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Abstract. Quantum Chromodynamics is the theory of nuclear and sub-nuclear physics. It is a 
celebrated theory and one of its inventors, F. Wilczek, has termed it as "... our most perfect 
physical theory". Part of this is related to the fact that QCD can be numerically simulated from 
first principles using the methods of lattice gauge theory. The computational demands of QCD 
are enormous and have not only played a role in the history of supercomputers but are also 
helping define their future. Here I will discuss the intimate relation of QCD and massively 
parallel supercomputers with focus on the Blue Gene supercomputer and QCD 
thermodynamics. I will present results on the performance of QCD on the Blue Gene as well as 
physics simulation results of QCD at temperatures high enough that sub-nuclear matter 
transitions to a plasma state of elementary particles, the quark gluon plasma. This state of 
matter is thought to have existed at around 10 microseconds after the big bang. Current heavy 
ion experiments are in the quest of reproducing it for the first time since then. And numerical 
simulations of QCD on the Blue Gene systems are calculating the theoretical values of 
fundamental parameters so that comparisons of experiment and theory can be made. 

1.  QCD, a new urgency. 
Now is a most interesting time. Heavy ion experiments at the Relativistic Heavy Ion Collider (RHIC) 
at the Brookhaven National Laboratory (BNL) are unraveling the secrets of nature under extreme 
conditions [1]. By colliding heavy nuclei at enormous speeds the temperature and density of nuclear 
matter becomes high enough for a transition to occur from stable nuclear matter to a plasma state. The 
plasma is comprised of the constituents of nuclear particles, namely quarks and gluons, and is called 
the quark gluon plasma.  This state of matter has not existed in the universe since about 10 micro-
seconds after the big bang. RHIC is continuing to collect information while the Large Hadron Collider 
(LHC) at CERN, Geneva will also probe the quark gluon plasma soon. With this comes the nearly 
immediate need to be able to make firm contact between experiment and the underlying theory of sub-
nuclear matter, Quantum Chromodynamics (QCD).  It is important to verify that QCD describes the 
behavior of matter under these extreme conditions as seen by experiment.  And it is equally important 
to be able to offer theoretical qualitative and quantitative insight to the properties of the quark gluon 
plasma as it is further probed by RHIC and LHC. 

 
What makes the theoretical effort unusual is that the theory of QCD under these conditions 

becomes difficult to handle analytically. However, there is a way to perform many of the necessary 
calculations from QCD’s first principles. The method for doing so was first introduced in 1974 [2] and 
is called Lattice Gauge Theory. It provides for a way of simulating QCD from first principles on a 
computer. The computational demand for this calculation is very large. Today multi -Teraflops scale 
supercomputers can perform some of these calculations with an error of about 10% while the need for 



 
 
 
 

multi-PetaFlops scale supercomputers is clear if one wishes to achieve errors at the few percent level 
and be able to explore the properties of QCD in more detail.  

 
It is important to appreciate how fortunate it is that the supercomputers available today and in the 

near future are just about fast enough to address some of the needs of the experimental efforts at RHIC 
and LHC. And that the theoretical tools of lattice gauge theory that have been developed over the past 
30 years are sharp enough to not only be able to address experiment but also to be able to use 
efficiently the largest supercomputers of our times. The advances in physics and supercomputing and 
their convergence provide for a unique opportunity both for science and for technology. 

 
Here I will discuss QCD and Lattice Gauge Theory (Lattice QCD or LQCD for short), the 

BlueGene/L  supercomputer and how LQCD works and performs on BG/L. As an example I will 
focus to one application of LQCD namely the physics relevant to the transition of nuclear matter to the 
quark gluon plasma as the temperature is increased to very high values. Of course, LQCD is also being 
used to address questions relating to a large variety of physical problems ranging from nuclear 
physics, to the physics beyond the standard model of elementary particles to QCD in extreme 
conditions just to name a few. For exposure to some of these problems please see [3],  [5]. 

2.  QCD in general. 
Nuclear particles such as protons and neutrons are made from smaller particles called quarks and 
gluons. They are held together by the strong nuclear force. This force is the strongest force in nature 
(the other three being electromagnetism, weak nuclear force and gravity). It acts only at very short 
distances and is mediated by gluons which carry "color" charge. Color can be thought of in a way 
similar to electromagnetic charge. Quarks and gluons are believed to be elementary particles; there is 
no experimental evidence that they are made up of smaller particles.  The theory that describes the 
quarks and gluons and their interactions is Quantum Chromodynamics (QCD). 

 
The quarks inside a nuclear particle are almost free of interaction - a phenomenon called 

asymptotic freedom. However, if one tries to “pull out a quark from a nuclear particle a strong force 
develops that keeps the quark from escaping. The force is mediated by the gluons. The gluons form 
“flux tubes” that connect the quark with its companions inside the nuclear particle. The force becomes 
stronger with increased separation. At some point it is so strong that there is enough energy in the 
vacuum to create a new quark-antiquark pair. The antiquark combines with the escaping quark while 
the new quark goes “back in” to the nuclear particle. As a result, a new nuclear particle is formed and 
there are no free quarks. This phenomenon is call confinement.  No free quarks have been observed 
today. It is remarkable that a single theory can describe both of these rather different phenomena. 

 
This picture holds at ordinary temperatures and is the reason why ordinary nuclear matter and by 

extension all matter around us is stable. However, if nuclear matter is heated to very high temperatures 
(such as generated in the early universe or at RHIC) a transition occurs. At about 200 MeV nuclear 
matter “melts” and undergoes a phase change to a plasma state of quarks and gluons. The theory of 
QCD predicts this dramatic phenomenon and LQCD provides some of the most accurate estimates of 
the transition parameters. 

 
In an inspiring article by one of QCD’s inventors, F. Wilzcek [4], a 2004 co-recipient of the Nobel 

Prize in physics, lists the important properties of QCD: 
1) embodies deep and beautiful principles (it is a relativistic quantum field theory); 
2) provides algorithms to answer questions (one such algorithm is  LQCD); 
3) has a wide scope (from nuclear physics to the genesis of the cosmos); 
4) contains a wealth of phenomena (asymptotic freedom, confinement and many others); 
5) has few parameters (and is therefore simple to describe); 



 
 
 
 

6) is true (has been verified experimentally); 
7) lacks flaws (it is fully described by its definition). 
Based on these remarkable properties he termed QCD as “… our most perfect physical theory”. 

 
Figure 1: The lattice. 

3.  Lattice Gauge Theory 
Quarks and gluons are described by fields defined on the four-dimensional space-time continuum. 
Because space-time is continuous the fields are defined on an infinity of points, which presents a 
problem for a computer. In order to be able to define the theory in a way amenable to numerical 
simulation one can define the fields only on the sites and links of a discrete grid of points called the 
lattice. Typical lattices used today are rectangular. The distance between two adjacent lattice points is 
called the lattice spacing “a”.  The size of the lattice should be large enough to contain the relevant 
physical processes and for most problems its linear dimension can be a few times the radius of the 
proton.  In this case the number of points where the fields are defined is finite and the system is 
amenable to computer coding. 

 
This description is deceptively straight-forward. The theory of QCD has a fundamental local 

symmetry called the gauge symmetry. The fields can be transformed at every point in a special way by 
different amounts of the symmetry operations and the whole theory remains unchanged.  This is a 
potent symmetry that could have been mutilated by the discretization of space-time into a lattice. But 
if the fields are defined in a particular way the symmetry is preserved even on the discrete lattice. This 
is a powerful insight and is part of the reason for the launch of a whole new field of theoretical 
physics, Lattice Gauge Theory [2]. 

 
Furthermore, the discretization of the quark fields is problematic. It turns out that for each quark 

field that is discretized on the lattice one does not obtain the expected one type of quark. Instead, in 
four dimensions, one obtains 24 = 16 quark types. This is called the lattice doubling problem. These 
unwanted types can be removed at the expense of another symmetry, the chiral symmetry. This 
symmetry is global and is a symmetry of the quark fields. One can perform the same symmetry 



 
 
 
 

operation on the quark fields on all lattice sites and the theory will remain unchanged.  The chiral 
symmetry is very important to the physics of QCD since, among other things, it is responsible for the 
masses of the lightest nuclear particles, the triplet of pions. But this symmetry must be sacrificed on 
the lattice to cure the doubling problem. Typically this is done in a way that the symmetry is gradually 
recovered as the lattice spacing is reduced to zero (the continuum limit) so that the correct physics is 
reproduced.  

 
However, there is another way to address the doubling problem by introducing a fifth dimension 

that has special boundaries for the quark fields. These boundaries, called domain walls, have the 
property that localize the quark fields in their vicinity. As the size of the fifth dimension is increased 
chiral symmetry is recovered even at finite lattice spacing. This way the continuum limit of vanishing 
lattice spacing has been separated by the chiral limit. Not only does this have many elegant properties, 
but also the numerical cost of increasing the lattice sites of the fifth dimension is much less than the 
cost of reducing the lattice spacing in all four dimensions (and therefore increasing the lattice sites of 
the whole four-dimensional volume). This method is called the Domain Wall Fermion (DWF) method. 
It is now one of the mainstream numerical methods. For an introduction see [3],  [11]. 
  

As illustrated in Figure 1, the quark fields are defined on the lattice sites while the gauge fields 
(which are the mediators of the strong nuclear force) are defined on the lattice links. The size of the 
fields is also indicated. For an introduction to Lattice Gauge Theory see, for example, [5]. 

4.  The QCD numerical simulation. 
The theory is governed by a functional of the fields called the QCD action “S”. The theory can be 
simulated numerically using statistical methods that involve the exponentiated action as a “Boltzman” 
weight. In particular, molecular dynamics methods are used that “evolve” a field “configuration”  
through the configuration space in a statistically significant “trajectory”.  Quantities that involve the 
fields are calculated for sets of statistically independent field configurations. The result of the 
numerical simulation is the average value (and error) of these quantities. This way a wealth of 
quantities relevant to experimentally measured properties, such as the mass of the proton or the critical 
temperature of the thermal transition, can be calculated.  
 

The calculation of the QCD action “S” involves the inversion of a sparse matrix with dimension 
NxN where N is proportional to the number of lattice points. Typically the matrix “connects” fields on 
the same lattice point or at nearest neighbor lattice points. The matrix is called the lattice Dirac 
operator or simply D-slash. The numerical inversion of this matrix is by far the most computationally 
consuming part of the simulation.  In many cases about 90% of the simulation time is consumed by 
this inversion. Because the matrix is large but sparse it is not stored in memory. Instead it is defined 
operationally by its action on column vectors and is inverted by algorithms such as Conjugate 
Gradient. Therefore the core operation is the action of this operator on a column vector. The code that 
performs this operation is called the QCD kernel. While the full code is several thousand lines long, 
the QCD kernel is only a few hundred lines long.   

 
     This disproportion of code and computing consumption immediately suggests that if one can 
optimize the QCD kernel very well the full QCD numerical application would also perform very well.  
Also, because of this the efficiency of the QCD code on supercomputers is measured as the efficiency 
of the QCD kernel.  In this spirit it is important to optimize the QCD kernel for the hardware at hand 
in order to exploit every possible advantage the hardware has to offer.  In the past QCD kernels have 
been tailored after the massively parallel supercomputers at hand. This is the case for the BG/L QCD 
kernel that will be discussed below. Also, many of these considerations have been part of the 
development of several supercomputers. For example, the QCDSP (quantum chromodynamics on 



 
 
 
 

digital signal processors) and QCDOC (QCD-on-a-chip) supercomputers [6] were developed 
specifically for the study of QCD and have influenced the design of the IBM BG/L supercomputer. 

5.  The machines wait for no one; The IBM BlueGene/L 
But before one can highly optimize the QCD kernel for BG/L one has to know the hardware features 
of the machine. Here is a brief description of the relevant hardware features of BG/L. For an extended 
discussion on BG/L see [7]. 

 
Figure 2:  The BG/L node. 

The BlueGene/L is a massively parallel supercomputer that consists of a large number of nodes. 
The nodes are connected to form a three-dimensional grid with the topology of a torus. High-speed 
links interconnect each node with its nearest neighbors. The nodes and links form a virtual cut-through 
network. Any node can send data to any other node without CPU intervention. Dedicated hardware 
routers that exist in every node handle the routing. 

 
     A single node is a single ASIC microchip. Two nodes are assembled on a small card that contains 
external DRAM memory. Sixteen such boards are connected to a larger board using dim sockets. 
These larger boards in turn are connected to a large vertical midplane board using large connectors. A 
total of 1024 nodes are housed in a ``refrigerator-sized'' cabinet. Cabinets are connected with cables to 
form a larger system. Systems with different numbers of cabinets are possible.  The largest such 
system (at LLNL) has 64 cabinets. This system contains a total of 32 x 32 x 64 = 65,536 nodes. 
 

Figure 2 depicts the main components of a node. Each node has two CPU cores (IBM 440 
operating at 700 MHz). Each CPU core has two fused-multiply/add (MADD) floating point units. 
Therefore, each core is capable of executing 4 floating point operations per cycle and the two cores of 
the node can execute 8 floating point operations per cycle or 5.6 GFlops. Each CPU core has a private 
32 KBytes L1 cache. These connect to a single L2 cache. The L2 serves as a multi-stream sequential 
pre-fetcher and has very little storage capacity. The L2 connects to a 4 MByte on chip L3 cache. The 



 
 
 
 

L3 connects to external DRAM via a double data rate (DDR) controller. Typically the external 
memory is 0.5 GByte per node.  

 
There are several networks on the machine. The main network is the “torus” network mentioned 

above. The sophisticated hardware that handles the routing on each node is part of the chip. Each CPU 
core can send/receive packets of data by writing/reading from hardware mapped addresses that 
correspond to dedicated SRAMs inside the torus hardware. The torus hardware is then responsible for 
routing the packets to their destination. As a packet travels from node to node, the node torus hardware 
directs it to the correct exit links until it reaches its destination. The torus hardware is identical on all 
nodes making the design highly modular.  A separate global tree network is also part of the chip and is 
capable of a combine-broadcast operation in 5 microseconds.  Boot, diagnostic and global interrupt 
networks are also present. 

6.  The map and coding of QCD on BlueGene/L. 
The BG/L architecture suggests a natural map of QCD on the hardware. Because the lattice Dirac 
operator connects nearest neighbor lattice points one can map the lattice directly onto the three-
dimensional torus of nodes with the fourth lattice dimension mapped internally on each node along the 
two CPU cores. The two CPU cores can then be thought of as independent “virtual nodes”. 
Communication between the two on chip CPU cores is done via common memory write and read 
operations.  

 
Depending on the machine size the lattice is divided into smaller equal size sub-lattices so that one 

sublattice is assigned to each virtual node. Then each virtual node does calculations as well as 
communications of data on the surface of the sub-lattice. In this way the computation and 
communications load is evenly distributed not only across nodes but also across virtual nodes, i.e. 
CPU-cores. As a result, the code can fully exploit both CPU cores and their double multiply-add 
floating point units. Also, the two global sums that are required per Conjugate Gradient iteration are 
executed using the global tree network. All virtual nodes participate in the global sum by contributing 
the local sum of their sub-lattice.  

 
Because there is no network hardware DMA (Direct Memory Access) machine the CPU must 

read/write the data to be communicated from/to memory and then write/read the torus network 
send/receive SRAMs. These load/store operations cannot be overlapped with computation or other 
memory access since they occupy the CPU. As a result the communications cost an amount of cycles 
that affects the sustained performance of the code. It is important to minimize this cost in order to 
achieve good performance.  

 
In a typical QCD kernel code the amount of data that needs to be brought from/to memory or be 

communicated across nodes is “fragmented”. Data sizes of about 1 KByte needs to be communicated 
between operations that act on data of similar size. This makes the code very sensitive to memory and 
network latencies. Because of this and the fact that communications and computations cannot be 
overlapped one has to code the QCD kernel very carefully and directly onto the hardware. 

 
 Because QCD uses complex valued fields all operations are complex and therefore are naturally 

suited for execution in the double multiply-add floating point unit. All floating point instructions are 
multiply-add double floating point instructions. Furthermore, they are carefully arranged in order to 
avoid CPU pipeline conflicts. Memory storage of the fields is chosen so that minimal pointer 
arithmetic is needed. Load/store instructions are carefully arranged to take advantage of the cache 
hierarchy and the CPU’s ability to issue up to three outstanding loads. The CPU can execute floating 
point instructions at the same time as load/store instructions. The code is written so that computations 
almost fully overlap with memory load/store instructions. Local performance is bounded by memory 



 
 
 
 

access to L3. For the communications, a very thin and effective nearest-neighbor communication layer 
that interacts directly with the torus network hardware to do the data transfers was written. Given the 
sensitivity to latencies MPI is not an option. The two global sums per CG iteration are done via fast 
torus or tree routines and affect performance in a minimal way. 

 
Table 1: Sustained performance for various local sub-lattice sizes. The values represent percentage of 
peak performance. (CG: conjugate gradient.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Figure 3: The QCD Dirac operator (D-slash) and Conjugate Gradient inverter 

speedup on the BG/L supercomputer as the number of CPU cores is increased up 
to the full LLNL machine size of 131,072 CPU cores. The highest sustained speed 
in this graph is 70.5 TFlops. The total lattice has size 128×128×256×32, while the 
CPU cores form a grid with size 32×32×64×2.  Therefore, the local lattice on a 
CPU is of size 4×4×4×16. 

7.  Performance. 
From the discussion in the previous section one can see that the performance of the code for different 
local sizes would depend on the typical tradeoff of memory and communication access. For a small 
local size the data mostly fits into the fast access L1 memory reducing the memory access cost. 
However, for small local size the surface to volume ratio is large and more communications per site 
are required increasing the communications overhead. On the other hand a large local size will have 
the data in the slower accessible L3 increasing the cost of memory access. But because the surface to 
volume ratio would be smaller the communications time would be less.  

Local sub-lattice size 24 4×23 44 8×43 82×42 16×43 
D-slash without comms 31.5 28.2 25.9 27.1 27.1 27.8 
D-slash with comms 12.6 15.4 15.6 19.5 19.7 20.3 
CG inverter 13.1 15.3 15.4 18.7 18.8 19.0 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0 20000 40000 60000 80000 100000 120000 140000

Number of CPU cores

S
u

s
ta

in
e
d

 T
e
ra

fl
o

p
s

Dirac Operator = 19.3% 

CG inverter      = 18.7%



 
 
 
 

 
      In order to measure the effect of different local sizes the performance as a % of peak was measured 
on a single node system with the hardware torus links connected back into the node, i.e. the output link 
along the plus x direction was connected to the input link along the minus x direction, etc. The 
hardware on each node contains a “switch” that produces this configuration for test purposes. The 
communication between the two CPUs was done via local memory copy. Therefore, these 
measurements involve all hardware and are equivalent to strong scaling. The results are in Table 1. 
 
     However, QCD is typically used as a weak scaling application. The nearest-neighbor nature of the 
communications as well as the existence of a fast global network in BG/L give linear speedup as the 
number of CPU cores is increased. It was possible to increase the number of cores up to the maximum 
number present in the fastest supercomputer (as of the date of this writing), the BG/L 64-rack system 
at LLNL (Lawrence Livermore National Laboratory). Figure 3 shows a maximum of 70.5 TFlops 
sustained on 131,072 CPUs. The local lattice size is 4×4×4×16, resulting in a maximum global size of 
128×128×256×32 since the grid of CPU cores of the full machine is 32×32×64×2. The sustained 
percent of peak in this figure is 19.3% for the D-slash kernel and 18.7% for the full conjugate gradient 
inverter, which includes the global sum reductions. This result [8] led to the 2006 Special 
Achievement Gordon Bell Award. 

8.  HotQCD.  
As discussed in the previous sections, many of the ingredients for gaining some fundamental 
theoretical understanding of the transition to the quark gluon plasma are in place. The theory of QCD, 
a method for calculating quantities relevant to the transition (Lattice Gauge Theory), and the code and 
supercomputer resources (BG/L) are now available.  To this end, a collaboration was recently formed. 

 
Figure 4: The chiral condensate (order parameter) versus temperature. 

     The HotQCD collaboration [9] was initiated by LLNL/LANL to calculate the QCD equation of 
state with error of 10% or less on LLNL’s BlueGene/L using lattice gauge theory. The LLNL 
Computing Division and NNSA have assigned approximately 10% of the 365 Tflops machine to this 
calculation. Part of the collaboration’s unique expertise, tools and know-how comes from SciDAC 
supported research. The results of this calculation will be used as input to hydrodynamics codes that 
make direct contact with experimental results. 

 



 
 
 
 

     First results from this collaboration have already appeared [10].  In Figure 4 the chiral condensate 
that serves as an order parameter for the QCD high temperature phase transition is plotted versus 
temperature. The critical temperature is at the inflection point where the order parameter first becomes 
small as the temperature is increased. 

9.   PetaFlops and the QCD levels of parallelism. 
The contents of this section are speculative and only reflect the author’s views, which are not 
necessarily original.   
 
     The near future in microelectronics appears to involve multi CPU cores per chip. The BG/L chip is 
already such an example with two CPU cores. Assuming that this will continue one can reasonably 
expect that massively parallel supercomputers in the Petaflops range will involve node chips with 
many CPU cores. Also, one can reasonably expect that the way the cores on a chip would exchange 
data (maybe via shared memory, on chip networks or other ways) will be different than the inter-chip 
communication network.  
 
     If this is the case, a new level of hardware parallelism arises that needs to be exploited efficiently. 
In order to do so one must examine the levels of parallelism inherent in the application. Lattice QCD, 
as described in the previous sections has a main level of parallelism. The data exchange (with the 
exception of infrequent global sum operations) between sub-lattices is nearest neighbor and as a result 
the problem can be “spread out” over a physical grid of nodes.  This is a powerful property that results 
among other things to the linear speedup shown in Figure 3.   
 
     In Figure 3 the global lattice size is 128x128x256x32. Because of the inherent physical scales of 
QCD this lattice size is thought of as the point where the lattice spacing and finite volume effects 
would be very small and well under control.  In Figure 3 this lattice is spread over 131,072 CPU cores 
and each CPU core “contains” a 4x4x4x16 local sub-lattice. Since the global lattice size is already 
very good an increase in CPU cores will likely not go into increasing the global size but rather into 
decreasing the local sub-lattice size in order to increase statistics and decrease the time to solution. 
This “push” towards the strong scaling regime will be challenging since the memory and network 
latency sensitivity of QCD will be amplified. This is already apparent from Table 1 for BG/L. 
However, one can also see from that table that a 2x2x2x2 local lattice per CPU-core does not have 
dramatically less performance than a 4x4x4x16 lattice although it is 64 times less in size. This implies 
that a machine with 64 more cores per chip than BG/L with similar performance characteristics would 
be able to run QCD at the 10% performance level and have a peak speed in excess of 23 PetaFlops. 
Therefore, one could argue that QCD is already posed to run on a machine with peak in the tens of 
PetaFlops. 

 
The above scenario can be taken even further by assigning a single lattice site to each CPU-core. 

This approach would be even more challenging for the same reasons but would provide an additional 
factor of 2x2x2x2=16.  Such an approach may be more effective for some multi-chip architectures 
than others. Again, by simply scaling the peak speed of BG/L this would correspond to a machine with 
4x4x4x16 = 1,024 times the BG/L speed. 

 
For PetaFlops scale QCD computing one would expect that some questions that require firm 

control of chiral symmetry would be addressed with the DWF method. As discussed in section 3 this 
method introduces an extra fifth dimension to the problem. Typically one expects that 8 to 32 sites of 
this dimension would be used. The level of parallelism of this dimension is the same as the one in the 
four dimensional case where data exchange between sub-lattices is nearest neighbor as well. Then, this 
dimension could be “spread-out” along the on chip CPU-cores perhaps in addition to “spreading-out” 
the time direction as in BG/L.  Again, a simple scaling of the BG/L peak speed including all the 



 
 
 
 

above-mentioned parallelism would correspond to a machine with peak speed in the several ExaFlops 
range.  Obviously in this case the memory and network bandwidth and latency challenges would be 
high both for the hardware and for lattice QCD. 

 
At this point it may appear that QCD has “run out” of parallelism. This is not so. The lattice Dirac 

operator has internal indices in addition to the four-dimensional (five-dimensional for DWF) space-
time indices. The color charge index takes three values, the spin index takes four values (for certain 
fermion types such as DWF), while the arithmetic is complex involving real and imaginary parts. This 
level of parallelism is unlikely to be realized across multiple CPU-cores. The operations per index 
before data exchange are necessarily very few. In order to exploit this level of parallelism one may 
have to employ extended floating point units of appropriate architecture. This is the case for BG/L 
where the complex arithmetic is handled in the double multiply-add floating point unit. 

10.  Conclusions 
In the past the path of lattice gauge theory has always been at the forefront of supercomputing. The 
knowledge, expertise and culture that have been developed in the lattice community are a strong 
driving force for the future of physics and supercomputing. And it is more so today with Petascale 
computing in the horizon and with the extraordinary incentive to calculate and maybe even predict the 
outcome of the new experiments as they unravel a yet undiscovered layer of nature’s inner workings. 
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