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ABSTRACT

We present the results of the Gemini Deep Planet Survey, a near-infrared

adaptive optics search for giant planets and brown dwarfs around nearby young

stars. The observations were obtained with the Altair adaptive optics system at

the Gemini North telescope and angular differential imaging was used to suppress

the speckle noise of the central star. Detection limits for the 85 stars observed

are presented, along with a list of all faint point sources detected around them.

Typically, the observations are sensitive to angular separations beyond 0.5′′ with

5σ contrast sensitivities in magnitude difference at 1.6 µm of 9.6 at 0.5′′, 12.9
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at 1′′, 15 at 2′′, and 16.6 at 5′′. For the typical target of the survey, a 100 Myr

old K0 star located 22 pc from the Sun, the observations are sensitive enough to

detect planets more massive than 2 MJup with a projected separation in the range

40–200 AU. Depending on the age, spectral type, and distance of the target stars,

the minimum mass that could be detected with our observations can be ∼1 MJup.

Second epoch observations of 48 stars with candidates (out of 54) have confirmed

that all candidates are unrelated background stars. A detailed statistical analysis

of the survey results, which provide upper limits on the fractions of stars with

giant planet or low mass brown dwarf companions, is presented. Assuming a

planet mass distribution dn/dm ∝ m−1.2 and a semi-major axis distribution

dn/da ∝ a−1, the upper limits on the fraction of stars with at least one planet of

mass 0.5–13 MJup are 0.29 for the range 10–25 AU, 0.13 for 25–50 AU, and 0.09

for 50–250 AU, with a 95% confidence level; this result is weakly dependent on the

semi-major axis distribution power-law index. Without making any assumption

on the mass and semi-major axis distributions, the fraction of stars with at least

one brown dwarf companion having a semi-major axis in the range 25–200 AU is

0.018+0.078
−0.014, with a 95% confidence level. The observations made as part of this

survey have resolved the stars HD 14802, HD 135363, HD 160934, HD 166181,

and HD 213845 into close binaries for the first time.

Subject headings: Planetary systems — stars: imaging — binaries: close — stars:

low-mass, brown dwarfs

1. Introduction

More than 200 exoplanets have been discovered over the last decade through precise

measurements of variations of the radial velocity (RV) of their primary star. Besides estab-

lishing that at least 6–7% of FGK stars have at least one giant planet with a semi-major

axis smaller than 5 AU (Marcy et al. 2005), the profusion of data following from the RV

discoveries has propelled the field of giant planet formation and evolution into an unprece-

dented state of activity. For a review of the main characteristics of the RV exoplanets, the

1Based on observations obtained at the Gemini Observatory, which is operated by the Association of
Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the
Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy
Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the
Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).



– 3 –

reader is referred to Udry et al. (2007); Butler et al. (2006); Marcy et al. (2005). Besides

the RV technique, the photometric transit method has lead successfully to the discovery of

new exoplanets on small orbits (e.g. Konacki et al. 2003; Alonso et al. 2004; Cameron et al.

2007) and has provided the first measurements of the radius and mean density of giant exo-

planets (e.g. Charbonneau et al. 2000). Very recently, a few exoplanets have been detected

by gravitational microlensing (Bond et al. 2004; Udalski et al. 2005; Beaulieu et al. 2006;

Gould et al. 2006); these planets have separations of ∼2–5 AU. Notwithstanding their great

success in finding planets on small orbits, these techniques cannot be used to search for and

characterize planets on orbits larger than ∼10 AU. As a result, the population of exoplanets

on large orbits is currently unconstrained.

The two main models of giant planet formation are core accretion (Pollack et al. 1996)

and gravitational instability (Boss 1997, 2001). In the core accretion model, solid particles

within a proto-planetary disk collide and grow into solid cores which, if they become mas-

sive enough before the gas disk dissipates, trigger runaway gas accretion and become giant

planets. Models predict that the timescale for formation of a planet like Jupiter through

this process is about 5 Myr (Pollack et al. 1996), or about 1 Myr if migration of the core

through the disk is allowed as the planet forms (Alibert et al. 2005). These timescales are

comparable to or below the estimated proto-planetary dust disk lifetime (∼6 Myr, Haisch

et al. 2001) and gas disk lifetime (several–10 Myr, Jayawardhana et al. 2006). Formation

through core accretion is strongly dependent on the surface density of solid material in the

proto-planetary disk (Pollack et al. 1996), precluding formation of Jupiter mass planets at

distances greater than 15–20 AU, where the low density of planetesimals would lead to pro-

hibitively long formation timescales. Neptune mass planets can be formed out to slightly

larger distances.

In the gravitational instability model, small instabilities in a proto-planetary disk grow

rapidly into regions of higher density that subsequently evolve into spiral arms owing to

Keplerian rotation. Further interactions between these spiral arms lead to the formation

of hot spots which then collapse to form giant planets. The range of orbital separation

over which this mechanism may operate efficiently is not yet clear. Some studies indicate

that it may lead to planet formation only at separations exceeding ∼100 AU (Whitworth &

Stamatellos 2006; Matzner & Levin 2005), where the radiative cooling timescale is sufficiently

short compared to the dynamical timescale, while others have been able to produce planets

only at separations below 20–30 AU (Boss 2000, 2003, 2006).

A few other models are capable of forming giant planets on large orbits directly. One

such mechanism is shock-induced formation following collision between disks (Shen & Wads-

ley 2006). In this model, the violent collision of two proto-planetary disks triggers instabilities
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that lead to the collapse of planetary or brown dwarf (BD) mass clumps. Results of numer-

ical simulations indicate that planets and BDs may form at separations of several tens of

AU or more through this process (Shen & Wadsley 2006). The competitive accretion and

ejection mechanism that was proposed initially to explain the formation of BD (Reipurth &

Clarke 2001) could also form planetary mass companions on large orbits, as suggested by

the results of recent simulations by Bate & Bonnell (2005).

Even in a scenario in which all giant planets form on small orbits, through either core

accretion or gravitational collapse, a significant fraction of planets could be found on stable

orbits of tens of AU because of outward orbital migration. Indeed, numerical simulations have

shown that gravitational interactions between planets in a multi-planet system may send one

of the planets, usually the least massive one, out to an eccentric orbit of semi-major axis of

tens to hundreds of AU (Chatterjee et al. 2007; Veras & Armitage 2004; Rasio & Ford 1996;

Weidenschilling & Marzari 1996). This process could be involved frequently in the shaping

of the orbital parameters of planetary systems as we have learned from RV surveys that

multi-planet systems are common, representing ∼14% of known planetary systems (Marcy

et al. 2005). Outward migration of massive planets can be induced also by interactions

between the planet and the gaseous disk; the simulations of Veras & Armitage (2004) reveal

that this process is capable of carrying Jupiter mass planets out to several tens of AU.

Similarly, angular momentum exchange between two planets (or more), achieved through

viscous interactions with the disk, could drive the outer planet to a separation of hundreds

of AU (Martin et al. 2007). Outward planet migration can result further from interaction of

the planet with the solid particles in the disk after the gas has dissipated (e.g. Levison et al.

2007); there is in fact strong evidence that this mechanism has played an important role in

the Solar system (Fernandez & Ip 1984; Malhotra 1995; Hahn & Malhotra 2005). Based on

numerical simulations, it is likely that all giant planets of the Solar system formed interior

to ∼15 AU and migrated outward (except Jupiter) to their current location (Tsiganis et al.

2005).

From an observational point of view, there is some evidence that planets on large orbits

may exist. Many observations of dusty disks around young stars, made either in emitted

light (e.g. Vega, ε Eri, Fomalhaut; Holland et al. 1998; Greaves et al. 1998) or in scattered

light (e.g. HD 141569, HR 4796, Fomalhaut; Augereau et al. 1999; Weinberger et al. 1999;

Schneider et al. 1999; Kalas et al. 2005), have unveiled asymmetric or ring-like dust distribu-

tions. These peculiar morphologies could arise from gravitational dust confinement imposed

by one or more (unseen) giant planets on orbits of tens to hundreds of AU. In fact, detailed

numerical simulations of the effect of giant planets on the dynamical evolution of dusty disks

have been able to reproduce the observed morphologies with remarkable agreement (Ozernoy

et al. 2000; Wilner et al. 2002; Deller & Maddison 2005). Typically, Jupiter mass planets on
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orbits of ∼60 AU are needed to reproduce the observations.

In the last few years, there have been a few discoveries of planetary mass or low-mass

BD companions located beyond several tens of AU from their primary: an ∼8 MJup com-

panion 40 AU from the BD 2M 1207−3932 (Mohanty et al. 2007; Chauvin et al. 2005a,

2004), a ∼25 MJup companion 100 AU from the T Tauri star GQ Lup (Marois et al. 2007;

Seifahrt et al. 2007; Neuhäuser et al. 2005), a ∼12 MJup companion 210 AU from the young

star CHXR 73 (Luhman et al. 2006), a ∼25 MJup companion 240 AU from the young BD

2M 1101−7732 (Luhman 2004), a ∼12 MJup companion 260 AU from the young star AB Pic

(Mohanty et al. 2007; Chauvin et al. 2005b), a 7–19 MJup companion 240–300 AU from the

young BD Oph 1622−2405 (Luhman et al. 2007a; Close et al. 2007; Jayawardhana et al.

2006), an ∼11 MJup companion 330 AU from the T Tauri star DH Tau (Luhman et al. 2006;

Itoh et al. 2005), and a ∼21 MJup companion 790 AU from the star HN Peg (Luhman et al.

2007b). These discoveries might indicate that more similar companions, and less massive

ones, do exist and remain to be found.

Perhaps even more compelling is the fact that the number of exoplanets found by RV

surveys increases as a function of semi-major axis for the range 0.1–3 AU (Butler et al. 2006);

these surveys are incomplete at larger separations. Conservative extrapolation suggests that

there may be at least as many planets with semi-major axis beyond 3 AU as there are below

(Butler et al. 2006). In fact, long-term trends in RV data have been detected for about 5%

of the stars surveyed (Marcy et al. 2005), suggesting the presence of planets between 5 AU

and 20 AU around them.

Given all of the considerations above, it is clear that a determination of the frequency

of giant planets as a function of orbital separation out to hundreds of AU is necessary to

elucidate the relative importance of the various modes of planet formation and migration.

Direct imaging is currently the only viable technique to probe for planets on large separations

and achieve this goal. However, detecting giant planets directly through imaging is very

difficult due to the angular proximity of the star and the very large luminosity ratios involved.

Currently, the main technical difficulty when trying to images giant planets directly does

not come from diffraction of light by the telescope aperture, from light scattering due to

residual atmospheric wavefront errors after adaptive optics (AO) correction, nor from photon

noise of the stellar point spread function (PSF), but rather from light scattering by optical

imperfections of the telescope and camera which produce bright quasi-static speckles in the

PSF of the central star. These speckles are usually much brighter than the planets sought

after. More in depth discussions of this problem, as well as possible venues to circumvent

it using current instrumentation, can be found in Lafrenière et al. (2007); Hinkley et al.

(2007); Marois et al. (2006, 2005); Masciadri et al. (2005); Biller et al. (2004); Schneider &
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Silverstone (2003); Marois et al. (2003); Sparks & Ford (2002); Marois et al. (2000); Racine

et al. (1999).

Many direct imaging searches for planetary or brown dwarf companions to stars have

been done during the last five years, see for example Biller et al. (2007); Chauvin et al. (2006);

Lowrance et al. (2005); Masciadri et al. (2005); McCarthy & Zuckerman (2004); Luhman

& Jayawardhana (2002). Depending on the observing strategy employed, the properties

of the target stars, and the characteristics of the instrument used, each of these surveys

was sensitive to a different regime of companion masses and separations. Typically, these

surveys have reached detection contrasts of 10–13 mag for angular separations beyond 1′′–

2′′, sufficient to detect planets more massive than ∼5 MJup for targets aged ∼100 Myr.

Unfortunately, rigorous statistical analyses allowing derivation of clear constraints on the

population of planets in the regimes of mass and separation to which these surveys were

sensitive are currently not available in the literature; an assessment of the current status of

knowledge is thus rather difficult to make. Nonetheless, it is fair to say that the population of

planets less massive than ∼5 MJup, having orbits with a semi-major axis of tens to hundreds

of AU, is poorly constrained. Further, the question of the existence of a brown dwarf desert

around stars at separations of a few tens to a few hundreds of AU has not been settled yet.

In this paper we report the results of the Gemini Deep Planet Survey (GDPS), a direct

imaging survey of 85 nearby young stars aimed at constraining the population of Jupiter

mass planets with orbits of semi-major axis in the range 10-300 AU. The selection of the

GDPS target sample is explained in §2, and the observations and data reduction are detailed

in §3. The detection limits achieved for each target are then presented in §4 along with all

candidate companions detected. Statistical analyses of the results allowing determination of

the maximum fraction of stars that could bear planetary companions are presented in §5.

Concluding remarks follow in §6.

2. Target sample

In light of the luminosity ratio and angular separation problem highlighted above, the

list of target stars was assembled mainly on the basis of young age and proximity to the Sun,

the latter yielding a larger angular separation for a given physical distance between the star

and an eventual planet. Equivalently, a given detection threshold is achieved at a smaller

physical separation for a star closer to the Sun, and planets on smaller orbits can be detected.

Additionally, for angular separations where planet detection is limited by sky background

noise or read noise, planets of lower masses can be detected around a star closer to the Sun

as their apparent brightness would be larger. Giant planets are intrinsically more luminous
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at young ages and fade with time (e.g. Marley et al. 2007; Baraffe et al. 2003; Burrows et al.

1997); therefore, for a given detection threshold, observations of younger stars are sensitive

to planets having a lower mass. The proximity and age criteria used in building the target

list thus maximize the range of mass and separation over which the survey is sensitive.

The target stars were selected from three sources: (1) Tables 3 and 4 of Wichmann

et al. (2003), which list nearby stars with an estimated age below or comparable to that of

the Pleiades (∼100 Myr), based on measurements of lithium abundance, space velocity, and

X-ray activity; (2) Tables 2 and 5 of Zuckerman & Song (2004b), which list members of the

β Pictoris (∼12 Myr) and AB Doradus (∼50 Myr) moving groups respectively; and (3) Tables

2 and 5 of Montes et al. (2001b), which list late-type single stars that are possible members

of the Local Association (Pleiades moving group, 20–150 Myr) and IC 2391 supercluster

(35–55 Myr) respectively, based on space velocity measurements. The stars listed in Montes

et al. (2001b) were initially selected based on various criteria indicative of youth, such as

kinematic properties, rotation rate, chromospheric activity, lithium abundance, or X-ray

emission, but for many of these stars the space velocity is the only indication of youth as

other measurements are either unavailable or inconclusive; the young age of such stars is

therefore uncertain. This uncertainty will be taken into account in our statistical analysis

(§5). A few stars known to have a circumstellar disk were added to these lists.

From this preliminary compilation, we have retained only stars with a distance smaller

than 35 pc, and we have excluded stars of declination below −32◦ since observations were

to be made from the Gemini North observatory. Finally, we have further excluded stars

indicated to be multiple in Zuckerman & Song (2004b). This procedure yielded a list of

slightly over 100 target stars, of which 85 were actually observed. The properties of these

85 stars are presented in Table 1 and Figure 1. The median spectral type of our sample

is K0, the median H magnitude is 5.75, the median distance is 22 pc, the median proper

motion amplitude is 240 mas yr−1, and the median [Fe/H] is 0.00 dex (standard deviation

of 0.21 dex).

Despite our effort to select only single stars, our observations show that 16 of the 85

target stars are close double or triple systems; this is indicated in the last column of Table 1.

A thorough review of the literature revealed that 11 of these were known at the time the

target list was compiled, three of which are astrometric binaries that had never been resolved

prior to our observations (HD 14802, HD 135363, and HD 166181). Three other multiple

systems were resolved with AO only after the target list was compiled (HD 77407, HD 129333,

and HD 220140). Finally, the stars HD 160934 and HD 213845 are reported as binaries for

the first time here. The five newly resolved binary systems are discussed further in §4.3.

Age estimates for the stars in our sample, needed to convert the observed contrasts
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into mass detection limits using evolution models of giant planets,2 are reported in Table 1

along with the references used for their determination. Whenever possible, we have used

ages stated explicitly in the literature or the age of the association to which a star belongs.

When no specific age estimate was available for stars taken from Wichmann et al. (2003),

ages of 10–50 Myr or 50–150 Myr were assigned to the stars having a lithium abundance

above or comparable to that of the Pleiades, respectively. For other stars that have lithium

and/or X-ray measurements, ages were estimated from a comparison of the Li I 6708 Å

equivalent width and/or the ratio of the X-ray to bolometric luminosity with Figures 3

and/or 4 of Zuckerman & Song (2004b) respectively. When lithium or X-ray measurements

were not available, the kinematic ages were used as lower limits while the ages derived from

the chromospheric activity index, log RHK, were used as upper limits, as Song et al. (2004)

showed that the latter ages tend to be systematically higher than those derived from lithium

abundance or X-ray emission. When only the value of log RHK was available, the calibration

of Donahue (1993)3 was used to obtain an age estimate. Finally, when only kinematics

measurements were available for a given star, an age of 100–5000 Myr or 50–5000 Myr was

assigned if the star is a possible member of the Local Association or the IC 2391 supercluster

respectively.

3. Observations and image processing

3.1. Data acquisition and observing strategy

All observations were obtained at the Gemini North telescope with the Altair adaptive

optics system (Herriot et al. 2000) and the NIRI camera (Hodapp et al. 2003) (programs GN-

2004B-Q-14, GN-2005A-Q-16, GN-2005B-Q-4, GN-2006A-Q-5, and GN-2006B-Q-5). The

f/32 camera was used, yielding 0.022′′ pixel−1 and a field of view of 22′′ × 22′′. The field

lens of Altair was not used for any observation as it was not available for any of the first

epoch observations. The observations were obtained in the narrow band filter CH4-short

(1.54–1.65 µm), for the following reason. According to evolution models (e.g. Baraffe et al.

2003), planetary mass objects older than 10-20 Myr should have an effective temperature

below 1000 K. Because of the large amounts of methane and the increased collision induced

absorption by H2 in their atmosphere, the near-infrared K-band flux of such objects is

largely suppressed. It is thus more efficient to search for giant planets in either the J or

the H band; the latter was preferred in this study because higher Strehl ratios are achieved

2It is assumed that any planet and its primary star would be coeval.

3This calibration is given explicitly in Henry et al. (1996).
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at longer wavelengths. As the bulk of the H-band flux of cool giant planets is emitted in

a narrow band centered at ∼1.58 µm because of important absorption by methane beyond

1.6 µm, it is even more efficient to search for these planets using the CH4-short filter, which

is well matched to the peak of the emission. Based on evolution models and synthetic spectra

of giant planets (Baraffe et al. 2003), it is expected that the mean flux density of a planet

in the NIRI CH4-short filter be between 1.5 and 2.5 times higher than in the broad band

H filter, depending on the specific age and mass of the planet. These factors are consistent

with the factors 1.6-2.0 calculated from the observed spectra of T7–T8 brown dwarfs, which

have Teff ∼ 800 K.

The angular differential imaging (ADI, Marois et al. 2006) technique was used to sup-

press the PSF speckle noise and improve our sensitivity to faint companions. This technique

consists of acquiring a sequence of many exposures of the target using an altitude/azimuth

telescope with the instrument rotator turned off (at the Cassegrain focus) to keep the in-

strument and telescope optics aligned. This is a very stable configuration and ensures a

high correlation of the sequence of PSF images. This setup also causes a rotation of the

field of view (FOV) during the sequence. For each target image in such a sequence, it is

possible to build a reference image from other target images in which any companion would

be sufficiently displaced due to FOV rotation. After subtraction of the reference image, the

residual images are rotated to align their FOV and co-added. Because of the rotation, the

residual PSF speckle noise is averaged incoherently, ensuring an ever improving detection

limit with increasing exposure time. It has been shown that, for ADI with Altair/NIRI, the

subtraction of an optimized reference PSF image from a target image can suppress the PSF

speckle noise by a factor of ∼12, and that a noise suppression factor of ∼100 is achieved for

the combination of 90 such difference images (Lafrenière et al. 2007; Marois et al. 2006).

An individual exposure time of 30 seconds was chosen for all targets. This exposure

time is long enough so that, at large separation, faint companion detection is limited by

sky background noise rather than read noise, and short enough so that the radius below

which an image is saturated typically does not exceed 0.5′′. The nominal observing sequence

consisted of 90 images, but oftentimes a few images had to be discarded due to brief periods

of very bad seeing, lost of tracking, or the advent of clouds. Short unsaturated exposures

were acquired before and after the main sequence of (saturated) images for photometric

calibration and Strehl ratio estimation; these observations were acquired in sub-array mode

(256×256 or 512×512 pixels), for which the minimum exposure time is shorter. Typically, an

unsaturated sequence consisted of five exposures each obtained at a different dither position.

The unsaturated observations are missing for a few targets as they were either skipped in

the execution of the program, or they turned out to be saturated despite using the shortest

possible exposure time. Table 2 summarizes all observations.
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3.2. Data reduction

For each sequence of short unsaturated exposures, a sky frame was constructed by taking

the median of the images obtained at different dither positions; this sky frame was subtracted

from each image. The images were then divided by a flat field image. The PSFs of a given

unsaturated sequence were registered to a common center and the median of the image

sequence was obtained. The center of the PSFs were determined by fitting a 2-dimensional

Gaussian function. As an indication of the quality of an observing sequence, the Strehl ratio

was calculated by comparing the peak pixel value of the observed PSF image with that of

an appropriate theoretical PSF. The calculated Strehl ratio values are reported in Table 2;

two values are indicated for a target when unsaturated data were obtained before and after

the main saturated sequence. Strehl ratios were typically in the range 10–20%.

Images of the main saturated sequence were first divided by a flat field image. Bad and

hot pixels, as determined from analysis of the flat field image and dark frame respectively,

were replaced by the median value of neighboring pixels. Field distortion was corrected

using an IDL procedure provided by the Gemini staff (C. Trujillo, private communication)

and modified to use the IDL interpolate function with cubic interpolation. The plate scale

and field of view orientation for each image were obtained from the FITS header keywords.

For each sequence of saturated images, the stellar PSF of the first image was registered

to the image center by maximizing the cross-correlation of the PSF diffraction spikes with

themselves in a 180-degree rotation of the image about its center. The stellar PSF of the

subsequent images was registered to the image center by maximizing the cross-correlation of

the PSF diffraction spikes with those in the first image. Prior to shifting, the 1024×1024 pixel

images were padded with zeros to 1450 × 1450 pixel to ensure that no FOV would be lost.

An azimuthally symmetric intensity profile was finally subtracted from each image to remove

the smooth seeing halo.

Next, the stellar PSF speckles were removed from each image by subtracting an opti-

mized reference PSF image obtained using the “locally optimized combination of images”

(LOCI) algorithm detailed in Lafrenière et al. (2007). The heart of this algorithm consists in

dividing the target image into subsections and obtaining, for each subsection independently,

an optimized reference PSF image consisting of a linear combination of the other images of

the sequence for which the rotation of the FOV would have displaced sufficiently an eventual

companion. For each subsection, the coefficients of the linear combination are optimized

such that its subtraction from the target image minimizes the noise. The subsections geom-

etry and the algorithm parameters determined in Lafrenière et al. (2007) were used for all

targets. The residual images were then rotated to align their FOV and their median was

obtained. Figure 2 illustrates the PSF subtraction process.
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3.3. Photometric calibration and uncertainty

As the stellar PSF peak is saturated for the main sequence of images, and since much

image processing is done to subtract the stellar PSF from each image, special care must be

taken to calibrate the photometry of the residual images and ensure that the contrast limits

calculated are accurate.

When the PSF peak is saturated, relative photometry can be calibrated by scaling the

stellar flux measured in the unsaturated images obtained before and/or after the saturated

sequence according to the ratio of the exposure times of the saturated and unsaturated

images. However, the accuracy of this calibration method is affected by the (unknown)

variations in Strehl ratio, hence of the peak PSF flux, that may have occurred between the

saturated and unsaturated observations. To mitigate this problem, the calibration approach

we adopted relies on a sharp ghost artifact located (+0.09′′,−2.45′′) from the PSF center in

the ALTAIR/NIRI images. Since the intensity of this ghost artifact is proportional to the

PSF intensity, it can be used to infer the peak flux of a saturated PSF. This was verified for

all sequences for which both unsaturated and saturated data were available. First, the stellar

flux was measured in the unsaturated images using a circular aperture of diameter equal to

the FWHM of the PSF. When unsaturated data were acquired both before and after the

saturated sequence, the mean of the two values was used. Then the flux of the ghost artifact

in the same aperture was measured for each image of the saturated sequence. The median

of these values, scaled according to the ratio of the exposure times of the saturated and

unsaturated images, was then compared to the stellar flux, and the process was repeated for

all sequences that include both saturated and unsaturated data. Similar values were found

for all sequences; the mean ratio of the flux of the ghost over that of the PSF peak was

found to be 6.1 × 10−5, with a standard deviation of 0.6 × 10−5. Comparisons of the flux of

background stars bright enough to be visible in each individual image of a sequence with the

flux of the ghost in the corresponding images also confirmed that the intensity of the ghost

is indeed directly proportional to the intensity of off-axis sources.

The procedure used for calibrating the photometry was the following. The flux of the

ghost was measured for each image of a sequence and the median of these values, divided by

the ratio quoted above, was taken to represent the peak stellar PSF flux, F�. This calibration

method should be more accurate than the one based solely on unsaturated data obtained

before and/or after the saturated sequence because the median ghost flux is affected in the

same way as the median of all residual images by the variations of Strehl ratio that may have

occurred during the sequence of saturated images or between the saturated and unsaturated

measurements. For this reason, this calibration was used even for the sequences for which

unsaturated data were available.



– 12 –

Observations obtained with ALTAIR without the field lens suffer from important off-

axis Strehl degradation because of anisoplanatism; this degradation must be taken into

account when calculating contrast. Unfortunately, it is virtually impossible to quantify

the specific degradation pertaining to our data as there are no bright reference off-axis

point sources available for every sequence of images. Instead, we have used the average

anisoplanetism Strehl ratio degradation formula indicated on the ALTAIR webpage4, which

is faniso(θ) ≡ S(θ)/S0 = e−(θ/12.5)2 , where S(θ) is the Strehl ratio at angular separation θ,

expressed in arcseconds, and S0 is the on-axis Strehl ratio. This factor was used to correct

the noise and the flux of faint point sources measured in the residual images.

As explained in Lafrenière et al. (2007), while the subtraction of an optimized reference

PSF obtained using the LOCI algorithm leads to better signal-to-noise (S/N) ratios, it

removes partially the flux of the point sources sought after. This flux loss must be accounted

for when calculating contrast. This is done by calculating the normalized residual intensity,

fsub, of artificially implanted point sources after execution of the subtraction algorithm; the

method used is described in §4.3 of Lafrenière et al. (2007). Then using flux measurements

made in the residual image, the factor fsub is used to infer the true flux a point source, i.e.

that before execution of the subtraction algorithm.

Another effect that must be taken into account for ADI data is the azimuthal smearing

of an off-axis point source that occurs as the field of view rotates during an integration;

this causes a fraction of the source’s flux to fall outside of the circular aperture used for

photometric measurements. The amount of flux loss in the aperture was calculated for

each sequence of images as follows. For a given angular separation and for each image of a

sequence, a copy of the unsaturated PSF was smeared according to its displacement during

an integration. When no unsaturated data were available, a 2D Gaussian of the appropriate

FWHM was used in place of the unsaturated PSF. The median of these smeared PSFs was

obtained and the flux in a circular aperture was measured. This flux was divided by the flux

of the original PSF in the same aperture to obtain the smearing factor fsm, which is used to

correct the flux or noise measured in the images.

Given all of these considerations, the contrast at angular separation θ was calculated as

C(θ) =
F (θ)

faniso(θ)fsm(θ)fsub(θ)
× 1

F�

, (1)

where F (θ) is either the noise or the flux of a point source in a circular aperture of diameter

equal to one PSF FWHM, at angular separation θ, in the residual image. Eq. (1) was used

4http://www.gemini.edu/sciops/instruments/altair/altairCommissioningPerformance.html
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for all contrast calculations in the present work. Typical correction factors as a function of

angular separation are shown in Figure 3.

An estimate of the photometric accuracy resulting from the entire process was obtained

by calculating the mean absolute difference between the magnitudes calculated at two e-

pochs for every faint background star that was observed twice (see §4.2); this mean absolute

difference was taken to represent
√

2 times the photometric uncertainty. This photometric

uncertainty was found to vary significantly with angular separation, indicating that it is

dominated by the uncertainty on the anisoplanatism factor. The photometric uncertainty

as a function of angular separation is reported in Table 3; it is typically 0.07–0.15 mag for

separations below 10′′. For completeness, it is noted that a higher photometric uncertainty,

by about 0.08 mag, results when the unsaturated data obtained before and/or after the main

sequence of saturated images are used to determine F�, rather than the median flux of the

ghost artifact, justifying our choice to use the calibration based on the flux of the ghost for

all sequences.

4. Results

4.1. Detection limits

To calculate detection limits, the residual images were first convolved by a circular

aperture of diameter equal to one PSF FWHM, which is typically ∼0.07′′. The noise as

a function of angular separation from the image center, F (θ), was then determined as the

standard deviation of the pixel values in an annulus of width equal to one PSF FWHM.

As shown in Lafrenière et al. (2007), the noise in an ADI residual image closely follows a

Gaussian distribution (see also Marois et al., in preparation); it is thus appropriate to use

a 5σ detection threshold for our data. The detection limits achieved for all target stars,

expressed in magnitude difference, are presented in Table 4. The last two lines of this table

present the median and best contrast, over the 85 observations, achieved at each angular

separation. The median detection limits in magnitude difference are 9.6 at 0.5′′, 12.9 at

1′′, 15 at 2′′, and 16.6 at 5′′. The detection limits are presented graphically in Figure 4 for

targets representative of poor, median, and good contrast performance.

One must resort to evolution models of giant planets to convert the detection limits

mentioned above into mass limits. Traditionally, such evolution models have assumed arbi-

trary initial conditions for the planets (e.g. Baraffe et al. 2003; Burrows et al. 1997), with

the caution that their results depend on the specific initial conditions adopted for ages below

a few million years (Baraffe et al. 2002). Recent evolution models (Marley et al. 2007) that
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incorporate initial conditions calculated explicitly based on models of planet formation indi-

cate that it may in fact take as much as 10–100 Myr before the planets “forget” their initial

conditions. Nevertheless, at the typical ages of our target stars, 50–300 Myr, all evolution

models should agree reasonably well and yield similar mass detection limit estimates. In this

work, we have used the COND evolution models of Baraffe et al. (2003), for which abso-

lute H-band magnitudes as a function of mass and age are readily available. The following

procedure was used to estimate the contrast, in the NIRI CH4-short filter, of a planet of

given mass orbiting a given target. The absolute H-band magnitude of the planet was first

obtained directly from the evolution models of Baraffe et al. (2003) and converted into an

apparent magnitude, Hpl, using the distance of the star. The corresponding magnitude in

the NIRI CH4-short filter was then calculated as

mpl = Hpl − 2.5 log

(
fCH4

fH

)
, (2)

where fCH4 and fH are the mean flux density of the planet in the NIRI CH4-short and

broad band H filters, respectively; their values were calculated using a synthetic spectrum of

appropriate effective temperature and surface gravity (Baraffe et al. 2003; Allard et al. 2001)5.

The stellar magnitudes in the NIRI CH4-short and broad band H filters were assumed to

be equal, such that the contrast of the planet was obtained as mpl − H�, where H� is the

H-band apparent magnitude of the target star. The 5σ contrast levels of planets of various

masses orbiting a K0 primary of 100 Myr,6 the typical target of the survey, are presented in

Figure 4. For a typical target located at 22 pc from the Sun, the median detection limits

correspond to 10.7 MJup at 11 AU, 3.9 MJup at 22 AU, 1.9 MJup at 44 AU, and 1.3 MJup at

110 AU.

The typical contrast reached by our survey improves on earlier surveys (e.g. Lowrance

et al. 2005; Masciadri et al. 2005; Chauvin et al. 2006; Biller et al. 2007) by at least 1

mag at 1′′, 1.5 mag at 2′′, and ∼ 3 mag at larger separations. At a separation of 0.5′′, the

detection limits of our survey are similar to those achieved with the SDI device at the Very

Large Telescope (Biller et al. 2007). The contrast reached by GDPS observations is thus the

highest that has been achieved to date at separations larger than 0.5′′–1′′.

5Spectra available at ftp://ftp.ens-lyon.fr/pub/users/CRAL/fallard/

6An H-band absolute magnitude of 4.0 was used, this is the mean value of the K0 stars in the sample.
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4.2. Candidate companion detections

To identify candidate companions, the residual images were first convolved by a circular

aperture of diameter equal to one PSF FWHM, and then converted to signal-to-noise (S/N)

images that were visually inspected for point sources at a �5σ level. After identification of

a point source, its position was measured by fitting a 2D Gaussian function, and its flux was

measured in an aperture of diameter equal to one PSF FWHM; both operations were done

in the non-convolved residual image. The contrast of the point source was then calculated

using Eq.(1). More than 300 faint point sources were found around 54 targets, 173 of which

are found around only 5 stars located at low galactic latitudes. Up to now, all but six of the

54 stars with candidates were re-observed at a subsequent epoch to verify whether or not

the faint point sources detected are co-moving with the target star.

All candidate exoplanets observed at two epochs have been confirmed to be background

sources by comparing their displacement between the two epochs with the expected dis-

placement of a distant background source, based on the proper motion and parallax of the

target; an example of this verification is presented in Figure 5. As a reference for future

planet searches, a compilation of all faint point sources identified around our target stars is

presented in Table 5.

An estimate of the uncertainties on the measured separations and position angles (P.A.)

was obtained by calculating the mean absolute difference between the separation and P.A.

measured at the second epoch and those predicted for this epoch based on the parallax and

proper motion of the target stars. Given the high precision on the parallax and proper motion

of the target stars, the differences observed are dominated by our measurement uncertainties.

The mean absolute differences calculated are taken to represent
√

2 times the uncertainties;

values of σsep = 0.015′′ and σP.A. = 0.2◦ are found.

4.3. Newly resolved binary systems

As mentioned in §2, 16 of the target stars are part of multiple systems. Four of these

systems were resolved into binaries for the first time by our observations, and a fifth was

found to be a relatively large separation binary system for which there was no prior indication

in the literature. These five systems are discussed below, and a summary of their properties

is given in Table 6.

HD 14802 A source 12 ± 2 times fainter than HD 14802 was detected at a separation

of 0.469′′ ± 0.005′′ and P.A. 267.1◦ ± 0.7◦ (epoch 2005.6348); the flux ratio is uncertain
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because the peak of the primary star PSF is saturated. Common proper motion of the pair

was not verified but the system is likely bound given the brightness and close separation of

the companion. The Hipparcos catalog (Perryman & ESA 1997) indicates that the proper

motion of this star is accelerating and the star is likely part of a binary system; an astrometric

solution for the system was obtained by Gontcharov et al. (2000). The estimated period and

semi-major axis are 25 yr and 0.5′′, respectively, consistent with the projected separation we

have measured.

HD 135363 This star was recognized as an astrometric binary by Wielen et al. (2000)7,

and later by Makarov & Kaplan (2005); no astrometric solution is available in the literature.

We have detected a companion to HD 135363 at a separation of 0.302′′ ± 0.002′′ and P.A. of

129.9◦±0.5◦ (epoch 2005.2950); the companion is a factor 4.0±0.1 fainter than the primary.

Second epoch observations have confirmed that the pair is physically bound, see Figure 6.

The projected separation of the system is ∼9 AU.

HD 160934 This star has a known mid-M dwarf companion at a separation of 19′′ and

P.A. of 151◦ (Lowrance et al. 2005; Weis 1991). Very recently, HD 160934 was found to be

a spectroscopic binary by Gálvez et al. (2006); they obtained a preliminary orbital solution

with a period of 17.1 year, eccentricity 0.8, and secondary mass corresponding to an M2-

M3V spectral type. Our observations have resolved HD 160934 into a tight binary. The

companion is located at a separation of 0.213′′ ± 0.002′′ and P.A. of 268.5◦ ± 0.7◦ (epoch

2005.2953) from the primary, and is fainter by a factor 2.2±0.1. Observations at two epochs

have confirmed that the pair is bound, see Figure 7. The projected separation of the tight

pair is ∼5.2 AU. Given the 17-year orbital period mentioned above, and using a very crude

estimate of the total mass (mtot ∼ 1.1) based on the spectral types of the components, we

estimate that the semi-major axis of the companion found by radial velocity is roughly 7 AU.

Given the eccentricity of 0.8, the projected separation of this companion should be < 12 AU,

consistent with the separation we have observed. The contrast of the pair we have resolved

(0.86 mag) is also consistent with the companion being of early-M spectral type. Thus we

believe that we have found the same companion as that found by radial velocity.

HD 166181 This star has been known for a long time to be a spectroscopic binary with

a period of only 1.8 days (Nadal et al. 1974). More recently, analysis of additional radial

velocity data has lead Dempsey et al. (1996) to propose that the system is in fact triple; a

7see http://www.ari.uni-heidelberg.de/datenbanken/dmubin/dmubin.html
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proposition which was confirmed by Fekel et al. (2005), who found radial velocity variations

ascribable to a third component with an orbit of period 5.7 year and eccentricity 0.765.

Further, by reanalyzing Hipparcos data in light of this new component, these authors have

found a new astrometric solution for the system, leading to revised values of parallax and

proper motion (see Table 1) and to a determination of the orbital inclination of the long-

period companion. Based on their complete solution, they estimate the semi-major axis of

the outer companion at 0.077′′ (2.5 AU) and its mass at 0.79 M�. Our observations have

resolved the long-period companion of this triple system. In 2005.2926, the companion was

located at a separation of 0.065′′ ± 0.005′′ and P.A. of 16.2◦ ± 5.0◦, and in 2006.7124, it

was located at a separation of 0.102′′ ± 0.003′′ and P.A. of 51.5◦ ± 2.0◦. The evolution of

the separation and P.A. of this source between the two epochs is far from that expected

for an unrelated background source and is in very good agreement with the orbital motion

expected based on the astrometric solution of Fekel et al. (2005) (see Fig. 8), confirming that

the source observed is HD 166181B. The flux ratio of the component Aab to component B

is ∼5.5, a contrast of ∼1.85 mag.

HD 213845 A bright source is visible in our data at a separation of 6.09′′±0.03′′ and P.A.

of 129.8◦ ± 0.4◦ from HD 213845 (epoch 2005.6453). This source did not change separation

nor P.A. between our 2005 and 2006 observations (see Figure 9), indicating that it is bound

to HD 213845. The companion is only visible in our saturated data as its separation exceeds

the field of view of the sub-array used for the unsaturated observations. Further, being

relatively bright, the peak of the companion’s PSF is saturated in all our data, making it

very difficult to estimate its flux ratio to the primary and explaining the larger uncertainty

on the separation and P.A. quoted above. The companion was possibly detected by 2MASS,

but its measured position and photometry in the 2MASS point source catalog (PSC) are

affected by confusion due to the nearby primary. Nevertheless, the relative position of

this source in the 2MASS PSC, separation of 5.55′′ and P.A. of 128◦, is consistent with

the star being gravitationally bound to HD 213845 as, were it not a bound companion, its

separation should have changed by ∼2′′ between the 2MASS observations and our first epoch

observations. Although the separation of this binary system is well above the resolution limit

of seeing-limited observations, we have found no prior indication of binarity in the literature.

5. Analysis and discussion

The detection limits determined in §4.1 can be used to calculate an upper limit to

the fraction of stars that have companions of mass and semi-major axis inside some given
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intervals. The analysis presented in this section is largely guided by the work of Brandeker

et al. (2006); Carson et al. (2006); Allen et al. (2005); and Sivia (1996). The statistical

formalism for the analysis is presented first and various applications to our data are presented

afterward.

5.1. Statistical formalism

Consider the observation of N stars enumerated by j = 1 . . . N . Let f be the fraction

of stars that have at least one companion of mass and semi-major axis in the intervals

[mmin, mmax] and [amin, amax], respectively, and pj the probability that such a companion

around star j, if indeed it was there, would be detected given the detection limits of the

observations. The probability of detecting such a companion around star j is fpj, and the

probability of not detecting a companion around this star is simply 1 − fpj. If the set {dj}
denotes the detections made by the observations, such that dj equals 1 if a companion is

detected around star j or else equals 0, then the probability that the observed outcome would

occur, also called the likelihood of the data given f , is given by

L({dj}|f) =

N∏
j=1

(1 − fpj)
(1−dj) (fpj)

dj . (3)

According to Bayes’ theorem, from the a priori probability density p(f), or prior distribution,

and the likelihood function L, one may calculate p(f |{dj}), the probability density updated

in light of the data, or posterior distribution:

p(f |{dj}) =
L({dj}|f)p(f)∫ 1

0
L({dj}|f)p(f)df

. (4)

In this study, since we have no prior knowledge about f , we use the most ignorant prior

distribution p(f) = 1.

The posterior distribution p(f |{dj}) can be used to determine a confidence interval (CI)

for f , bounded by fmin and fmax, for a given confidence level (CL) α. For a case where there

is no detection, as is the case with our survey, then clearly fmin = 0, and the upper bound

of the CI is found by solving

α =

∫ fmax

0

p(f |{dj})df. (5)

For a case where there are some detections, an equal-tail CI is found by solving

1 − α

2
=

∫ fmin

0

p(f |{dj})df and
1 − α

2
=

∫ 1

fmax

p(f |{dj})df. (6)



– 19 –

In this work a value of α = 0.95 was chosen.

The determination of the pj ’s is a critical step of this analysis; their value depends

on the detection limits of the observations, on the ages and distances of the systems, and

on the mass, semi-major axis, and orbital eccentricity distributions of the companions. In

calculating the pj ’s it is also important to account properly for orbital inclination and phase

as these affect significantly the distribution of projected separations for an orbit of given

semi-major axis. In this work, the pj ’s were calculated using a Monte Carlo approach.

The mass and semi-major axis intervals, [mmin, mmax] and [amin, amax], were first selected.

Then for each target star, 10000 planets were generated by sampling randomly, for each

planet, the mass, semi-major axis, orbital eccentricity, orbital separation projection factor,

and age of the system. The mass and semi-major axis distributions are left arbitrary for the

moment; different possibilities will be explored later. For all of our calculations, the orbital

eccentricity distribution was assumed to be that of the radial velocity exoplanets sample,

which is well fit by a Gaussian function of mean 0.25, standard deviation 0.19, and with

0 ≤ e ≤ 0.8 (Marcy et al. 2005). The orbital separation projection factor was sampled

using the method described in Appendix A of Brandeker et al. (2006); this method properly

takes into consideration orbital eccentricities, phases, and orientations. The age was sampled

uniformly within the range indicated in Table 1. Given the age assigned to each planet, the

procedure described in 4.1 was used to convert its mass into a magnitude difference in the

NIRI CH4-short filter. The projected physical separation of each planet was converted into

an angular separation based on the distance of its primary star. Finally, given the sample

of planets assigned to target j, the probability pj was calculated as the fraction of planets

lying above the corresponding detection limits.

The above determination of the pj’s yields a CI for f that is a function of the assump-

tions made on the mass and semi-major axis distributions. For a case where there is no

detection, it is also possible to obtain a more conservative estimate of fmax that is valid for

any distributions of mass and semi-major axis. The procedure used to do this is identical to

that described above except for the following. Rather than populating the whole intervals of

mass and semi-major axis considered, all planets are assigned a mass and semi-major axis

precisely equal to mmin and amin, respectively. Because more massive or more distant planets

are easier to detect, the values of pj’s calculated in this manner constitute lower limits to

the values that would be obtained by populating the whole intervals assuming any specific

distributions; accordingly, the resulting value of fmax constitutes an upper limit. This ap-

proach is perfectly legitimate as long as amax is chosen such that the values of pj’s for any a

in [amin, amax] are at least as large as those for amin.
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5.2. Model-independent upper limit on companion occurrence

As a first analysis of the survey results, we present model-independent estimates of fmax

for mmin =1, 2, 3, 4, 5, 7.5, 10, and 13 MJup, and for all amin between 10 and 500 AU; these

estimates were calculated according to the last procedure described above. For this analysis,

and those in the next section, we have not considered the 6 stars with candidates for which

second epoch observations are missing. The results obtained in this section are valid for any

mmax up to ∼40 MJup as no companion with a mass below this value was detected.8 The

mean detection probability for a planet of given mass and semi-major axis, i.e. the average of

the pj’s over all j’s, is shown in Figure 10; this figure provides an indication of the sensitivity

of our survey. The peak sensitivity of the survey occurs for semi-major axes between 50 and

200 AU; the peak values are ∼45% and ∼65% for 2 and 5 MJup, respectively. The survey

is particularly sensitive to brown dwarfs (m � 13 MJup), with a detection probability above

75% between 30 and 200 AU. A decline in sensitivity occurs at a separation of ∼200 AU;

this is consistent with the field of view of the observations (∼11′′ radius) and mean distance

of the targets (22 pc).

The results for fmax are shown in Figure 11. For a semi-major axis interval lower bound

of 50 AU, the planet frequency upper limits are 0.29 for 1–13 MJup and 50–300 AU, 0.12 for

2–13 MJup and 50–300 AU, and 0.057 for 5–13 MJup and 50–180 AU. For a semi-major axis

lower bound of 25 AU, the upper limits are 0.24 for 2–13 MJup and 25–440 AU and 0.09 for

5–13 MJup and 25–300 AU. For completeness, the exercise was repeated for circular orbits

and for a uniform distribution of eccentricity (between 0 and 1), and the results obtained

were very similar to those shown in Figure 11.

The results also indicate that no more than 0.052 of stars have low-mass brown dwarf

companions (13 < m/MJup < 40) between 25 and 240 AU. The brown dwarf companion to

HD 130948 (Potter et al. 2002; Goto et al. 2002) must be taken into account explicitly for

determining the frequency of stars with at least one companion in the whole brown dwarf

mass range (13 < m/MJup < 75). This analysis must be carried out with care as the semi-

major axis of this companion could be significantly different from its measured projected

physical separation of 47 AU. It is possible to account for this uncertainty by calculating

the probability distribution of the real semi-major axis of the brown dwarf companion using

a Monte Carlo approach similar to the one presented above for the calculation of the pj’s.

Basically, the projected separation of the companion is fixed at s = 47 AU and its orbital

eccentricity and orbital projection factor are sampled randomly 105 times, as described

8The previously known 40–65 MJup binary brown dwarf companion located 2.6′′from HD 130948 (Potter
et al. 2002; Goto et al. 2002) is detected in our data.
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above. The de-projected semi-major axis is then calculated for each random trial and its

normalized distribution over all trials is obtained. As the projection factor can never be

larger than (1 + emax), where emax is the maximum eccentricity allowed, the semi-major

axis probability distribution is equal to zero below s/(1 + emax); the distribution extends

to infinity for higher values. Applied to the current case, this calculation indicates that at

a 95% CL the semi-major axis of the binary brown dwarf companion to HD 130948 lies in

the interval 26–157 AU. We thus posit that our observations have resulted in one detection

in the semi-major axis interval 25–200 AU and mass interval 13–75 MJup; then using the

procedure described in the previous section and Eq. (6), the frequency of stars with at least

one brown dwarf companion in the semi-major axis interval 25–200 AU is 0.018+0.078
−0.014, with a

95% CL. This result is consistent with the upper limit of 0.12 (95% CL) reported by Carson

et al. (2006) for the 25–100 AU semi-major axis interval.

5.3. Model-dependent upper limit on giant planet occurrence

In this section we derive first an upper limit to the fraction of stars harboring at least one

planet in the single mass interval [0.5, 13] MJup, assuming that the mass distribution follows

dn/dm ∝ m−1.2. The mass distribution adopted is based on a statistical analysis of the RV

results that properly accounts for the detection sensitivity reached for each star (A. Cumming

et al. 2007, in preparation) and is formally valid only for planets with semi-major axis below

∼3 AU; here it is blindly extrapolated to larger semi-major axes. For comparison, a simple

fit of the mass distribution of the RV exoplanets sample yields dn/dm ∝ m−1.1 (Butler et al.

2006). For this calculation the whole mass interval is populated according to the distribution

stated, but all planets are assigned a value amin for the semi-major axis, so as to make the

results independent of its distribution. The calculation was made for all amin between 10 and

500 AU. The results are shown in Figure 12. At a 95% CL, the fraction of stars having at

least one planet of mass in the range [0.5, 13] MJup and semi-major axis in [10, 500], [25, 340],

and [50, 230] AU is less than 0.62, 0.17, and 0.10, respectively. For reference, results of the

same analysis assuming dn/dm ∝ mβ , with β = 0 and −2, are presented also in Figure 12.

As expected, a smaller β leads to larger values of fmax because a larger fraction of planets

have a smaller mass, while a larger value of β has the opposite effect.

Next we calculate upper limits for the same mass interval by assuming further that the

distribution of semi-major axes follows dn/da ∝ aγ , for γ = −1, 0, and 1. This range of

power-law index includes the value of γ = −0.67 found by A. Cumming et al. (2007, in

preparation) for the RV exoplanets sample within the range 0.03–3 AU. We have done the

calculations for amin=10, 25, and 50 AU, and for all amax in the range [amin + 10, 500] AU;
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the results are presented in Figure 13. At a 95% CL and for γ = −1, the upper limits to the

fraction of stars with at least one planet of mass in the range [0.5, 13] MJup are 0.29 for the

semi-major axis range 10–25 AU, 0.19 for 10–50 AU, 0.13 for 25–50 AU, 0.11 for 25–100 AU,

and 0.09 for 50–250 AU. Slightly smaller values of fmax are found for larger values of γ, as

such indices would place more planets at larger separations where they would have been

easier to detect with our observations. For the larger values of amin, the value of γ has very

little effect on the upper limit found as, no matter the value of γ, the majority of planets are

located at separations for which the sensitivity of the observations is high. Overall, the weak

dependence of fmax on γ implies that the semi-major axis distribution cannot be constrained

from our results.

6. Summary and conclusion

In this paper, we have presented the results of the Gemini Deep Planet Survey, which

is a near-infrared adaptive optics search for giant planets on orbits of 10–300 AU around

nearby young stars. The use of angular differential imaging at the Gemini North telescope

has enabled us to reach the best sensitivities to date for detecting giant exoplanets with

projected separations above ∼0.5′′–1′′. The typical detection limits reached by the survey, in

magnitude difference between an off-axis point source and the central star, are 9.6 at 0.5′′,

12.9 at 1′′, 15 at 2′′, and 16.6 at 5′′, sufficient to detect planets more massive than 2 MJup

with a projected separation of 45–200 AU around a typical target star. More than 300 faint

point sources have been detected around 54 of the 85 stars observed, but observations at a

second epoch have revealed changes in separation and P.A. of these point sources relative

to the target stars that were all consistent with those expected from unrelated background

objects. The observations made as part of this survey have resolved the stars HD 14802,

HD 135363, HD 160934, HD 166181, and HD 213845 into close binaries for the first time.

We have presented a statistical analysis of the survey results to derive upper limits to

the fraction of stars having planetary companions. This analysis indicates that, at a 95%

CL, the fraction of stars harboring at least one planet more massive than 2 MJup with an

orbit of semi-major axis in the range 25–440 AU or 50–300 AU is less than 0.24 or 0.12,

respectively, independently of the mass and semi-major axis distributions of the planets;

for planets more massive than 5 MJup, the upper limits are 0.091 for 25-300 AU and 0.057

for 50–180 AU. It was also found that less than 0.052 of stars have low-mass brown dwarf

companions (13 < m/MJup < 40) between 25 and 240 AU (see Figure 11); this upper limit is

set by the sample size only as the sensitivity of the observations to brown dwarfs is very good.

Assuming a mass distribution following dn/dm ∝ m−1.2, the results indicate that, with a
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95% CL, the fraction of stars having at least one planet of mass in the range 0.5–13 MJup

and semi-major axis in the range 25–340 AU is less than 0.17, and less than 0.10 for the

range 50–230 AU. Assuming further a semi-major axis distribution following dn/da ∝ a−1,

the upper limits to the fraction of stars with planets are 0.29 for the range 10–25 AU, 0.13

for 25–50 AU, and 0.09 for 50–250 AU.

The work presented in this paper constitutes a first step toward the detection of the

population of “outer” giant planets around other stars. Such a study, which is complementary

to RV searches in terms of orbital separation, is necessary to improve our understanding of

the various mechanisms that could generate planets on orbits of tens to hundreds of AU,

such as in situ formation triggered by collisions of stars with proto-planetary disks or orbital

migration induced by gravitational scattering in multiple planet systems. While the results

obtained in this survey provide evidence that the efficiency of these mechanisms is low, at

least in the mass and semi-major axis ranges explored, the sample size and sensitivities

reached are insufficient to tell if they operate at all, or which one is dominant. Future

searches reaching better sensitivities and targeted at a larger sample of stars will be necessary

to answer these questions.

Considerable efforts are currently deployed by major observatories to develop instru-

ments dedicated to the search of giant exoplanets around nearby stars. The Gemini Planet

Imager (GPI, Gemini Telescope, Macintosh et al. 2006a), the Spectro-Polarimetric High-

contrast Exoplanet Research instrument (SPHERE, Very Large Telescope, Dohlen et al.

2006), and the Planet Formation Imager (PFI, Thirty-Meter Telescope, Macintosh et al.

2006b) are good examples; the first two should see their first light in around 2010, while

PFI should begin operation in around 2015. These complex instruments will ally an extreme

AO system to correct atmospheric wavefront errors to unprecedented levels of accuracy, a

calibration system to correct instrumental quasi-static aberrations, a coronagraph to sup-

press the coherent on-axis stellar light, and differential imaging capabilities enabled by either

multi-channel cameras or integral field spectrographs. The expected performance of these

instruments, e.g. a contrast better than 17.5 mag at a separation of 0.5′′ for GPI (Macintosh

et al. 2006a), should allow detection of planets of 1 MJup aged less than 100–200 Myr at

separations of 5–50 AU, significantly improving on the work presented here. These efforts

should uncover the first instances of outer giant planets, if they exist, or place sufficient

constraints on their existence to rule out the mechanisms that could generate them. In less

than a decade the James Webb Space Telescope will allow similar studies to be done for

relatively nearby M-type primaries, which are too faint for operating the wavefront sensor

of extreme adaptive optics systems. Given all of the projects that should unfold in the next

few years, the coming decade promises to be extremely exciting for exoplanet science.



– 24 –

The authors would like to thank the Gemini staff for carrying out all the observations.

This project was made possible through the support and generous allocation of observing

time from the Canadian, US, UK, and Gemini staff time allocation committees. This work

was supported in part through grants from the Natural Sciences and Engineering Research
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Montes, D., López-Santiago, J., Gálvez, M. C., Fernández-Figueroa, M. J., De Castro, E., &

Cornide, M. 2001b, MNRAS, 328, 45

Nadal, R., Pedoussaut, A., Ginestet, N., & Carquillat, J.-M. 1974, A&A, 37, 191
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Saffe, C., Gómez, M., & Chavero, C. 2005, A&A, 443, 609

Santos, N. C., Israelian, G., & Mayor, M. 2004, A&A, 415, 1153

Schneider, G., & Silverstone, M. D. 2003, in Proc. SPIE, Vol. 4860, High-Contrast Imaging

for Exo-Planet Detection, ed. A. B. Schultz, 1–9

Schneider, G. et al. 1999, ApJ, 513, L127
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Table 2. GDPS observation log

Name Date Number of Strehl FOV rotation Saturation

exposures (%) (deg) radius (′′)

HD 166 2005/08/25 83 5-8 55 1.0

2006/07/18 83 7-10 81 0.8

HD 691 2005/08/10 90 13-17 70 0.5

2006/09/18 117 16-30 88 0.5

HD 1405 2004/08/22 90 4-10 17 0.5

2005/08/04 90 6-18 69 0.4

HD 5996 2005/08/12 90 18-20 24 0.5

2006/09/25 90 15-17 21 0.5

HD 9540 2005/08/14 90 16-19 25 0.6

2006/09/28 45 14-17 11 0.6

HD 10008 2005/08/10 90 18-20 36 0.5

GJ 82 2005/08/31 90 10-12 27 0.3

HD 14802 2005/08/20 90 - 23 1.1

HD 16765 2005/09/10 90 14-17 45 0.7

HD 17190 2005/08/24 90 13-30 108 0.5

HD 17382 2004/12/22 66 15 68 0.6

2005/09/11 90 19-23 104 0.5

HD 17925 2004/11/04 83 �18a 29 0.7

HD 18803 2004/12/24 90 7-14 99 0.7

2005/09/12 78 17-18 108 0.7

HD 19994 2005/08/31 90 - 44 0.9

2006/10/01 57 - 27 0.7

HD 20367 2005/10/02 90 12-14 67 0.7

2E 759 2005/10/17 59 7-10 31 0.3

HD 22049 2005/09/08 90 - 32 2.1

HIP 17695 2005/09/13 89 20-20 45 0.3

HD 25457 2005/10/02 90 - 43 1.0

HD 283750 2004/10/24 90 15 99 0.6

2005/10/04 87 19-23 101 0.6

HD 30652 2005/09/12 52 - 35 1.9

GJ 182 2004/11/05 90 16-20 31 0.4

2005/10/17 33 11-11 29 0.4

GJ 234A 2005/11/05 72 16 34 0.4

GJ 281 2005/03/25 67 9-10 49 0.6

2006/02/12 25 8-9 11 0.5

GJ 285 2005/03/18 20 - 10 0.5

2006/02/12 90 4-5 73 0.6

HD 72905 2005/04/23 84 7 25 0.9

HD 75332 2005/04/24 89 �17a 27 0.6

2006/12/20 16 �16a 11 0.6

HD 77407 2005/04/26 84 16-19 33 0.6

HD 78141 2004/12/21 85 14-16 19 0.6

HD 82558 2005/04/18 90 - 30 0.6

HD 82443 2004/12/25 75 18 28 0.6

GJ 393 2005/04/20 90 13-15 44 0.5
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Table 2—Continued

Name Date Number of Strehl FOV rotation Saturation

exposures (%) (deg) radius (′′)

HD 90905 2005/03/18 90 13-18 47 0.6

2006/04/11 35 13-15 14 0.6

HD 91901 2005/04/29 71 9 22 0.5

HD 92945 2005/05/26 85 15-16 19 0.6

2006/05/16 10 10-11 2 1.1

HD 93528 2005/04/30 86 - 26 0.4

GJ 402 2005/04/26 79 12-16 37 0.4

2006/02/16 60 6-10 33 0.4

HD 96064 2005/04/19 89 21-23 37 0.5

2006/03/05 90 13-19 36 0.5

HD 97334 2005/04/18 90 16-17 54 0.7

HD 102195 2005/04/24 91 20-21 54 0.4

2006/03/18 82 12-18 30 0.4

HD 102392 2005/04/23 89 19-24 32 0.4

2006/03/12 90 9-13 31 0.4

HD 105631 2005/05/29 90 14-19 45 0.6

HD 107146 2005/05/30 90 21-26 71 0.6

HD 108767B 2005/04/22 90 14 27 0.5

2006/02/16 43 10-11 14 0.4

HD 109085 2005/05/26 90 - 22 1.1

2006/03/12 15 - 3 1.1

BD+60 1417 2005/04/18 90 18-23 24 0.3

2006/04/11 63 12 19 0.3

HD 111395 2005/04/19 89 �12a 120 0.8

HD 113449 2005/06/01 47 10-20 37 0.5

GJ 507.1 2005/06/07 87 5-7 61 0.5

HD 116956 2005/05/29 90 5-14 27 0.5

2006/05/16 60 5-8 18 0.6

HD 118100 2005/04/27 53 - 18 0.4

GJ 524.1 2005/04/18 90 18-25 37 0.3

2006/05/18 90 13-14 37 0.3

HD 124106 2005/04/19 86 18-19 32 0.5

2006/02/16 80 10-12 24 0.5

HD 125161B 2005/05/30 90 17-23 31 0.4

HD 129333 2005/04/20 90 19-20 22 0.5

HD 130004 2005/05/25 90 17-18 105 0.6

HD 130322 2005/05/27 88 15-19 40 0.5

2006/05/15 10 10-10 5 0.6

HD 130948 2005/04/17 90 �9a 122 0.9

HD 135363 2005/04/18 87 14-15 19 0.5

2006/02/16 60 8-9 14 0.5

HD 139813 2005/05/30 90 �12a 20 0.6

HD 141272 2005/04/19 90 18-19 47 0.6

2006/03/12 42 13 20 0.6

HD 147379B 2005/04/18 90 17-17 22 0.5



– 36 –

Table 2—Continued

Name Date Number of Strehl FOV rotation Saturation

exposures (%) (deg) radius (′′)

GJ 628 2005/04/17 90 11 29 0.7

2006/04/11 40 9-14 13 0.7

HIP 81084 2005/04/19 73 17-18 30 0.3

2006/05/15 90 8-13 31 0.3

HD 160934 2005/04/18 84 17-24 24 0.4

2006/09/17 14 12-14 4 0.6

HD 162283 2005/04/20 120 15-19 45 0.4

2006/09/16 100 27-29 31 0.3

HD 166181 2005/04/17 90 16 76 0.6

2006/09/18 45 18-21 37 0.5

HD 167605 2005/05/27 90 20 22 0.4

HD 187748 2005/05/25 97 15-19 30 0.7

2006/09/15 75 �22a 21 0.5

GJ 791.3 2005/05/26 87 9-19 54 0.4

HD 197481 2005/07/29 68 6-10 21 0.9

HD 201651 2005/06/27 90 18-23 21 0.4

2006/09/14 30 19-21 7 0.4

HD 202575 2005/07/16 90 17-23 75 0.6

2006/09/14 30 16-18 9 0.6

GJ 4199 2004/08/23 65 10-13 118 0.5

2005/08/04 90 15-23 136 0.4

HD 206860 2005/08/10 34 �13a 56 0.8

2006/06/26 60 �15a 80 0.6

HD 208313 2005/06/27 90 23-23 67 0.5

2006/06/25 89 14-22 66 0.6

V383 Lac 2005/07/26 66 13-17 28 0.4

2006/06/30 77 15-18 27 0.3

HD 213845 2005/08/24 90 - 26 0.8

2006/07/06 90 - 24 0.9

GJ 875.1 2005/08/10 90 16-18 69 0.3

2006/07/07 79 7-17 61 0.3

GJ 876 2005/08/21 82 9-16 28 0.7

GJ 9809 2005/08/04 90 18-20 25 0.3

2006/09/14 120 25-27 31 0.3

HD 220140 2005/08/05 90 16-18 21 0.6

2006/07/16 82 7-9 19 0.7

HD 221503 2005/08/31 90 21-22 28 0.5

GJ 900 2004/08/24 90 15-21 17 0.5

2005/09/08 90 16-22 46 0.4

GJ 907.1 2005/09/07 65 5-15 22 0.4

2006/07/17 44 8 16 0.4

aOnly a lower estimate of the Strehl ratio can be obtained as the PSF peak is in

the non-linear regime or sligthly saturated.
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Table 3. Photometric uncertainties

Sep. (′′) < 4 4 − 7 7 − 10 10 − 13 > 13

σ (mag) 0.07 0.12 0.15 0.26 0.39
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Table 4. GDPS detection limitsa

Name 0.50′′ 0.75′′ 1.00′′ 1.25′′ 1.50′′ 2.00′′ 2.50′′ 3.00′′ 4.00′′ 5.00′′ 7.50′′ 10.00′′

HD 166 - - 12.5 13.2 13.9 15.0 15.4 15.9 16.5 17.0 17.4 17.4

HD 691 9.7 12.1 13.4 14.1 14.8 15.6 16.0 16.3 16.7 16.7 16.7 16.4

HD 1405 9.3 11.4 12.8 13.5 14.0 14.8 15.3 15.7 16.1 16.2 16.2 15.9

HD 5996 - 12.0 13.3 14.1 14.7 15.4 15.8 16.1 16.5 16.6 16.7 16.5

HD 9540 - 11.9 13.2 14.0 14.7 15.5 16.0 16.5 17.1 17.3 17.6 17.5

HD 10008 - 11.2 12.5 13.2 13.9 14.8 15.2 15.6 16.2 16.5 16.6 16.4

GJ 82 9.0 10.5 11.8 12.6 13.2 13.8 14.3 14.6 14.9 15.0 14.8 14.6

HD 14802 - - - 11.8 12.4 13.3 14.1 14.7 15.9 16.8 17.4 17.9

HD 16765 - 11.1 13.0 14.0 14.6 15.4 15.8 16.3 16.9 17.4 17.6 17.6

HD 17190 - 12.3 13.7 14.2 14.9 15.6 15.9 16.3 16.7 16.8 16.7 16.3

HD 17382 - 12.1 13.3 14.1 14.7 15.5 15.9 16.3 16.8 17.0 17.0 16.7

HD 17925 - 11.9 13.8 14.7 15.4 16.2 16.8 17.2 17.6 17.8 17.8 17.5

HD 18803 - 11.3 12.9 13.8 14.6 15.6 16.1 16.5 16.8 17.1 17.2 17.0

HD 19994 - 11.5 13.5 14.3 15.0 15.9 16.5 16.8 17.5 17.9 18.4 18.4

HD 20367 - 10.0 11.7 12.3 12.9 13.9 14.5 14.9 15.6 16.1 16.4 16.2

2E 759 8.7 9.9 11.1 11.8 12.3 13.1 13.4 13.6 14.0 14.0 13.9 13.7

HD 22049 - - - - - - 16.0 16.5 17.3 17.7 18.6 19.0

HIP 17695 10.0 11.8 12.9 13.6 14.3 14.8 15.2 15.4 15.7 15.8 15.7 15.4

HD 25457 - - 11.0 12.5 13.2 14.1 14.8 15.3 16.1 16.6 17.0 17.0

HD 283750 - 12.2 13.5 14.3 15.1 16.0 16.4 16.9 17.2 17.3 17.1 16.8

HD 30652 - - - - - 15.0 15.5 16.0 16.7 17.4 18.2 18.7

GJ 182 10.0 11.9 13.2 14.0 14.7 15.4 15.8 16.1 16.5 16.6 16.5 16.2

GJ 234A 9.5 11.2 12.4 13.3 13.9 14.6 15.1 15.4 16.0 16.3 16.4 16.1

GJ 281 7.7 10.4 12.1 12.9 13.5 14.4 14.7 15.1 15.3 15.4 15.4 15.2

GJ 285 7.0 10.0 11.7 12.6 13.3 13.9 14.6 15.0 15.5 15.8 16.0 15.8

HD 72905 - - 11.3 12.5 13.1 14.3 15.0 15.4 16.3 16.8 17.4 17.7

HD 75332 - 10.9 12.3 13.1 13.9 14.9 15.6 15.8 16.7 17.2 17.5 17.4

HD 77407 - 10.3 11.4 12.3 13.1 14.1 14.8 15.1 15.7 16.0 16.4 16.2

HD 78141 - 11.6 13.1 13.8 14.5 15.5 15.8 16.2 16.5 16.6 16.6 16.3

HD 82558 - 11.5 12.9 13.8 14.5 15.5 15.9 16.2 16.7 16.9 17.0 16.8

HD 82443 - 11.5 13.1 14.2 14.9 15.9 16.5 16.9 17.3 17.6 17.7 17.5

GJ 393 - 11.9 13.3 14.1 14.8 15.6 16.1 16.3 16.7 16.9 17.0 16.8

HD 90905 - 11.3 12.8 13.7 14.1 15.2 15.7 16.1 16.5 16.7 16.7 16.4

HD 91901 7.7 10.1 11.5 12.2 12.8 13.7 14.1 14.4 14.9 14.9 14.9 14.7

HD 92945 - 10.8 12.2 13.0 13.8 14.6 15.1 15.6 16.0 16.2 16.3 16.1

HD 93528 8.5 10.2 11.7 12.6 13.3 14.3 14.8 15.0 15.5 15.7 15.9 15.7

GJ 402 8.5 10.5 11.7 12.5 13.2 14.0 14.6 14.9 15.4 15.5 15.7 15.4

HD 96064 - 12.3 13.5 14.3 15.0 15.6 16.1 16.3 16.6 16.9 16.9 16.7

HD 97334 - 11.9 13.8 14.7 15.2 16.1 16.5 16.8 17.2 17.4 17.6 17.3

HD 102195 9.8 12.2 13.3 14.2 14.8 15.5 16.0 16.2 16.5 16.6 16.6 16.4

HD 102392 9.6 11.4 12.7 13.5 14.0 14.8 15.3 15.6 16.1 16.4 16.4 16.2

HD 105631 - 11.7 12.9 13.6 14.2 15.1 15.6 16.1 16.5 16.8 16.8 16.6

HD 107146 - 11.7 12.6 13.5 14.0 15.0 15.4 15.8 16.3 16.5 16.5 16.3

HD 108767B 8.6 10.6 12.0 12.8 13.5 14.4 14.9 15.2 15.7 15.9 16.0 15.7

HD 109085 - - - 13.4 14.0 15.0 15.9 16.3 17.2 17.8 18.4 18.5

BD+60 1417 10.2 12.0 13.1 13.8 14.2 14.8 15.1 15.3 15.6 15.5 15.5 15.2
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Table 4—Continued

Name 0.50′′ 0.75′′ 1.00′′ 1.25′′ 1.50′′ 2.00′′ 2.50′′ 3.00′′ 4.00′′ 5.00′′ 7.50′′ 10.00′′

HD 111395 - - 13.4 14.3 15.1 15.9 16.4 16.8 17.2 17.5 17.6 17.3

HD 113449 - 11.6 12.7 13.7 14.0 15.0 15.5 15.8 16.3 16.5 16.6 16.4

GJ 507.1 8.1 10.4 11.5 12.2 12.9 13.8 14.3 14.6 15.0 15.2 15.2 14.9

HD 116956 - 11.4 12.8 13.6 14.3 15.1 15.7 16.1 16.5 16.7 16.9 16.7

HD 118100 8.4 10.5 11.6 12.3 12.9 13.6 14.0 14.2 14.5 14.6 14.5 14.2

GJ 524.1 10.2 12.0 13.1 13.7 14.3 14.9 15.2 15.4 15.5 15.6 15.4 15.1

HD 124106 - 11.6 13.0 13.8 14.5 15.4 15.8 16.0 16.5 16.8 16.8 16.6

HD 125161B 10.6 12.4 13.6 14.4 14.7 15.4 15.8 16.0 16.3 16.5 16.4 16.1

HD 129333 9.7 11.7 13.2 14.0 14.5 15.4 15.8 16.2 16.5 16.7 16.7 16.6

HD 130004 - 12.1 13.3 14.1 14.6 15.4 15.8 16.1 16.5 16.8 16.7 16.4

HD 130322 10.0 12.0 13.2 14.0 14.5 15.2 15.6 16.0 16.3 16.5 16.4 16.2

HD 130948 - - 12.4 13.3 13.9 14.8 15.4 15.7 16.5 16.9 17.4 17.3

HD 135363 7.4 10.9 12.3 13.2 13.7 14.6 15.1 15.4 15.5 15.8 15.7 15.4

HD 139813 - 10.3 11.4 12.0 12.7 13.7 14.4 15.0 15.8 16.2 16.3 16.2

HD 141272 - 12.2 13.8 14.4 15.0 15.9 16.2 16.6 16.9 17.0 17.1 17.0

HD 147379B - 11.3 12.9 13.6 14.1 15.0 15.3 15.6 15.9 16.0 16.0 15.8

GJ 628 - 10.4 12.2 13.0 13.8 14.7 15.3 15.7 16.2 16.7 17.0 16.8

HIP 81084 9.6 11.3 12.4 13.0 13.6 14.1 14.4 14.6 14.7 14.8 14.6 14.3

HD 160934 9.5 11.1 12.6 13.3 13.9 14.6 14.9 15.0 15.3 15.3 15.2 14.9

HD 162283 10.4 12.2 13.4 14.1 14.7 15.3 15.8 16.1 16.5 16.5 16.5 16.2

HD 166181 9.3 11.7 13.0 13.7 14.4 15.1 15.5 15.9 16.3 16.5 16.6 16.3

HD 167605 9.6 11.4 12.5 13.3 14.0 14.9 15.2 15.6 16.0 16.2 16.2 16.0

HD 187748 - 11.8 13.0 13.8 14.5 15.4 15.9 16.3 17.0 17.4 17.6 17.4

GJ 791.3 9.6 12.0 13.3 13.9 14.4 15.2 15.6 15.8 16.1 16.2 16.1 15.8

HD 197481 - - 11.1 11.7 12.5 13.5 14.3 14.8 15.6 16.2 16.4 16.4

HD 201651 10.2 12.2 13.4 14.2 14.7 15.4 15.8 16.1 16.4 16.6 16.5 16.4

HD 202575 - 11.3 12.6 13.4 14.1 15.0 15.6 16.1 16.6 16.8 17.0 16.8

GJ 4199 10.6 12.0 13.2 13.8 14.5 15.2 15.6 15.7 16.0 16.1 15.9 15.5

HD 206860 - 12.2 13.3 13.9 14.6 15.2 15.7 16.1 16.6 16.9 17.0 16.8

HD 208313 10.9 13.0 14.1 14.8 15.3 16.1 16.5 16.8 17.2 17.3 17.3 17.1

V383 Lac 10.3 11.9 13.0 13.7 14.3 14.8 15.2 15.6 15.9 16.1 16.1 15.9

HD 213845 - - 13.3 14.0 14.8 15.7 16.3 16.8 17.2 17.7 18.1 18.1

GJ 875.1 9.6 11.2 12.3 13.1 13.6 14.5 14.9 15.2 15.5 15.6 15.5 15.2

GJ 876 - 10.1 11.1 12.2 12.7 13.8 14.4 15.1 15.8 16.2 16.6 16.6

GJ 9809 11.2 12.9 14.1 14.6 15.1 15.6 15.9 16.0 16.3 16.4 16.2 15.9

HD 220140 - 12.0 13.2 13.9 14.5 15.3 15.9 16.1 16.5 16.6 16.6 16.4

HD 221503 - 11.8 13.2 14.0 14.6 15.4 15.9 16.3 16.7 17.0 17.2 17.0

GJ 900 9.0 10.8 12.5 13.3 14.0 15.0 15.5 15.8 16.2 16.2 16.2 16.0

GJ 907.1 8.5 9.9 11.2 12.1 12.6 13.4 14.0 14.3 14.9 15.1 15.2 15.0

Median 9.6 11.6 12.9 13.7 14.2 15.0 15.6 15.9 16.3 16.6 16.6 16.4

Best 11.2 13.0 14.1 14.8 15.4 16.2 16.8 17.2 17.6 17.9 18.6 19.0

aMagnitude difference in the NIRI CH4-short filter, at a 5σ level.
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Table 5. Point sources detected

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

HD 166 2005.6482 10.23 82.9 12.60

HD 691 2005.6072 2.49 12.1 14.91

HD 1405 2004.6409 3.95 254.0 13.98

HD 5996 2005.6128 2.98 118.6 12.51

2005.6128 4.78 71.6 13.23

2005.6128 5.66 268.9 15.99

2005.6128 6.95 73.9 15.43

2005.6128 9.11 280.8 15.72e

2005.6128 9.15 228.1 15.67

2005.6128 9.50 120.6 15.85e

2005.6128 9.58 205.2 13.51

2005.6128 9.94 355.6 13.86

2005.6128 10.33 221.6 10.86

2005.6128 10.49 320.2 10.93

2005.6128 10.55 296.5 14.41

2005.6128 11.18 218.9 13.51

2005.6128 13.09 215.7 14.63

2005.6128 14.05 141.1 13.35

2005.6128 14.57 314.9 11.48

2005.6128 15.06 137.5 11.48

HD 9540 2005.6182 5.51 308.8 14.63

2005.6182 6.70 120.9 15.56

GJ 82 2005.6647 4.24 78.2 13.89d

2005.6647 5.45 35.3 13.46d

2005.6647 6.27 157.0 11.06d

2005.6647 6.29 228.1 13.80d

2005.6647 6.42 307.0 13.08d

2005.6647 6.75 105.7 9.07d

2005.6647 6.83 106.4 9.23d

2005.6647 6.95 25.7 6.57d
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2005.6647 7.63 117.2 13.34d

2005.6647 8.82 315.9 9.27d

2005.6647 9.68 318.7 13.59d

2005.6647 9.74 334.0 13.11d

2005.6647 11.37 228.3 12.52d

HD 17382 2004.9740 11.78 130.8 13.16

HD 18803 2004.9795 7.61 166.1 17.00

2004.9795 7.98 208.3 15.68

2004.9795 10.36 52.8 15.10

HD 19994 2005.6648 6.18 187.4 17.62

2005.6648 6.30 185.3 16.06

2005.6648 11.64 72.7 17.51

HD 283750 2004.8132 7.73 175.8 14.65

2004.8132 12.72 104.2 13.85

HD 30652 2005.6978 6.18 14.6 17.95d

2005.6978 9.53 241.4 18.33d

GJ 182 2004.8459 5.15 220.3 12.80

2004.8459 7.44 233.7 10.61

GJ 234A 2005.8455 3.27 48.8 13.71d

2005.8455 6.64 304.9 16.01d

2005.8455 7.45 215.1 15.03d

2005.8455 10.08 179.3 13.36d

2005.8455 10.24 84.3 10.46d

2005.8455 11.75 103.0 12.58d

GJ 281 2005.2286 5.74 237.0 12.48

2005.2286 8.80 288.4 12.92

2006.1158 10.64 224.6 13.43f

GJ 285 2005.2095 8.83 114.3 11.55

HD 75332 2005.3107 8.25 141.7 11.49

HD 82443 2004.9829 5.27 190.3 11.64d
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2004.9829 5.42 191.5 16.65d

2004.9829 8.33 97.8 12.24d

2004.9829 10.17 164.8 16.14d

2004.9829 13.74 215.0 14.67d

HD 90905 2005.2098 5.47 188.2 10.91

2005.2098 12.41 176.8 13.32

HD 92945 2005.3983 9.77 236.2 12.82

HD 93528 2005.3271 4.82 332.3 14.27d

GJ 402 2006.1273 12.46 324.0 10.80f

2005.3164 13.88 337.7 10.10

HD 96064 2005.2972 4.69 29.7 15.99e

2005.2972 5.94 213.8 8.18

2005.2972 6.11 213.6 10.76

2005.2972 8.90 329.7 15.90

HD 102195 2005.3109 11.94 185.5 13.82

HD 102392 2005.3082 5.72 42.0 15.02

2005.3082 10.57 308.9 14.99e

HD 108767B 2005.3055 6.72 87.7 12.41

2005.3055 8.28 100.1 14.62

2005.3055 10.20 123.9 15.10

HD 109085 2005.3986 12.92 256.2 15.80

BD+60 1417 2005.2946 2.05 298.4 8.76

2005.2946 14.08 133.5 12.80e

HD 116956 2005.4067 9.34 17.4 15.05

GJ 524.1 2005.2948 7.59 19.7 13.09

HD 124106 2005.2975 7.51 124.8 13.85

2005.2975 9.39 342.2 9.51

2005.2975 9.60 341.1 8.71

2005.2975 10.39 287.5 14.65

2005.2975 11.17 291.7 14.18
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2005.2975 12.06 120.6 15.45

HD 130322 2005.4014 7.61 329.8 11.00

HD 130948 2005.2922 2.60 103.1 8.56g

2005.2922 2.66 104.0 8.83g

HD 135363 2005.2949 7.50 122.1 10.28

HD 139813 2005.4097 6.85 271.3 14.48d

2005.4097 7.36 272.2 14.79d

HD 141272 2005.2977 2.31 12.3 11.44

2005.2977 4.03 286.9 16.59e

2005.2977 8.04 305.4 15.78e

2005.2977 8.32 258.1 15.66

2005.2977 10.95 299.2 9.90

2005.2977 11.43 190.4 15.14

2005.2977 12.26 209.5 12.31

GJ 628 2005.2924 5.19 259.0 16.32e

2005.2924 6.29 161.6 14.81

2005.2924 10.25 232.1 14.90

2005.2924 10.52 2.8 13.42e

2005.2924 11.49 308.6 14.88

2005.2924 12.72 228.6 15.10

2005.2924 13.64 215.4 15.03

HIP 81084 2005.2979 6.84 234.6 13.10

2005.2979 8.64 4.5 13.70

2005.2979 9.69 49.6 11.22

2005.2979 9.98 68.4 13.04

2005.2979 14.04 226.4 11.60

HD 160934 2005.2952 4.08 319.2 11.03

2005.2952 8.94 232.9 9.96

HD 162283 2005.3007 2.76 118.7 15.54

2005.3007 3.41 154.4 14.13
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2005.3007 3.26 4.9 15.21

2005.3007 3.68 244.8 14.01

2005.3007 3.94 152.8 14.22

2005.3007 4.22 158.8 12.52

2005.3007 4.47 111.9 15.21

2005.3007 4.37 23.1 13.23

2005.3007 4.70 299.8 15.44

2005.3007 4.95 80.0 10.82

2005.3007 5.24 124.0 16.08

2005.3007 5.24 191.8 13.38

2005.3007 5.23 348.9 15.59

2005.3007 6.07 72.2 14.49

2005.3007 6.61 159.4 12.06

2005.3007 6.72 84.6 14.28

2005.3007 6.89 352.8 13.50

2005.3007 7.11 91.2 8.65

2005.3007 7.38 176.6 16.29

2006.7069 7.42 18.0 15.95f

2005.3007 7.33 78.7 15.73

2005.3007 7.47 75.0 12.53

2005.3007 7.71 134.8 12.62

2005.3007 7.94 110.5 15.55

2005.3007 8.19 198.2 15.44

2005.3007 8.37 173.6 15.88

2005.3007 8.60 243.7 14.96

2005.3007 8.69 132.5 15.01

2006.7069 9.01 318.9 15.97f

2005.3007 9.08 141.2 12.99

2005.3007 9.23 152.7 15.98

2005.3007 9.32 142.4 14.95
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2005.3007 9.37 205.7 13.88

2005.3007 9.28 337.0 12.77

2005.3007 9.63 235.2 15.38

2005.3007 9.56 78.8 13.78

2006.7069 9.86 286.6 15.74f

2006.7069 10.03 289.1 15.75f

2005.3007 10.20 97.7 13.31

2005.3007 10.18 37.3 8.81

2005.3007 10.31 319.4 14.47

2005.3007 10.48 308.7 15.38

2005.3007 10.71 337.2 14.52

2005.3007 10.92 36.3 11.98e

2005.3007 11.36 249.0 13.24

2005.3007 11.38 112.7 9.04

2005.3007 11.80 40.1 14.79e

2006.7069 12.00 261.7 15.23f

2005.3007 12.01 329.6 9.78

2005.3007 12.28 153.9 14.26

2006.7069 12.28 265.3 13.99f

2005.3007 12.43 114.8 9.89e

2006.7069 12.47 71.5 14.76f

2005.3007 12.40 100.7 13.16

2005.3007 12.61 111.8 13.37e

2005.3007 13.04 16.9 14.10e

2006.7069 13.21 161.5 13.02f

2006.7069 13.46 65.5 14.51f

2005.3007 13.53 303.6 12.68e

2006.7069 13.59 257.1 11.76f

2005.3007 14.12 314.4 12.55e

2005.3007 14.59 112.9 10.20e
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2005.3007 14.66 17.4 12.43e

2005.3007 14.74 34.6 11.81e

HD 166181 2005.2925 10.38 53.4 14.40

2005.2925 11.21 195.8 15.04

2005.2925 13.40 167.6 14.19e

2005.2925 14.46 262.8 11.93e

HD 187748 2005.3965 5.51 325.9 15.76

2005.3965 7.93 277.1 13.01

2005.3965 8.02 276.7 12.18

2005.3965 12.81 114.3 9.74

2005.3965 13.15 321.5 12.52

2006.7043 15.02 311.3 14.90f

GJ 791.3 2005.3992 1.98 341.2 12.03d

2005.3992 2.39 51.3 13.51d

2005.3992 3.77 289.0 10.92d

2005.3992 3.80 137.6 13.99d

2005.3992 3.87 19.4 10.01d

2005.3992 4.38 201.6 14.31d

2005.3992 5.55 300.0 12.72d

2005.3992 5.96 49.6 10.28d

2005.3992 6.56 232.8 12.91d

2005.3992 6.66 155.9 13.37d

2005.3992 6.73 254.7 12.93d

2005.3992 8.01 10.3 13.03d

2005.3992 8.25 143.8 15.03d

2005.3992 8.31 71.5 15.02d

2005.3992 8.36 155.7 13.62d

2005.3992 8.89 177.3 12.86d

2005.3992 9.33 10.5 14.93d

2005.3992 9.55 276.2 15.45d
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2005.3992 9.64 195.5 14.14d

2005.3992 9.89 347.0 15.16d

2005.3992 10.05 255.1 14.63d

2005.3992 10.12 201.2 13.28d

2005.3992 10.21 310.6 14.36d

2005.3992 10.22 328.8 10.56d

2005.3992 10.55 166.9 15.14d

2005.3992 10.63 80.3 13.51d

2005.3992 10.75 326.6 11.48d

2005.3992 10.80 57.8 10.86d

2005.3992 10.84 51.7 14.67d

2005.3992 11.26 243.5 9.22d

2005.3992 11.58 315.9 9.96d

2005.3992 11.71 14.8 13.26d

2005.3992 12.17 18.6 11.27d

2005.3992 12.45 46.6 12.52d

2005.3992 12.80 274.4 11.86d

2005.3992 13.07 127.8 11.44d

2005.3992 13.08 75.4 13.58d

2005.3992 13.23 81.0 11.26d

2005.3992 13.73 70.5 8.91d

2005.3992 14.41 65.8 11.04d

2005.3992 15.14 356.5 11.98d

2005.3992 15.23 179.8 12.02d

HD 201651 2005.4867 3.67 201.4 12.48

2005.4867 8.39 259.1 12.90

2005.4867 14.53 331.5 13.75e

HD 202575 2005.5386 5.54 28.5 12.41

2005.5386 12.37 168.0 13.98

GJ 4199 2004.6431 9.16 319.9 12.24
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2004.6431 11.76 177.6 10.58

HD 206860 2005.6069 3.67 60.0 15.13

HD 208313 2005.4868 2.93 30.6 14.78

2005.4868 6.24 31.1 9.69

2005.4868 9.45 301.0 14.41

2005.4868 10.45 137.8 16.50e

2005.4868 11.43 151.6 15.85

2005.4868 13.23 121.0 13.73

2005.4868 13.51 33.2 14.61

2005.4868 15.13 63.8 12.00

V383 Lac 2005.5660 4.00 100.0 14.14

2005.5660 4.02 79.3 15.98

2005.5660 4.63 204.6 11.81

2005.5660 4.70 207.7 14.89

2005.5660 8.49 181.6 14.82

2005.5660 9.09 110.0 11.65

2005.5660 9.55 358.6 14.15

2005.5660 10.59 93.0 8.48

2005.5660 11.68 142.3 11.24

HD 213845 2005.6453 12.85 214.2 14.91

GJ 875.1 2005.6071 7.83 343.9 9.40

2005.6071 8.97 260.7 12.73

2005.6071 11.42 151.3 12.30

2005.6071 14.54 15.2 11.85e

GJ 9809 2006.7019 2.10 240.4 15.30f

2005.5907 2.18 30.6 12.91

2006.7019 3.22 141.6 15.55f

2005.5907 3.35 207.8 12.31

2005.5907 3.55 337.2 11.53

2005.5907 3.79 173.8 11.92
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2006.7019 4.51 0.9 16.23f

2005.5907 5.37 258.1 14.38

2006.7019 5.66 118.3 15.35f

2005.5907 6.39 68.9 15.47

2005.5907 7.01 101.1 9.69

2005.5907 7.34 236.9 13.49

2005.5907 7.69 127.3 11.26

2005.5907 7.75 131.1 14.21

2006.7019 7.92 78.4 15.65f

2006.7019 9.08 247.3 14.84f

2005.5907 9.18 36.5 15.03

2005.5907 9.23 27.2 14.80

2005.5907 9.51 95.2 12.35

2006.7019 9.58 84.1 15.30f

2005.5907 9.98 68.5 14.35

2005.5907 9.98 121.4 10.42

2006.7019 10.02 163.4 15.37f

2005.5907 10.18 93.9 13.69

2006.7019 10.73 12.2 15.33f

2005.5907 10.64 248.1 13.59

2005.5907 10.94 254.4 9.90

2005.5907 11.23 82.9 13.75

2006.7019 11.40 336.1 15.18f

2005.5907 11.69 155.9 12.14

2005.5907 11.87 32.2 12.28

2005.5907 11.74 291.2 7.01

2005.5907 12.23 310.2 8.73

2005.5907 12.75 66.9 12.76

2005.5907 13.03 58.0 11.09

2005.5907 12.93 332.5 13.42
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Table 5—Continued

Star Epoch Separationa P.A.b ∆mc

(arcsec) (deg) mag

2005.5907 14.04 309.7 12.50

HD 220140 2005.5934 6.14 358.5 15.96

2005.5934 15.19 50.4 10.62e

HD 221503 2005.6646 9.02 234.4 15.61d

GJ 900 2004.6458 7.41 76.0 14.20

2004.6458 12.15 150.6 12.53

2004.6458 12.41 96.4 9.36

GJ 907.1 2005.6837 7.93 296.7 13.68

Note. — Target stars around which no point source

was detected are omitted from this table. Unless stat-

ed otherwise, all point sources listed were confirmed

to be background objects using data from two epochs.

aUncertainty is 0.015′′, see text for detail.

bUncertainty is 0.2◦, see text for detail.

cUncertainties are given in Table 3, see text for de-

tail.

dNo second epoch data available.

eSource undetected in second epoch data.

fSource detected in second epoch data only.

gPreviously known brown dwarf companion (Potter

et al. 2002; Goto et al. 2002).
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Table 6. Properties of newly resolved binary systems

Star Epoch Separation (′′) P.A. (◦) Brightness ratioa

HD 14802 2005.6348 0.469 ± 0.005 267.1 ± 0.7 12 ± 2

HD 135363 2005.2950 0.302 ± 0.002 129.9 ± 0.5 4.0 ± 0.1

2006.1277 0.316 ± 0.002 131.8 ± 0.5

HD 160934 2005.2953 0.213 ± 0.002 268.5 ± 0.7 2.2 ± 0.1

2006.7097 0.218 ± 0.002 271.3 ± 0.7

HD 166181 2005.2926 0.065 ± 0.005 16.2 ± 5.0 5.5 ± 0.4

2006.7124 0.102 ± 0.003 51.5 ± 2.0

HD 213845 2005.6453 6.09 ± 0.03 129.8 ± 0.4 –b

2006.5108 6.09 ± 0.03 129.6 ± 0.4

aBrightness of the primary over that of the companion.

bThe peak of both the primary and companion are saturated in the data.
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Fig. 1.— Distribution of distance, spectral type, and age of the target stars. For the age

distribution, each star was distributed over all the age bins according to the fraction of their

estimated age interval falling inside each bin.
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Fig. 2.— Illustration of the ADI noise attenuation process. Panel (a) shows an original 30-s

image of the young star HD 691 after subtraction of an azimuthally symmetric median inten-

sity profile, panels (b) and (c) both show, with a different intensity scale, the corresponding

residual image after ADI subtraction, and panel (d) shows the median combination of 117

such residual images. Display intensity ranges are ±5× 10−6 and ±10−6 of stellar PSF peak

for the top and bottom rows respectively. Each panel is 10′′ on a side. The diffraction spikes

from the secondary mirror support vanes and the central saturated region are masked. The

faint point source (∆m = 14.9) visible in panel (d) at a separation of 2.43′′ and P.A. of 7.3◦

could not have been detected without ADI processing.
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Fig. 3.— Typical values of fsub (solid line), faniso (dotted line), and fsm (dashed line) as a

function of angular separation.
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between an off-axis point source and the target star, at the 5σ level. The top, middle,

and bottom curves are representative of, respectively, poor, median, and good performance

reached by the survey.
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Fig. 5.— Verification of the physical association of the point source detected around the

young star HD 691. Open diamonds mark the observed separation (top) and P.A. (bottom)

of the point source at the two epochs. The solid line indicates the expected separation and

P.A. of a distant background source as a function of time. The observations agree very well

with the expected motion of a background source, indicating that the source is not associated

with HD 691.
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Fig. 6.— Verification of the physical association of the point source detected around

HD 135363. Open diamonds mark the observed separation (top) and P.A. (bottom) of the

point source at the two epochs. The solid line indicates the expected separation and P.A. of

a distant background source as a function of time.
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Fig. 7.— Same as Figure 6 for HD 160934.
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Fig. 8.— Same as Figure 6 for HD 166181. The predicted separation and P.A. of HD 166181B

based on the astrometric solution of Fekel et al. (2005) are shown as dashed lines, with

uncertainties indicated by the shaded areas.
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Fig. 9.— Same as Figure 6 for HD 213845
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Fig. 10.— Mean probability of detection of a planet of given mass as a function of the

semi-major axis of its orbit; the curves are labeled by the mass of the planet, in MJup. The

mean is obtained over all targets of the survey.
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Fig. 11.— Upper limits, at the 95% CL, on the fraction of stars harboring at least one com-

panion of mass in the range [mmin, 40] MJup and orbit of semi-major axis in various ranges.

The minimum mass, mmin, is indicated on each curve. For any interval, [amin, amax] AU, of

semi-major axis selected, the correct value of fmax to read from the graph is the maximum of

the curve within that interval. The curves shown in this graph are conservative upper limits

that are valid for any distributions of mass and semi-major axis. The dotted line indicates

the minimum upper limit that one could derive from observation of 79 stars if the probability

of detection of a planet was 100% irrespective of its age, mass, and orbital separation.
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Fig. 12.— Upper limits, at the 95% CL, on the fraction of stars harboring at least one planet

of mass in the range [0.5, 13] MJup, assuming dn/dm ∝ mβ , and semi-major axis in various

ranges. The values of β are −2 (dot-dashed line), −1.2 (solid line), and 0 (dashed line). For

any interval, [amin, amax] AU, of semi-major axis selected, the correct value of fmax to read

from the graph is the maximum of the curve within that interval. The 67% CL curve for

β = −1.2 is also shown (dotted line).
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Fig. 13.— Upper limit, at the 95% CL (top panel) or 67% CL (bottom panel), on the fraction

of stars harboring at least one giant planet of mass in the range [0.5, 13] MJup, assuming

dn/dm ∝ m−1.2, and orbit of semi-major axis in the range [amin, amax] AU, assuming dn/da ∝
aγ . The abcissa indicates the upper bounds (amax) of the semi-major axis intervals, while

the lower bounds (amin) are 10 AU (solid lines), 25 AU (dotted lines), and 50 AU (dashed

lines). The top, middle, and bottom curves in each set of three curves are for γ = −1, 0,

and 1, respectively.




