees very
well with the standard neoclassical expression hUiki =

(cTi=ZieBp) [k(@ lnTi=@r)� (@ lnPi=@r)� (Zie=Ti)(@h�i=@r)]
with k = �0:5. The radial electric �eld is generated due
to the neoclassical polarization. A time history of the

ux surface averaged electric potential shows geodesic
acoustic oscillations generated by the initial conditions,
which then relax to a near steady state. Due to ion-ion
collisions, the Rosenbluth-Hinton residual is damped,
and the neoclassical residual is reached [10].
A set of experiments were performed at DIII-D to dis-

cern the scaling characteristics of the GAM as a function
of the edge safety factor, q95 [3]. The q95 is a simple
measure to quantify the safety factor q at the 95% 
ux
surface for the edge plasma because the q diverges as one
approaches to the magnetic separatrix. The GAM is iso-
lated experimentally by measuring the time dependent
poloidal 
ow of turbulence and then by applying time-
delay-estimation techniques to multi-point, radially and
poloidally resolved density 
uctuation measurements ob-

tained with beam emission spectroscopy (BES). Fig. 6
shows that the GAM amplitude has a strong dependence
on q95, with the GAM increasing in amplitude between
4:2 < q95 < 6:0, and undetectable at lower q95. This ob-
servation is qualitatively consistent with the strong de-
pendence on the safety factor q of the collisionless ki-
netic damping rate from the linear theoretical calcula-
tions and nonlinear TEMPEST simulations as shown in
Fig. 3 that GAM should be strongly damped at low q95
due to the enhanced resonant passing ion Landau damp-
ing. The measured GAM kr�i ' 0:3 � 0:35 with little
dependence on q95 is higher than those in our simulations
kr�i ' 0:14, which would further enhance the multiple-
resonance damping due to the FOW e�ect of passing par-
ticles krÆi � kr�iq. The qualitative consistency has also
been observed between TEMPEST simulations of the RH
residual in Fig. 5 and the experimental detection of zero-
mean-frequency (ZMF) zonal 
ows that the ZMF zonal

ows disappears toward the plasma edge, both due to the
high q and high collisionality [12].
In conclusion, TEMPEST simulations have demon-

strated an enhanced collisionless Landau damping due
to the FOW e�ect. k �iq. The enhancement is not
monotonic as q increases, and especially strong in the
range of 1:5 < q < 4, which is qualitative consistent with
BES GAM amplitude measurements. Good agreement is
found between theory and simulations for systematic q-
scans, �-scans, and collisionality scans, and neoclassical
radial electric �eld Er for edge pedestal plasma, giving
con�dence in the TEMPEST simulations.
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