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Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb 

is fully miscible with the high temperature phase of U and tends to segregate upon 

cooling below 647°C. The starting point of segregation is the configuration of Nb 

substitutional or interstitial defects. Using density-functional-theory based ab initio 

calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, 

that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and 

that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of 

phase U and pure Nb. The formation energy of Nb defects correlates with the local 

perturbation of electron distribution; higher formation energy to larger perturbation. 

Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in 

 phase U, and they prefer to be in individual substitutional defects than clusters.  
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I. INTRODUCTION 
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Uranium (U) has three solid phases: ,  and  phases.1,2 Since U is relatively less 

commonly investigated among solid state physicists, we first briefly describe the atomic 

arrangements in these three phases; as shown in Fig. 1. The  phase has an orthorhombic 

structure, and its conventional unit cell contains four atoms, as in face-centered-cubic 

(FCC) crystals [Fig. 1(a)]. However, the atoms at sites J and K are not at face centers 

although they are on front and back faces. Further, there are no atoms on the left and right 

faces, and instead one effective atom L is inside the unit cell.3 The crystal structure of  

[Fig. 1(b)] and [Fig. 1(c)]  phases are body-centered-tetragonal (BCT) and body-

centered-cubic (BCC), respectively.  Under ambient pressure, the ,  and  phases are 

stable at 0-940 K, 940-1050 K and 1050-1407 K respectively. 1 Because of 5f electrons 

among other factors, U exhibits abnormal properties such as low temperature charge 

density waves (CDW) transitions4,5  and anisotropic thermal expansion.6

 



Fig. 1. (Color online) Crystal symmetry of (a) , (b)  and (c)  phases, with U atoms 

shown as spheres and directions shown by Miller indices. The a, b, c and y are lattice 

constants, and atomic labels (such as P and M) are for reference later on.  

 

At least two of the three phases are relevant in making stainless U. In the form of pure 

solid, U is prone to oxidation. The addition of small amount of Nb significantly improves 

its corrosion resistance, so as to achieve “stainless” U. Due to the low solubility of Nb in 

 and  phases of U, Nb is introduced into the high-temperature  phase of U. Upon 

quenching, the Nb atoms initially stay at where they were, to improve the corrosion 

resistance. However, with time these Nb atoms diffuse around and lead to precipitation 

and formation of new phases at low temperatures. This problem of aging will inevitably 

affect chemical and mechanical properties of the alloyed U. For example, the 

precipitation of Nb atoms results in ductility reduction.7,8 To understand the precipitation 

processes, it is critical to first examine where Nb atoms sit as they are introduced into the 

 phase before quenching.  

Atomistic simulations are a convenient tool to study defect configurations. Due to the 

complex electronic structures of U, classical calculations are generally out of question. 

Density-functional-theory based ab initio calculations offer a unique tool to investigate 

details of alloy structures. Indeed, such calculations have been applied successfully to 

studying crystal structure,9,10 elastic constants,11 CDW12 and phase diagram of pure U.2 

Aiming for rigorousness, all these calculations are based on full potentials with 

generalized gradient approximation (GGA) of the electron exchange-correlation. Once 

defects are involved, larger simulation cells are necessary to avoid artifacts of simulation 

cell size dependence. A pseudopotential-based approach has to be used to reduce the 

computational cost and yet maintain physical rigorousness. This is the case in the studies 

of point defects in uranium dioxide using norm-conserving pseudopotential methods 

together with local density approximation (LDA)13 or with GGA.14  

This work is also based on pseudopotentials with GGA approximation. Our approach 

is to test the validity of this method by studying pure U and comparing our results with 



literature reports, before using the method to U with Nb defects. The rest of this paper is 

organized into three sections. In Section II, we present the computational details. In 

Section III, we first present the results of pure U to demonstrate the validity of the 

method, and then the results of U-Nb by comparison and contrast with pure U. Finally, in 

Section IV we summarize the conclusions.  

 

II. COMPUTATIONAL METHOD  

Within the framework of density functional theory, we perform all the calculations 

with plane-wave bases using the projector augmented wave (PAW) method, as 

implemented in Vienna ab initio simulations package (VASP).15,16 The standard PAW 

potentials in VASP include 6s26p65f36d17s2 valence electrons for U and  4p65s14d4 for 

Nb. As the results indicate later on, inclusion of thee valence electrons is sufficient. We 

use GGA descriptions for exchange-correlation17 and set the cutoff energy in plane wave 

basis expansion as 350 eV both for U and Nb.  Except for the test of α phase, our 

calculations do not include spin-orbital interactions. All the geometric relaxations are 

performed with a quasi-Newton algorithm using the exact Hellmann-Feynman forces, 

with a convergence criterion of force being 0.01 eV Å-1. 

In determining the equilibrium structures of pure U, supercells are the same as 

primitive unit cells, and k-point meshes are 20 x 20 x 26, 24 x 24 x 22, and 26 x 26 x 26 

for α,  and  phases respectively. These criteria ensure that a convergence of the total 

energy to be within 1 meV. For α and  phases, which have internal freedom in the 

primitive unit cells, the starting configuration of the cell shape and internal freedom is 

based on experimental values. In rigorous calculations, an elastic constant should be the 

curvature near equilibrium lattice constants.18 However, in order to compare with existing 

ab initio and experimental data of bulk modulus and its pressure derivative, we here 

adopt the third-order Birch-Murnaghan equation of state.19 The two ways of calculations 

give the same bulk modulus within 1% error. Partial densities of state according to 

Mulliken population analysis20 serve to elucidate the importance of f-electrons and to 

justify the choice of valence electrons.  



In determining Nb defect configurations, we use large simulation cells. Three types of 

defect configurations are: single vacancy, Nb at substitutional site, and Nb at interstitial 

site. The U here is the BCC phase, the supercell size is 3 x 3 x 3 in the unit of lattice 

constant a.  The k-point meshes are 6 x 6 x 6, and other parameters are the same as for 

pure U calculations. These criteria ensure that a convergence of the total energy to be 

within 10 meV. This value, although larger than the 1 meV for perfect U calculations, is 

sufficient for defect energy calculations and allows the use of smaller k-point meshes.  

The formation energy of a single vacancy is defined as Ev  = Ed – (n-1)EU . Here Ed is 

the total energy of a simulation cell containing (n-1) U atoms, and EU the potential energy 

of each U atom in a perfect crystal; a perfect crystal without the vacancy would contain n 

U atoms. To minimize system errors, EU is from the simulation cell containing n U 

atoms. The formation energy of a Nb substitutional defect is defined as Es = Ed – (n-1)EU 

– ENb. Here Ed is the total energy of a simulation cell containing (n-1) U atoms plus an Nb 

atom occupying a normal lattice site, and ENb the potential energy of each Nb in a perfect 

crystal. The formation energy of a Nb interstitial defect is defined as Es = Ed – nEU – ENb. 

Here Ed is the total energy of a simulation cell containing n U atoms plus an extra Nb. In 

essence, this definition of Nb defect formation energies assumes a reservoir of Nb crystal 

next to a U crystal. 

 

II. RESULTS 

 



Fig. 2.  (color online) Potential energy versus atomic volume for α,  and  phases of U; 

with scalar or spinal-orbital (SO) interactions. 

 

In this section, we start from results of pure U, and proceed to those of U-Nb by using 

the former for comparison and contrast. As a test of validity of the computational method, 

we first determine the potential energy as a function of atomic volume; the potential 

energy of an individual atom in vacuum is zero. From this function, we further derive 

equilibrium lattice constants, bulk moduli, and their derivatives with respect to pressure 

of the ,  and  phases. Shown in Fig. 2 is the potential energy EU as a function of 

atomic volume. Consistent with experimental observation1, the  phase is more stable 

than  phase at 0K; or the binding of  phase is stronger than  phase. For the  phase, 

our calculation results with scalar (PAW+scalar) and with spin-orbital (PAW+SO) 

interactions are compared with available experimental results2,3 and full potential linear 

muffin-tin orbital theory with spin-orbital (FPLMTO+SO) interactions results13 in Table 

I; the experimental measurements of lattice constants are at 4K, and the modulus at room 

temperature. In terms of lattice constants and bulk modulus, our results with scalar or 

spin-orbital interactions are close to both experimental values and previous calculation 

results. The experimental value of  (pressure derivative of bulk modulus ) is smaller 

than our result and previous calculation result, and this discrepancy could be the result of 

finite temperature and Birch-Murnagan fitting over large volume range.  When it comes 

to  phase without spin-orbital interaction, our calculations show that the bulk modulus is 

122.6 GPa and its pressure derivative is 4.1; these compare well with the experimental 

values of  113.3 GPa and 3.4 2. All these results show that the PAW and GGA together 

can reproduce the experimental results for pure U, with or without spin-orbital 

interactions. This feasibility test is consistent with another report on defects in uranium 

nitride using the same method.23

  



Table I. The properties of   phase. Atomic volume V0 in unit of Å3, lattice constants (a, 

b, c, and y) in unit of Å, bulk modulus B in unit of GPa and its pressure derivative .  

 V0 a b c y B B’ 

PAW+SO 20.7484 2.8318 5.9403 4.9337 0.09713 142.3 5.0 

PAW+scalar 20.1012 2.8014 5.8821 4.8795 0.09719 142.5 5.0 

FPLMTO+SO 20.67 2.845 5.818 4.996 0.1025 133.0 5.4 

Experiments 20.5815 2.8444 5.8689 4.9316 0.10242 135.5 3.8 

 

In addition to the energies, electron distributions are vital to bonding and thereby 

defect formation in U. As Fig. 3 shows, the 6s and 6p electrons in the  phase are 

relatively deep into the core and not valence electrons; this is also true for β  and 

γ phases. Their inclusion may be redundant for most calculations, and is an extra safety 

of reliability. In other words, Fig. 3 indicates that our calculations have included more 

than sufficient valence electrons. Among all electrons, the f-electrons dominate near the 

Fermi surface EF. The dominance of f-electrons applies to all the three phases ( , , and 

), as shown in Fig. 4.  

 



Fig. 3. (color online) Partial and total densities of state (DOS) in equilibrium  phase, 

with 5f, 6s, 6p, 6d, and 7s electrons labeled. The energy E is relative to the Fermi surface 

EF. 

 
Fig. 4. (color online) Partial and total densities of state (DOS) in equilibrium (a) , (b) , 

and (c)  phases, near the Fermi surface. The energy E is relative to the Fermi surface EF. 

 

From the distribution of electrons in energy space, we now turn to the distribution in 

real space. For clear visualization, we use two-dimensional density contours on high-

symmetry and high atom-density planes, to illustrate the electron density between first-

nearest, second-nearest and third-nearest neighbors. For consistency, solid contour lines 

for all three phases represent electron densities from 0.38 Å-3 to 0.33 Å-3, 0.28 Å-3, and 

0.23 Å-3. Nowhere in a perfect crystal is the electron density below 0.18 Å-3. The dotted 

contours correspond to electron density of 1.00 Å-3 and outline core regions of atoms.   

 



 
Fig. 5. (color online) Electron density contours of α  phase. 

 

We first examine the electron distribution in each phase, and then compare the 

distributions among the three phases. As shown in Fig. 5 (a), the electron density between 

two first nearest neighbors F and J (notations as defined in Fig. 1) in the  phase is 

always higher than 0.38 Å-3. The region of such high electron density between two 

second nearest neighbors F and Q is relatively narrower; Fig. 5(b). When it comes to two 

third nearest neighbors F and M, the electron density can be lower than 0.28 Å-3 

(although still higher than 0.23 Å-3); Fig. 5(b). 

 

 
Fig. 6. (color online) Electron density contours of β  phase. 

 



The electron density variation in the  phase is similar to that in the  phase. As 

shown in Fig. 6 (a) for  phases U, the electron density between two first nearest 

neighbors E and H in the  phase can reach 0.38 Å-3 over very short distance. The 

electron density between two second nearest neighbors E and L cannot reach 0.38 Å-3 

(although still higher than 0.33 Å-3; Fig. 6 (a). When it comes to two third-nearest 

neighbors E and F, the electron density can be lower than 0.23 Å-3; Fig. 6 (b).  

 

 
Fig. 7. (color online) Electron density contours of γ phase. 

 

The electron density variation in the γ phase (Fig. 7) follows the same trend as in the 

two other phases. The electron density between two first nearest neighbors E and L can 

lower than 0.38 Å-3 (but still higher than 0.33 Å-3). Between two second nearest neighbors 

E and H, or two third nearest neighbors E and Q, the electron density can be lower than 

0.23 Å-3; the difference is that the distance of such low density is smaller between second 

than between third nearest neighbors. 

Comparing electron density distributions in the three phases, we note that the density 

is the most inhomogeneous in the  phase, and the least in the  phase; the  phase is in 

between. In the  phase, the lowest density between two first nearest neighbors is higher 

than 0.38 Å-3; while the lowest is approaching 0.18 Å-3 for all phases. In contrast, the 



lowest density between two first nearest neighbors in the  phase is lower than 0.38 Å-3. 

The variation of electron density homogeneity correlates with the symmetry of crystal 

structures. The inhomogeneous distribution in a phase correlates with low symmetry, and 

the relatively more homogeneous distribution in  phase correlates with cubic symmetry.  

 

  
Fig.8. (color online) Atomic configurations of (a) a tetrahedral (T) and (b) an octahedral 

(O) interstitial site in  phase. 

 

The electron distribution also affects defect formation energies. The formation energy 

of a single vacancy is 1.08 eV, that of a Nb substitution 0.59 eV, that of Nb interstitial at 

a tetrahedral site 1.58 eV, and that of Nb interstitial at an octahedral site 2.35 eV. The 

atomic configurations of a single vacancy and an Nb substitution need no further 

elaboration. The octahedral (O) and the tetrahedral (T) sites are shown in Fig. 8; labels of 

lattice sites follow the same notations of Fig. 1. The octahedral site is at the center of a 

{001} face PEFQ and also the bottom of {110} face FGSP. The tetrahedral site is also on 

the {001} face PEFQ; however, it is at the middle of point O and line EF and is also 

equal distant to points E and F.  

 



 
Fig. 9. (color online) Electron density contours around a vacancy in γ phase. 

 

Near each defect, electron distribution varies from its perfect crystal counterpart. As 

shown in Fig. 8, the most prominent changes occur around the first nearest neighbors E, 

H, Q, and R of the vacancy L. The nearest neighbors relax toward the vacancy. As a 

result, the electron density between such a neighbor and its own neighbor (such as H and 

C) substantially decreases; from above 0.38 Å-3 to below 0.33 Å-3. This decrease of local 

electron density may help facilitate vacancy diffusion by enabling the first nearest 

neighbors (such as H) to jump to the vacancy site L.   

 
Fig. 10. (color online) Electron density contours around a substitutional Nb in γ  phase.  

 

Once the vacancy site is occupied by an Nb atom, the configuration corresponds to a 

Nb substitution. As shown in Fig. 10, the Nb substitution does not perturb the electro 



density between H and C as much as the vacancy does. However, the Nb substitution 

does substantially reduce the electron density between H and E (who are second nearest 

neighbors) and between H and R (who are third nearest neighbors). The electron density 

varies sharply around the Nb atom, and the sharpness is probably responsible for the 

small perturbation of electron density between two nearest neighbors H and C. The small 

perturbation in turn explains the small formation energy of substitutional Nb.   

 

 
Fig. 11. (color online) Electron density contours around a Nb interstitial at (a) a 

tetrahedral site and (b) an octahedral site in  phase. 

 

The change of electron density distribution near an Nb interstitial is much more 

prominent.  As shown in Fig. 11 (a), around the tetrahedral site four large regions of low 

electron density appear, and the electron density between F and A (who are the second 

nearest neighbors) increases substantially. Around an octahedral site, as shown in Fig. 11 

(b), the change is even more prominent; the four regions of low density are wider, and the 

density between for example M and C goes up even more. The prominent changes 

correlate well with the large formation energies of Nb interstitials.  

Before closing, we also note that two substitutional Nb atoms do not prefer clustering. 

When two substitutional Nb atoms are nearest neighbors, the formation energy is 1.32 

eV; which is 0.14 eV higher than the sum of formation energies of two separate 

substitutional Nb atoms.  

 



IV. CONCLUSIONS 

In summary, we have used density-functional-theory based ab initio calculations to 

investigate Nb in U. Our calculations show: (1) f-electrons dominate the population near 

Fermi surface of pure U (true for all three phases); (2) formation energies of single 

vacancy, Nb substitution, Nb interstitial at tetrahedral site, and Nb interstitial at 

octahedral site in  phase of U are 1.08 eV, 0.59 eV, 1.58 eV, and 2.35 eV, respectively; 

(3) electron density distribution changes less near a substitutional Nb than near an 

interstitial Nb, and such changes correlates with variations of formation energies. Based 

on the formation energies, the thermodynamically preferable site of Nb in γ phase U is 

the substitutional site. Further, two substitutional Nb atoms have higher formation energy 

as nearest neighbors than as separate entities.  
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