
UCRL-JRNL-232201

Spectral Interpolation on 3 x 3
Stencils for Prediction and
Compression

Lorenzo Ibarria, Peter Lindstrom, Jarek Rossignac

June 27, 2007

Journal of Computers

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

Spectral Interpolation on 3×3 Stencils for
Prediction and Compression

Lorenzo Ibarria
Georgia Institute of Technology, Atlanta, GA, USA

Email: redark@cc.gatech.edu

Peter Lindstrom
Lawrence Livermore National Laboratory, Livermore, CA, USA

Email: pl@llnl.gov

Jarek Rossignac
Georgia Institute of Technology, Atlanta, GA, USA

Email: jarek@cc.gatech.edu

Abstract— Many scientific, imaging, and geospatial applications
produce large high-precision scalar fields sampled on a regular
grid. Lossless compression of such data is commonly done using
predictive coding, in which weighted combinations of previously
coded samples known to both encoder and decoder are used to
predict subsequent nearby samples. In hierarchical, incremental,
or selective transmission, the spatial pattern of the known
neighbors is often irregular and varies from one sample to the
next, which precludes prediction based on a single stencil and
fixed set of weights. To handle such situations and make the best
use of available neighboring samples, we propose a local spectral
predictor that offers optimal prediction by tailoring the weights
to each configuration of known nearby samples. These weights
may be precomputed and stored in a small lookup table. We
show through several applications that predictive coding using
our spectral predictor improves compression for various sources
of high-precision data.

Index Terms— interpolation, prediction, compression, spectral
basis, discrete cosine transform, irregular stencils

I. INTRODUCTION

The acquisition or computation of scientific data sets [1],
high dynamic range images [2], and geospatial data [3] usu-
ally requires a significant amount of effort and computing
resources. Yet, their exploitation is often hindered by the
mismatch between the size of the files in which they are stored
and the available bandwidth for downloading or visualizing
them. Although the loss of precision resulting from controlled
quantization or lossy compression may be acceptable for visu-
alization purposes, lossless compression of integer or floating-
point values is required in many settings to guarantee the
integrity of the data, e.g. when saving state in “restart dumps”
for checkpointing numerical simulations [1].

Whereas traditional image compression techniques are ca-
pable of lossless compression [4], [5], they were developed for
the media industry which usually deals with low-precision data
and tolerates trading some accuracy for increased compression.
In contrast, we focus on the lossless compression of high-
precision data sets represented for example as 32-bit integers

or floating-point numbers. The standard approach to lossless
compression of such data is based on predictive coding [6]–[9],
and several prediction schemes for structured data sets have
been proposed [4], [10]–[13]. These prior schemes work best
when the traversal over the data is simple, e.g. scanline order,
so that each sample can be predicted from a single spatial con-
figuration (stencil) of nearby, previously coded samples. When
more general traversals are desired or when a nontrivial subset
of samples is requested, the configuration of nearby known
samples is often irregular and changing, which normally
requires falling back on simpler predictors involving fewer
samples. In this paper, we address how to make predictions
from such irregularly populated neighborhoods that better take
advantage of the known samples, and show that such predictors
lead to improved compression of high-precision data. Using
Fourier analysis, we develop optimal spectral predictors for
small neighborhoods. While the derivation of the weights for
these predictors is somewhat involved, the weights may be
precomputed and stored in a small lookup table [14], and are
straightforward to use in a compression scheme.

The compression and streaming approach investigated here
follow a simple paradigm: compute the prediction pi, j of the
scalar value fi, j as a weighted combination of previously
processed samples in the neighborhood Ni, j; compress the cor-
rections, ci, j = fi, j− pi, j, e.g. using entropy coding; and stream
them. The paradigm leads to simplicity of implementation,
small memory footprint, and excellent compression.

Although our framework is general enough to handle larger
neighborhoods and unstructured and higher-dimensional data,
we limit our attention in this paper to prediction within 3×3
neighborhoods. (While using larger neighborhoods may im-
prove compression, precomputing and storing the n(n−1)2n−1

weights for all possible combinations of known samples in
an n-sample neighborhood is impractical for large n.) When
the predicted sample is at a corner of a full neighborhood
(all eight neighbors known), our spectral predictor reduces
to the extrapolating bi-Lorenzian predictor; an extension of

mailto:redark@cc.gatech.edu
mailto:pl@llnl.gov
mailto:jarek@cc.gatech.edu

1 ?

−1 1

(a) L1

−1 2 ?

2 −4 2

−1 2 −1

(b) L2

− 1
4

1
2 − 1

4
1
2 ? 1

2

− 1
4

1
2 − 1

4

(c) R

1
4

1
4

?
1
4

1
4

(d) B

1
4

1
2 ?

− 1
4

1
2

(e) H

− 1
4

1
4

1 ?

− 3
4 1 − 1

4

(f) S f

− 1
4

1
4

0 1 ?
1
4 −1 3

4

(g) Sv

1
2 ? 1

2

−1 2 −1
1
2 −1 1

2

(h) Sh

Figure 1. Weights for several spectral predictors: (a) Lorenzo, (b) bi-Lorenzian, (c) radial, (d) bilinear, (e) hybrid linear and radial, (f–h) full spectral.

the previously proposed Lorenzo predictor suited for scanline
transmission. When the predicted sample is at the center of a
full neighborhood, we obtain the radial interpolating predictor,
which is four times more accurate than the bi-Lorenzian and is
useful in hierarchical transmission. We show that the spectral
predictor leads to smaller correctors than other predictors that
use a 3× 3 neighborhood for lossless compression of high-
precision floating-point or integer data. We also explain how to
select a priori the best of the nine possible 3×3 neighborhoods
that contain the sample to be predicted.

This paper is an extension of Spectral Predictors [15].
We include here a novel scheme for compressing families of
isocontours, and a set of appendices expanding and proving
key properties of the spectral predictors. We prove that the
sum of the predictor weights always add to unity, demonstrate
the accuracy of several spectral predictors and their sensitivity
to noise, provide Mathematica code to compute the spectral
weights, and prove that the predictors are self-interpolating.
We first cover the underlying theory of spectral prediction,
and then provide example applications and results.

II. PRELIMINARIES

Before we derive our spectral predictor, we begin by con-
sidering the L1 Lorenzo predictor [13] and its generalizations.

A. Extrapolating bi-Lorenzian predictor, L2

Let f be a one-dimensional function regularly sampled at
{. . . , fi−1, fi, fi+1, . . .}, and let ∆x be the finite difference ∆x

i =
fi − fi−1. That is, ∆x is an approximation of the differential
∂ f
∂x dx. Setting ∆x

i = 0, solving for fi, and substituting L1
i for

fi, we have as 1D Lorenzo predictor L1
i = fi−1. The Lorenzo

predictor extends to 2D via composition of derivatives: ∆
xy
i, j =

∆x
i, j −∆x

i, j−1 = fi−1, j−1− fi, j−1− fi−1, j + fi, j. As the sampling

rate of f increases, ∆xy approaches ∂ 2 f
∂x∂y dxdy in the limit.

Setting ∆
xy
i, j = 0, we can now express the 2D Lorenzo predictor

as
L1

i, j = fi, j−1 + fi−1, j − fi−1, j−1 (1)

Thus, in the limit, L1 correctly predicts all continuous func-
tions f with ∂ 2 f

∂x∂y = 0. In the discrete setting, L1 recovers lin-
ear polynomials, or equivalently bilinear polynomials without
highest order term xy. Fig. 1(a) shows how the 2D Lorenzo
predictor estimates the sample indicated by ‘?’ as a weighted
sum of three of its neighbors. We have successfully used L1

in higher dimensions to predict regular grids [13].
It is natural to ask whether the Lorenzo predictor can

be extended to higher-order polynomials that have vanishing
higher-order derivatives. To accomplish this, we take finite

differences once more and obtain
∆

xxyy
i, j = ∆

xy
i, j −∆

xy
i+1, j −∆

xy
i, j+1 +∆

xy
i+1, j+1

= 2 fi, j−1 +2 fi−1, j +2 fi+1, j +2 fi, j+1

−4 fi, j − fi−1, j−1− fi+1, j−1− fi−1, j+1− fi+1, j+1

where we define ∆xxyy using central differences. Setting ∆
xxyy
i, j =

0 and solving for fi+1, j+1 we obtain the bi-Lorenzian predictor

L2
i+1, j+1 = 2 fi, j−1 +2 fi−1, j +2 fi+1, j +2 fi, j+1

−4 fi, j − fi−1, j−1− fi+1, j−1− fi−1, j+1
(2)

In the limit, L2 reproduces functions f with ∂ 4 f
∂x2∂y2 = 0, and

in the discrete setting interpolates biquadratic polynomials
without highest order term x2y2. Whereas ∆xxyy relates to ∆xy

as ∆xy relates to f , L2 is usually not the successive application
of L1, i.e. in general L2

i, j 6= L1
i, j−1 + L1

i−1, j −L1
i−1, j−1. Instead,

L2 may be derived by setting to zero the L1 correction of the
L1 corrections at (i, j). The L2 weights are shown in Fig. 1(b).

The L1 predictor has been widely used in the image and
geometry compression communities [4]–[6], [13]. We are,
however, not aware of its extension L2 having been used for
compression of 2D and higher-dimensional data.

B. Interpolating radial predictor, R
In the previous section we presented an extrapolating pre-

dictor, L2, for a corner fi+1, j+1 of a 3× 3 neighborhood of
samples. This predictor arose from the constraint ∆

xxyy
i, j = 0, a

central difference evaluated at the center sample of this neigh-
borhood. A more effective predictor is obtained by solving
this equation for the function value at the center sample fi, j
(the “face sample”), which results in the radial interpolating
predictor

Ri, j =
1
4
(
2 fi, j−1 +2 fi−1, j +2 fi+1, j +2 fi, j+1

− fi−1, j−1− fi+1, j−1− fi−1, j+1− fi+1, j+1
) (3)

We use the term “radial” to describe this predictor because its
weights are radially dependent on the distance to neighboring
samples (Fig. 1(c)). The prediction Ri, j is 2E −C, where E
is the mean of the four edge neighbors { fi±1, j, fi, j±1} and C
is the mean of the four corner neighbors { fi±1, j±1}. Ri, j also
equals the mean of the four possible L1 predictions of fi, j.

R has the same predictive power as L2, i.e. it reproduces
biquadratics with no x2y2 term, but typically yields better
predictions due to the symmetric configuration of its neighbor-
hood. Using Taylor expansion of f we show in Appendix II
that the prediction error of L2 is ∂ 4 f

∂x2∂y2 (plus higher order
terms), which is four times larger than the prediction error
for R. Note that to use R, we either must know all eight
surrounding neighbors or must estimate them via alternative
predictors.

1 1 1

1 1 1

1 1 1

B0

−1 0 1

−1 0 1

−1 0 1

Bx
1

1 1 1

0 0 0

−1 −1 −1

By
1

−1 0 1

0 0 0

1 0 −1

B2

−1 2 −1

−1 2 −1

−1 2 −1

Bx
3

−1 −1 −1

2 2 2

−1 −1 −1

By
3

1 0 −1

−2 0 2

1 0 −1

Bx
4

−1 2 −1

0 0 0

1 −2 1

By
4

1 −2 1

−2 4 −2

1 −2 1

B6

Figure 2. Basis functions for the 2D discrete cosine transform (not normalized).

III. SPECTRAL PREDICTOR, S

Our spectral predictor S generalizes L2 and R to all possible
configurations of 0 to 8 known samples and locations of
the predicted sample in a 3× 3 neighborhood. As in image
compression methods based on discrete wavelet [16] and
cosine transforms [17], we capitalize on the fact that the
signal power is often heavily skewed toward low frequencies.
In frequency transforms, this results in small, compressible
high-frequency detail coefficients, whereas in predictive cod-
ing “smooth” interpolants recover most of the low-frequency
response, leading to small correctors for the missing high-
frequency content.

In this section, we design as-smooth-as-possible interpolants
for irregular sample configurations. We seek to eliminate or,
when not possible, to minimize high-frequency responses in
the interpolant. The resulting predictors and their sets of
weights can be stored in a lookup table indexed by the mask of
known and unknown values and the location of the predicted
sample.

We build upon the work by Isenburg et al. [18], who use the
Fourier transform to predict the geometry of n-sided polygons
to be “as regular as possible” given m < n known vertices.
They express the vertex coordinates of the polygon in the
complex plane, apply the discrete Fourier transform (DFT)
to this n-vector of consecutive vertex coordinates, set the
highest n−m frequencies to zero, and compute the inverse
transform to obtain the complex coordinates of the predicted
vertices. Because the Fourier transform is linear, the unknown
vertices can be expressed as a linear combination of the known
vertices. By working out the mathematics of the forward
and inverse Fourier transforms, one can a priori establish
a set of weights for a given configuration (m,n) of known
and unknown number of vertices (i.e. the weights are not
dependent on the geometry of the known samples). Because
Fourier frequencies come in pairs, this approach works well
when m is odd as then the resulting weights are guaranteed
to be real. One can show that the discrete cosine transform
(DCT) can instead be used when m is even. Lifting the DFT
to higher dimensions, Isenburg et al. further showed that the
L1 predictor from Section II-A is in the spectral sense the
optimal predictor (i.e. smoothest interpolant) for hypercube-
like neighborhoods with one unknown sample.

A. Spectral derivation of L2 and R

We begin by extending the general approach of Isenburg et
al. to 3× 3 neighborhoods to re-derive the bi-Lorenzian and
radial predictors and show that they are optimal. We will make

use of the two-dimensional (orthonormal) discrete cosine basis

{u(x)u(y), s(x)u(y), u(x)s(y),
s(x)s(y), c(x)u(y), u(x)c(y),
s(x)c(y), c(x)s(y), c(x)c(y)}

where x and y vary over the domain {−1,0,+1} of our 3×3
neighborhood, and where

u(x) =
√

1
3 , s(x) =

√
2
3 sin

(1
3 πx

)
, c(x) =

√
2
3 cos

(2
3 πx

)
The cosine basis is shown un-normalized in Fig. 2. We
unfold the 3× 3 matrix into a single 9-dimensional vector
b =

[
fi−1, j−1 fi, j−1 fi+1, j−1 · · · fi+1, j+1

]T of sample
values, and write the cosine basis as a 9×9 orthogonal matrix
B, where the columns of B are the basis functions. Then the
forward discrete cosine transform is simply x = BT b, with x
being the DCT coefficients in order of increasing frequency.

To extend the ideas of Isenburg et al. from 1D to 2D,
we must rank the basis functions by increasing frequency.
The cosine basis formulation gives us pairs of frequencies
(ωx,ωy) for the horizontal and vertical direction, which must
be consolidated into single frequencies. We approach this
by deriving the cosine basis through eigenanalysis of the
symmetric combinatorial graph Laplacian L (also called the
Kirchoff matrix [19])

li j =

deg(i)
−1
0

if i = j
if i and j are adjacent
otherwise

(4)

where we consider the graph formed by the 3× 3 neighbor-
hood in isolation, with vertical and horizontal edges between
adjacent samples. Here deg(i) denotes the degree or number
of neighbors of a sample i, e.g. deg(i) is 2 for corner samples,
3 for edge samples, and 4 for face samples. As noted by
Strang [20], the eigenbasis of the (un-normalized, symmetric,
positive semidefinite) Laplacian coincides with the discrete
cosine basis (the DCT-2 basis), and the eigenvalues {λi} of
L are of the form

λ = 2
(
2− cosωx− cosωy

)
= 4

(
sin2 ωx

2 + sin2 ωy
2

)
(5)

with ω = π

3 k, k ∈ {0,1,2} for 3×3 neighborhoods. It follows
that the eigenvalues of L are (0,1,1,2,3,3,4,4,6). Thus,
larger eigenvalues λ correspond to higher frequencies ω , and
from here on we will use the terms eigenvalue and frequency
interchangeably. We will further use Bλ to denote the eigen-
vector (i.e. basis function) with corresponding eigenvalue λ ,
and Bx

λ
and By

λ
to distinguish pairs of eigenvectors with equal

eigenvalues (Fig. 2).
Our formulation shows that there is a unique highest fre-

quency λ = 6 with associated basis function B6. Given the
eight known samples in the bi-Lorenzian and radial predictors,

M =
[

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

]
? 3

5
2
5

PT =
[

1
0

0
2√
5

0
1√
5

0
0

0
0

0
0

0
0

0
0

0
0

]
Figure 3. Example mask matrix M, interpolation matrix P, and weights W .

similarly to Isenburg et al., we set the highest frequency
response x6 to zero and solve for the unknown sample as
a linear combination of the m = 8 known samples, which
results in the weights given in (2) and (3) for corner and center
predictions.

B. The general case: Irregular sample configurations

When m < 8, a similar strategy is possible by zeroing 9−m
of the highest frequencies. However, we may need to resolve
two issues:

(1) The 9−m first basis functions may not form a basis for
the set of known samples, e.g. {B0,B

x
1,B

y
1} is not a basis

for b =
[

fi−1, j−1 fi, j−1 fi+1, j−1 0 · · · 0
]T .

(2) In situations when only one of Bx
λ

and By
λ

is needed (e.g.
when exactly two samples are known, as in Fig. 3), we
may reduce the total frequency response by choosing a
linear combination of Bx

λ
and By

λ
.

Let M be an m×n mask matrix that extracts the m known
samples Mb from b, i.e. each row of M has a single one entry
and remaining zeros. We wish to solve the underconstrained
system MBx = Mb for x with as many high frequencies of x
zeroed as possible. This can be done via linearly constrained
least-squares methods, which involves symbolic inversion of
an (m+n)×(m+n) matrix. We show here how to accomplish
the same goal via inversion of a smaller m×m matrix.

We first must find an m-dimensional basis for Mb by
selecting from or combining the n > m column vectors MB;
any excluded vector from MB will implicitly have its cor-
responding frequency response zeroed. Our approach is to
incrementally construct an n×m interpolation matrix P that
linearly combines vectors from MB such that MBPy = Mb
is a fully constrained system of m equations, with Py = x.
We achieve this by adding to P columns that select basis
functions from MB in order of increasing frequency λ . If a
basis function projected onto the space of known samples is
redundant (linearly dependent) with respect to the partially
constructed basis, we exclude it and consider the next basis
function. When we encounter an eigenspace, i.e. two basis
functions with the same eigenvalue, one of three situations
arises: (1) The whole eigenspace is redundant, and we exclude
it. (2) The whole eigenspace is nonredundant, and we include
it. (3) The eigenspace is partially redundant, in which case
we first “rotate” the eigenspace by an angle θ to make
one of the rotated and projected basis functions redundant.
(Note that any rotation of an eigenspace preserves eigenvalues
and orthogonality with the rest of the basis.) This leaves a
nonredundant basis function Bθ

λ
= cos(θ)Bx

λ
+ sin(θ)By

λ
and

we add to P a column that has cos(θ) and sin(θ) in the rows
corresponding to Bx

λ
and By

λ
. The effect of this rotation is

to “align” the basis function with the spatial configuration of

known samples. One can show that this rotation leads to the
minimal total frequency response ||x||.

We may now compute x = P(MBP)−1Mb using matrix
inversion. We are, however, not interested in the frequency
response x but in the weights of the known samples Mb. Hence
we apply the inverse DCT to x and compute Bx = Wb, where
W is the n×n weight matrix W = BP(MBP)−1M. That is, row
i of W gives the weights for interpolating an unknown sample
bi from its known neighbors: bi = ∑ j wi jb j. Of course, if bi is
a known sample, only wii = 1 is nonzero.

We have implemented this method symbolically in Mathe-
matica. A complete code listing is found in Appendix I. Com-
puting exact weights W for all neighborhood configurations
results in 41 unique weights in the range [−4,+4] that are
predominantly integers and otherwise rationals (see [14] for a
complete list of weights). In Appendix IV we prove that our
weights always add to one, which makes our scheme affine
invariant. Another desirable feature of spectral interpolation is
self-interpolation: interpolating a sample s from a set S and
then interpolating t from T = S∪{s} yields the same result
as interpolating t directly from S. We prove this property in
Appendix V.

C. Choosing a neighborhood
Via translation we can form nine 3 × 3 neighborhoods

around each predicted sample p. Depending on the config-
uration of known samples it is not immediately clear which
neighborhood to predict from. We propose training the com-
pressor on the given data set: each of the 9×28 predictors is
exercised on each sample and receives a ranking based on the
mean error it makes. This short ranking is transmitted before
compression begins and determines the choice of predictor. In
Fig. 4 we show using random sampling of two data sets that
our approach improves upon several alternatives that we have
explored, including the neighborhood centered at p and the
mean or the median of all nine predictions. For calibration,
we also report the results for the best (lowest residual) of the
nine neighborhoods (which unfortunately is not available to
the decoder), as well as the mean and median of constant
(single-value) and L1 prediction.

IV. APPLICATIONS OF SPECTRAL PREDICTION

Our spectral predictor is particularly useful in applica-
tions where standard compression techniques, e.g. based on
wavelets, are not practical, such as for encoding data sets with
irregular domains due to manual or automatic extraction, in-
painting, selective updates, adaptive sampling, or range queries
that extract those samples whose values fall within an interval.
Irregular sample configurations also arise when the data is
traversed in other than scanline order, or in mesh compression,
where the domain connectivity is inherently irregular. For lack
of space, we here consider only a few of these applications.

We evaluate predictor performance in terms of the number
of significant corrector bits, which is the dominating cost in
predictive coders for high-precision data [7], [8], including
our own [9]. For floating-point data, we compute an integer
corrector that measures the number of distinct floating-point
values between the actual and predicted value (see [9]).

velocity

0

2

4

6

8

10

12

14

16

18

20

22

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

known points (%)

m
e
a
n

 c
o

rr
e
ct

o
r

le
n

g
th

 (
b

it
s)

pressure

0

2

4

6

8

10

12

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

known points (%)

m
e
a
n

 c
o

rr
e
ct

o
r

le
n

g
th

 (
b

it
s)

synthetic

0

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

known points (%)

m
e
a
n

 c
o

rr
e
ct

o
r

le
n

g
th

 (
b

it
s)

Constant Median Constant Mean L1 Median L1 Mean Spectral Median Spectral Mean Spectral Centered Spectral Trained

Figure 4. Predictor quality vs. average number of known points in the 3×3 neighborhood. The shaded area bounds the best and worst spectral prediction.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Viscocity Pressure Velocity Diffusivity Vorticity

no
rm

al
iz

ed
 m

ea
n

pr
ed

ic
tio

n
er

ro
r

Paeth Median L1 L2

(a) Scanline transmission

0

2

4

6

8

10

12

14

16

18

20

Viscocity Velocity Diffusivity Vorticity

m
ea

n
co

rr
ec

to
r l

en
gt

h
(b

its
)

Bilinear Hybrid Spectral

(b) Progressive refinement

0

1

2

3

4

5

6

7

1000m 1001m 1003m

m
ea

n
co

rr
ec

to
r l

en
gt

h
(b

its
)

Median Mean Spectral

(c) Isocontouring

Figure 5. Prediction results for three different applications.

A. Scanline transmission

The most straightforward way to compress regularly gridded
data is to make a scanline traversal, e.g. row-by-row from
bottom to top and from left to right within each row. We here
compare our bi-Lorenzian L2 predictor with other scanline
predictors proposed for image compression: the Paeth predic-
tor [12] used in the PNG image format [5], the median pre-
dictor used in JPEG-LS [4], and the L1 Lorenzo predictor [13]
used by Lindstrom and Isenburg [9]. All except L2 predict a
sample from the same set of three neighbors (Fig. 1(a)).

In order to apply L2 in a scanline traversal, two rows of
previously coded samples must be maintained (Fig. 7(a)).
To bootstrap the predictor, one may use lower-dimensional
Lorenzo prediction to first recover domain boundaries. Alter-
natively, one may use the spectral predictor for partially known
neighborhoods described in Section III.

Fig. 5(a) shows the results of predicting multiple 2D slices
of the single-precision floating-point scalar fields shown in
Fig. 6 obtained from a fluid dynamics simulation [1]. On high-
precision data like this, L2 often offers substantially better
prediction than predictors that use smaller stencils. The benefit
of a larger stencil comes at the expense of higher sensitivity
to quantization, however, due to accumulation of per-sample
errors and larger (in magnitude) weights. Analysis shows that
the prediction error due to quantization is three times larger
for L2 than for L1 (see Appendix III). Hence L2 generally
performs worse than L1 on low-precision data such as 8-bit
images.

B. Progressive refinement

Often, data sets are transmitted progressively, doubling the
resolution in x and y after each refinement. The missing values
within a refinement level may be transmitted in scanline order,
as shown in Fig. 7(b), which results in three 3× 3 neigh-
borhood configurations from which samples are predicted
(Fig. 7(b–d)).

We consider three predictors for the face sample (Fig. 7(c)):
bilinear interpolation B of corner samples (Fig. 1(d)), spectral
prediction S f (Fig. 1(f)), and a hybrid predictor H (Fig. 1(e))
that first linearly interpolates the unknown neighbors at the
vertical and horizontal edges from their immediate neighbors
to fill the neighborhood and then predicts the face point using
radial prediction R. Note that both B and H are instances
of spectral prediction that simply ignore some of the known
neighbors. For the edge points, B and H resort to linear
interpolation of corner points for prediction (since no other
reasonable non-spectral predictor is available), while our spec-
tral predictor is able to make use of all decoded samples
(Figs. 1(g) and 1(h)).

Fig. 5(b) illustrates the advantage of using all known
neighboring samples in the prediction. S f offers in all cases
superior prediction over B and H, leading to as much as a
4:1 improvement in compression. Note that one may choose a
different traversal order within each level. In fact, our exper-
iments show that predicting the missing edge samples before
the face samples further improves compression, in part because
the face samples may be predicted using the radial predictor
with fully known (not simply estimated) neighborhoods.

(a) Density (b) Pressure (c) Diffusivity (d) Viscocity (e) Vorticity

Figure 6. (a–d): Interval-volume renderings of several of the 3D scalar fields used in our experiments. (e): Close-up of the 1025×5000 2D vorticity field.

◦ ◦ ◦ ?

◦ ◦ ◦ ◦ ◦

× ◦ ◦ ◦ ◦

× × × × ×

(a)

• • •

◦ ◦ ◦ ?

• ◦ • ◦ •

◦ ◦ ◦ ◦ ◦

• ◦ • ◦ •

(b)

• •
◦ ?

• ◦ •
(c)

• •
◦ ◦ ?

• ◦ •
(d)

• ? •
◦ ◦ ◦
• ◦ •

(e)

Figure 7. (a) L2 footprint (circles) maintained during scanline traversal.
(b) Coarse-resolution (solid) and fine-resolution (hollow) processed samples
in a hierarchical traversal. Within each level of resolution, scanline traversal
is used, resulting in three predictor stencils: (c) face, (d) vertical edge, and
(e) horizontal edge sample.

C. Isocontouring

In many scientific, engineering, and medical applications,
regularly sampled volumetric scalar fields are visualized in
terms of isosurfaces. For instance, a remote viewer may wish
to see the isosurface S(t) formed by all points at temperature t
or to explore the family S(T) of isosurfaces with temperatures
in a range T = [tmin, tmax]. Instead of transmitting the geometry
of S(t) or some compressed form of its animation, it is often
more effective to transmit the minimal subset of scalar values
needed to reconstruct the single isosurface S(t) or family of
isosurfaces S(T) [21]. To satisfy this query, one needs to
transmit not only the samples with values in T , but also some
of their neighbors to obtain a complete “scaffold” around the
surface. In a scenario where the remote user later decides to
extend T to a larger interval, compression and incremental
transmission of the subset of additional samples would often
be preferable over complete retransmission. For both initial
and incremental transmission, it is not obvious how to predict
the irregular subset of sample values using traditional means.

Although isocontouring of 3D volume data is a more
common task than isocurve extraction from 2D fields, we focus
here on the 2D case as it allows for straightforward application
of our 3× 3 predictor. Aside from the higher memory usage
of the lookup tables needed by a 3D spectral predictor, the
generalization from 2D to 3D is largely straightforward.

Our approach is based on the traversal, identification, and
transmission of the minimal subset of samples that completely
determine the isocontour requested by the client. We use an
isocontour extraction method similar to marching cubes [22],
but avoid traversing the entire 2D data set for each requested
isocontour. Rather, we assume that a pre-computed set of seeds
is available to the encoder from which it is possible to recover
the isocontour [23]. The benefit of this seed set is that it allows
visiting only those cells intersected by the isocontour. A cell is
the rectangular region in the 2D grid between four neighboring

samples, which are pairwise joined by links (edges in the grid).
We call the links intersected by the contour sticks, i.e. the
two sample values of a stick bracket the given isovalue. As
is common, the vertices of the isocontour are placed on the
sticks by linearly interpolating the function values at the stick
endpoints and solving for the position where this interpolant
equals the isovalue.

The encoder and decoder perform the same traversal, hence
we discuss them together. They both store in memory the
surrounding sample values that determine the isocontour. Our
implementation uses a quadtree as a sparse data structure
for storing a mask of known samples and their values. This
structure provides fast, adaptive storage, while maintaining
spatial relationships between the samples.

1) Compression Algorithm: Our compressor encodes iso-
contours one component at a time. For each component, it
begins with a seed stick and encodes its two sample values
(A, B from Fig. 8). The encoder then follows the isocontour
until it exits the domain of the data set or returns to the seed
stick. During this traversal, we enter a cell through a stick and
exit through another. While the isocontour never bifurcates, it
is possible for a cell to have four sticks, in which case the
contour passes through the same cell twice.

The two samples at the entrance stick are known by both
encoder and decoder, however the other two samples of the
cell (C and D in Fig. 8) may not be known by the decoder.
This leads to the following three cases when entering a cell:

(1) Only the two samples from the entrance stick are known.
To determine the exit stick, we must first decide which
of the samples C and D to encode first; it is possible
that only one of them is needed to trace the isocontour.
We use our spectral predictor to produce estimates C′

and D′ for the remaining samples. If AC′ is a stick,
we encode/decode C and continue to the next case
below. Otherwise, we perform the same test for BD′ and
transmit D if the test passes. If neither link is estimated
to be a stick, we encode C or D depending on which is
closest to the intersection point between the isocontour
and the entrance stick. This simple heuristic works well
in practice, and often identifies the correct exit stick.

(2) Three samples are known, including the two samples A
and B from the entrance stick. Without loss of generality,
we assume that C is the other known sample. If AC is
a stick, then it becomes the exit stick. Otherwise we
encode/decode D, and determine through which link of
BD and CD the isocontour exits the cell.

B

DC

A

Figure 8. Example 2D cell. The entrance stick is shown in green, the already
encoded samples in blue, and the traversed part of the isocontour in red.

B

DC

A B

DC

A

Figure 9. Ambiguous case in 2D isocontouring (x-cells).

(3) All four samples are known. If in addition to the en-
trance stick the cell contains only one more stick, this
becomes the exit stick (nothing needs to be encoded).
Otherwise, all four links are sticks, and the contour
passes through the cell twice. We call such cells x-cells.
Without information on the behavior of the continuous
function in the interior of the cell, there are two pos-
sible and equally valid interpretations of how to trace
the isocontour (see Fig. 9). Several criteria have been
proposed for resolving such ambiguities (e.g. [24], [25]),
and we leave it up to the client to interpret such cells.
However, in order to visit all samples needed by the
isocontour, the encoder/decoder must agree on which
cell to visit next. For simplicity, we use our heuristic
above and exit through the link closest to the entrance
vertex (intersection). Note that this choice affects only
the order of samples encoded, i.e. it has no impact on
which cells are traversed or which samples are needed
to extract the isocontour.

To encode the value of a sample, we use spectral prediction
and the residual coder from [9]. As discussed in Section III-
C, we have freedom in positioning the neighborhood around
the predicted sample. From the nine possible neighborhoods,
we use as heuristic the one containing the largest number of
known samples (though training the predictor, as in Section III-
C, is also possible).

To bootstrap the decoder, we transmit with each component
a start seed in the form of a stick. This stick is encoded as the
location of its left-most, bottom-most sample, and a single bit
indicating its orientation (horizontal or vertical). If no nearby
samples are available, we use the isovalue w as prediction of
the first sample f0. The other seed sample, f1, which together
with f0 must bracket w, is then predicted as f1 = 2w− f0.

It is important to point out that our approach never transmits
the value of a sample more than once. If a sample was
previously encoded with an isocontour, it will be available
locally to the client for extraction of subsequent isocontours.

Figure 10. Close-up of a sequence of transmitted isocontours. The set of
samples transmitted with each isocontour is shown in a separate color.

(a) small (b) medium (c) large (d) very large

Figure 11. Four sets of isocontours from the synthetic circle data set. From
left to right, the step between isovalues is doubled. Each isocontour and the
samples they depend on are shown in a different color. As is evident, fewer
samples are transmitted for more closely spaced isocontours.

2) Results: We have evaluated our isocontour compressor
on three data sets: an isotropic distance map with circles
as isocontours (Fig. 11), a 1,025 × 5,000 vorticity scalar
field from a numerical hydrodynamics simulation by Miller
et al. [26] (Fig. 6(e)), and the 16,385×16,385 Puget Sound
16-bit precision terrain surface [27]. The first two data sets
are stored in single (32-bit) precision floating point.

Though it is common to measure isocontour compression
in terms of the number of bits per generated isocontour vertex
(bpv) transmitted, we will also evaluate our method in terms
of number of bits per function sample (bps).

When our implicit technique is used to compress a single
isocontour, it generally does not perform as well as methods
that explicitly compress the isocontour representation directly.
This is to be expected, as we encode information sufficient to
extract a range of isocontours and to evalute the function over
a subset of the domain. For the 32-bit floating-point circle
data set, our method compresses large isocontours to 17.13
bits per vertex, equivalent to 12.10 bits per sample. For this
same isocontour, 4.2 neighbors are available on average for
prediction. Because locally the isocontour is mostly “straight,”
the neighborhood configuration is often such that the spectral
predictor has to resort to 1D linear extrapolation, which is not
a particularly powerful predictor.

Our method’s strength shows when we compress several
nearby isocontours. Fig. 11 shows four sets of isocontours.
As can be seen in Fig. 12, when compressing a set of
isocontours that are far apart from each other, the end result is
simply the compression of several isolated isocontours. As the
distance between the different isocontours decreases, as seen
in the examples “large,” “medium,” and “small,” the cost of
encoding each new isocontour is reduced. The average number
of neighbors used in the prediction for these three examples
is 6.5, 7.3, and 7.4, respectively. The ratio between isocontour
vertices and grid samples is 0.5, 0.7, and 1.2 respectively. The

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Small Increment Medium Increment
Large Increment Disjoint

Figure 12. Compression in bits per vertex for each set of isocontours from
Fig. 11. The horizontal axis corresponds to subsequent isocontours transmitted
(from left to right). The graph shows that when isocontours are closely spaced
together fewer samples need transmission and better prediction is possible.

“large” data set has almost the same sample/vertex ratio as the
individual isocontour, but its prediction is improved by having
nearby samples from previously transmitted isocontours. As
long as the new isocontour is nearby already decompressed
data, our technique offers improvement. The compression for
the “very large,” “large,” “medium,” and “small” examples is
17.28, 13.64, 6.49 and 4.13 bits per vertex, respectively.

As a result of the way the samples are predicted, the order in
which isocontours are encoded affects the compression ratio.
For sets of disjoint isocontours the order has no influence on
compression, but when isocontours are close the order does
matter. To illustrate this point, we compressed the “medium”
spaced set of isocontours in different orders. In the worst case,
the first half of the isocontours are transmitted in an order
where there is no overlap, even though there are enough nearby
points to help prediction, resulting in compression similar to
the “large” example. The second half of isocontours overlap
those from the first half, and hence few additional samples
are transmitted. Here 8.0 neighbors are available on average,
which allows near perfect prediction at only 0.8 bits per vertex.
The average cost across all isocontours is in this case 8.22
bpv. When instead the isocontours are transmitted in order of
increasing isovalue, there is sufficient overlap for consistently
good prediction, resulting in only 6.49 bits per vertex. Note,
however, that the client may not be at liberty to choose this
order as it may be dictated by the user.

We also evaluate our method on two differently spaced
sets of nine isocontours each from the “vorticity” data set
(Fig. 6(e)). The “large” isovalue range from this data set is
twice as wide as the “medium” range. We achieve on average
16.6 bits per vertex on the “large” example, and 12.08 on the
“medium.” By comparison, compressing a single isocontour
requires 34.0 bpv. As in our other single-isocontour examples,
the transmitted samples are often predicted poorly only via
extrapolation along the isocontour, resulting in a cost similar
to encoding each 1D stick intersection using a raw 32-bit
floating-point representation.

As before, the initial overhead of our technique can be
amortized over several isocontours, and again the transmission
order matters (see Table I). We have observed in all cases that
if the objective is to encode all the samples in a range, it
is best to encode them sequentially (e.g. in order of increas-

TABLE I.
DEPENDENCE OF COMPRESSED FILE SIZE ON ISOCONTOUR

TRANSMISSION ORDER FOR THE MEDIUM-DENSITY 2D CIRCLE EXAMPLE.
ISOCONTOURS ARE NUMBERED BY INCREASING, EQUISPACED ISOVALUE.

Transmission Order File Size
1,2,3,4,5,6,7,8,9 32537
1,3,5,7,9,2,4,6,8 41214
1,5,9,3,7,2,4,6,8 44599

ing isovalue) rather than hierarchically (e.g. by interleaving
isocontours). In the sequential encoding we observed a 20%
improvement over the hierarchical encoding. The improvement
is entirely dependent on the accuracy of prediction since the
same set of samples is eventually transmitted. In sequential
transmission each point is predicted from a close-to-full stencil
(7 to 8 neighbors), while hierarchical encoding is relegated to
use sparsely populated stencils (4 neighbors on average) for
half of the isocontours.

We end this section by reporting experiments of extract-
ing isolines from the Puget Sound terrain surface. We first
extracted an isocontour at 1000 m elevation and predicted
all necessary samples, then incrementally transmitted missing
values for isocontours at 1001 m and 1003 m, resulting in
an average number of known neighbors of 5.13, 5.42, and
5.41, respectively. Since samples are often not available for
predictors like L1 to be applied, we compare our spectral
predictor with predictions based on the mean and median
sample value in a 3×3 neighborhood centered on the predicted
sample. We observed consistent reduction in corrector bit
length (13–22%) using the spectral predictor, even for this
lower-precision data set (Fig. 5(c)).

V. CONCLUSIONS

We have described two new predictors, the bi-Lorenzian
L2 and the radial R, which predict the value of a sample f
from eight values in a 3×3 neighborhood of which f is the
corner (for L2) or the center (for R). More importantly, we
propose the spectral predictor S, which extends L2 and R to
all configurations of 0 to 8 known samples and locations of f
in a 3×3 neighborhood. We argue that S is the best predictor
from a 3×3 neighborhood, provide a strategy for selecting the
most promising neighborhood that contains f , and demonstrate
the benefits of S over competing predictors in three simple
applications.

While applied only to 3× 3 neighborhoods in 2D regular
grids here, our framework, which is based on the eigenstruc-
ture of the combinatorial graph Laplacian, easily generalizes
to higher dimensions and to irregular grids. One immediate
application we envision is geometry prediction for polygonal
and polyhedral meshes. In the more general setting, multiple
and larger neighborhoods may arise, possibly leading to very
large weight lookup tables. In order to reduce memory re-
quirements, symmetry, non-uniqueness of weights and weight
combinations, and unity constraints can be exploited, however
having a more efficient procedure for on-demand computation
of weights than symbolic or even numerical matrix inversion
is clearly desirable.

APPENDIX I
IMPLEMENTATION

Listing 1 is a Mathematica 5.0 implementation of the spec-
tral interpolator. Given a Laplacian matrix L that represents
the stencil from which predictions are made and a vector S
that specifies which samples are known (1) and unknown (0),
the weight matrix W is computed. The bi-Lorenzian weights,
e.g., are obtained by weight[{0, 1, 1, 1, 1, 1, 1, 1, 1}][[1]].
For completeness, the 3×3 Laplacian is included here, but it
may be redefined for arbitrary stencils.

Listing 1. Mathematica code for computing spectral weight matrix.

Needs [” L i n e a r A l g e b r a ‘ O r t h o g o n a l i z a t i o n ‘ ”]

(∗ L a p l a c i a n f o r 3 x3 s t e n c i l ∗)
l a p = {{ 2 , −1, 0 , −1, 0 , 0 , 0 , 0 , 0 } ,

{ −1, 3 , −1, 0 , −1, 0 , 0 , 0 , 0 } ,
{ 0 , −1, 2 , 0 , 0 , −1, 0 , 0 , 0 } ,
{ −1, 0 , 0 , 3 , −1, 0 , −1, 0 , 0 } ,
{ 0 , −1, 0 , −1, 4 , −1, 0 , −1, 0 } ,
{ 0 , 0 , −1, 0 , −1, 3 , 0 , 0 , −1 } ,
{ 0 , 0 , 0 , −1, 0 , 0 , 2 , −1, 0 } ,
{ 0 , 0 , 0 , 0 , −1, 0 , −1, 3 , −1 } ,
{ 0 , 0 , 0 , 0 , 0 , −1, 0 , −1, 2 }}

(∗ e i g e n b a s i s B o f L a p l a c i a n ∗)
b = Transpose [GramSchmidt [Reverse [E i g e n v e c t o r s [l a p]]]]

(∗ o r d e r e d e i g e n s p a c e i n d e x s e t s ∗)
e = S p l i t [

Range [Length [l a p]] ,
Equal @@ Reverse [Eigenva lues [l a p]] [[{ # #}]] &

]

(∗ mask m a t r i x M(S) ∗)
mask [s] := S e l e c t [DiagonalMatrix [s] , Norm [#] > 0 &]

(∗ add l i n e a r l y i n d e p e n d e n t columns t o m a t r i x P ∗)
e x t e n d [mb , {} , q t] := q t
e x t e n d [mb , p t , q t] := Join [

p t ,
S e l e c t [

RowReduce [
NullSpace [p t . Transpose [mb]] . mb . Transpose [q t]

] . q t ,
Norm [#] > 0 &

]
]

(∗ i n t e r p o l a t i o n m a t r i x P (S) ∗)
i n t e r p [s] := Module [
{mb = mask [s] . b , p t } ,
For [p t = {} ; i = 1 , Length [p t] < Length [mb] , i ++ ,

p t = e x t e n d [mb , pt , I d e n t i t y M a t r i x [Length [s]] [[e [[i]]]]]
] ;
Transpose [p t]

]

(∗ w e i g h t m a t r i x W(S) f o r sample s e t S ∗)
we ig h t [s] := Module [
{m = mask [s] , p = i n t e r p [s]} ,
b . p . I n v e r s e [m . b . p] . m

]

APPENDIX II
PREDICTOR ACCURACY

We here investigate the accuracy of the bi-Lorenzian (L2),
edge (Sh), and radial (R) predictors for general (e.g. non-
polynomial) functions f . Without loss of generality, consider
predicting f (0,0). If f is smooth or sufficiently densely
sampled, we can approximate it well in the vicinity of the

predicted sample by a second order Taylor series expansion g:

gx,y =
2

∑
i=0

2

∑
j=0

f (i, j)(0,0)
i! j!

xiy j

where f (i, j) denotes the ith and jth partial derivative with
respect to x and y, respectively. We then have as prediction
error f (0,0)− p(0,0), where we express the prediction p as a
weighted combination of samples gx,y according to the given
predictor weights. For the bi-Lorenzian predictor, the error is:

f (0,0)−
[
2(g1,0 +g0,1 +g2,1 +g1,2)

−4g1,1− (g2,0 +g0,2 +g2,2)
]
= f (2,2)(0,0)

Similarly, the edge predictor yields an error of 1
2 f (2,2)(0,0)

and the radial predictor an error of 1
4 f (2,2)(0,0). Thus, in the

limit the radial predictor is four times as accurate as the bi-
Lorenzian.

APPENDIX III
SENSITIVITY TO NOISE

The sampled function often contains noise, either due to
an imperfect acquisition process or due to errors stemming
from limited precision and quantization. Assuming otherwise
perfect prediction, we analyze how noise affects the accuracy
of our predictors. We assume that each function value f (i, j)
involved in the prediction is perturbed by a small offset
δ (i, j) ∈ [−ε,+ε] uniformly distributed in this interval, which
well models effects such as integer quantization. The square
error E2 due to noise then reduces to:

E2 =
(
δ (0,0)−∑

i
∑

j
w(i, j)δ (i, j)

)2

where w(i, j) is the predictor weight of sample f (i, j). We
find the root mean square error via multiple integration of the
{δ (i, j)} over the domain [−ε,+ε]n of the n-point stencil. For
3×3 neighborhoods, we obtain the RMS errors (expressed in
multiples of ε) listed in Table II.

TABLE II.
NOISE-INDUCED ERRORS FOR SELECTED SPECTRAL PREDICTORS.

Stencil Sample Name Error / ε

2×1 corner constant
√

2
3 ' 0.816

3×3 face radial
√

3
2 ' 0.866

3×1 edge linear interpolation 1 ' 1.000
3×2 edge 1 ' 1.000
2×2 corner Lorenzo 2√

3
' 1.155

3×1 corner linear extrapolation
√

2 ' 1.414
3×3 edge edge predictor

√
3 ' 1.732

3×2 corner 2 ' 2.000
3×3 corner bi-Lorenzian 2

√
3 ' 3.464

APPENDIX IV
AFFINE INVARIANCE

For any number m > 0 of known samples out of n, the
spectral weights used to predict any given sample always add
to one, which makes our predictor affine invariant. That is, the

weight matrix W = BP(MBP)−1M satisfies W1n = 1n, where
1n is a vector of n ones.

Lemma 4.1: The first n-entry column of the interpolation
matrix P equals [1 0 · · · 0]T .

Proof: It is well known that the first eigenvector of
the Laplacian L is B0 = 1√

n 1n, with a corresponding unique
eigenvalue λ0 = 0. Since any nonempty sample set is linearly
dependent on MB0, we always include it in the construc-
tion of the basis MBP by setting the first column of P to
[1 0 · · · 0]T .

Theorem 4.2: For any nonempty sample set, W1n = 1n.
Proof: Let v = [

√
n 0 · · · 0]T be an m-vector. Due

to Lemma 4.1, Pv = [
√

n 0 · · · 0]T . Thus, BPv =
√

nB0 =
1n. Further note that MBPv = 1m, and hence v = (MBP)−11m.
So 1n = BPv = BP(MBP)−11m = BP(MBP)−1M1n = W1n.

APPENDIX V
SELF-INTERPOLATION

We here prove the self-interpolating property of our spectral
interpolator: given a set of samples S and a superset T
interpolated from S, it matters not whether additional samples
are interpolated from S only or from T . In other words,
WTWS = WS, where we have used subscripts to distinguish
between weights computed from different sample sets. The
proof begins with a lemma:

Lemma 5.1: For any S⊆ T , there exists a matrix XS,T such
that BPS = BPT XS,T .

Proof: The columns of BPS form a basis for the columns
of MT

S over the samples S, i.e. the columns of MSBPS span
the columns of MSMT

S = I. Since MT BPT is a basis for
MT MT

T , since ran(MT
T) ≥ ran(MT

S), and since basis functions
are added in the same order to construct bases for S and T ,
we have that BPT is also a basis for MT

S over S. As a result,
ran(BPT)≥ ran(BPS), which implies that we can write BPS as
linear combinations of BPT , i.e. there is a matrix XS,T such
that BPS = BPT XS,T .

Theorem 5.2: For any S ⊆ T , WTWS = WS.
Proof: Let WS = BPS(MSBPS)−1MS be the weight matrix

for the sample set S. We have:

WTWS = BPT (MT BPT)−1MT BPS(MSBPS)−1MS

= BPT (MT BPT)−1MT BPT XS,T (MSBPS)−1MS

= BPT XS,T (MSBPS)−1MS

= BPS(MSBPS)−1MS

= WS

ACKNOWLEDGEMENTS

This work was performed in part under the auspices of
the U.S. Department of Energy by University of California,
Lawrence Livermore National Laboratory under contract W-
7405-Eng-48.

REFERENCES

[1] A. W. Cook, W. H. Cabot, P. L. Williams, B. J. Miller,
B. R. de Supinski, R. K. Yates, and M. L. Welcome, “Tera-
scalable algorithms for variable-density elliptic hydrodynamics
with spectral accuracy,” in ACM/IEEE Supercomputing, 2005,
p. 60.

[2] G. W. Larson, “LogLuv encoding for full-gamut, high-dynamic
range images,” Journal of Graphics Tools, vol. 3, no. 1, pp.
15–31, 1998.

[3] D. F. Maune, Digital Elevation Model Technologies and Ap-
plications: The DEM Users Manual. American Society for
Photogrammetry and Remote Sensing, 2001.

[4] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I
lossless image compression algorithm: Principles and standard-
ization into JPEG-LS,” IEEE Transactions on Image Processing,
vol. 9, no. 8, pp. 1309–1324, 2000.

[5] G. Roelofs, PNG: The Definitive Guide. O’Reilly, 2003, http:
//www.libpng.org/pub/png/book/.

[6] C. Touma and C. Gotsman, “Triangle mesh compression,” in
Graphics Interface, 1998, pp. 26–34.

[7] V. Engelson, D. Fritzson, and P. Fritzson, “Lossless compression
of high-volume numerical data from simulations,” in Data
Compression Conference, 2000, pp. 574–586.

[8] P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast lossless com-
pression of scientific floating-point data,” in Data Compression
Conference, 2006, pp. 133–142.

[9] P. Lindstrom and M. Isenburg, “Fast and efficient compression
of floating-point data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[10] H. Kobayashi and L. R. Bahl, “Image data compression by
predictive coding I: Prediction algorithms,” IBM Journal of
Research and Development, vol. 18, no. 2, pp. 164–171, 1974.

[11] E. H. Feria, “Linear predictive transform of monochrome im-
ages,” Image and Vision Computing, vol. 5, no. 4, pp. 267–278,
1987.

[12] A. W. Paeth, “Image file compression made easy,” in Graphics
Gems II, J. Arvo, Ed. San Diego: Academic Press, 1991.

[13] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-
of-core compression and decompression of large n-dimensional
scalar fields,” Computer Graphics Forum, vol. 22, no. 3, pp.
343–348, 2003.

[14] [Online]. Available: http://www.cc.gatech.edu/∼lindstro/data/
spectral/

[15] L. Ibarria, P. Lindstrom, and J. Rossignac, “Spectral predictors,”
Data Compression Conference, pp. 163–172, March 2007.

[16] C. Chrysafis and A. Ortega, “Efficient context-based entropy
coding for lossy wavelet image compression,” in Data Com-
pression Conference, 1997, pp. 241–250.

[17] G. K. Wallace, “The JPEG still picture compression standard,”
Communications of the ACM, vol. 34, no. 4, pp. 30–44, 1991.

[18] M. Isenburg, I. Ivrissimtzis, S. Gumhold, and H.-P. Seidel,
“Geometry prediction for high degree polygons,” in SCCG,
2005, pp. 147–152.

[19] H. Zhang, “Discrete combinatorial Laplacian operators for
digital geometry processing,” in SIAM Conference on Geometric
Design, 2004, pp. 575–592.

[20] G. Strang, “The discrete cosine transform,” SIAM Review,
vol. 41, no. 1, pp. 135–147, 1999.

[21] A. Mascarenhas, M. Isenburg, V. Pascucci, and J. Snoeyink,
“Encoding volumetric grids for streaming isosurface extraction,”
in 3DPVT, 2003, pp. 665–672.

[22] W. E. Lorensen and H. E. Cline, “Marching cubes: A high
resolution 3d surface construction algorithm,” in Computer
Graphics (Proceedings of SIGGRAPH 87), vol. 21, 1987, pp.
163–169.

[23] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. R. Schikore, “Contour trees and small seed sets for isosurface
traversal,” in Proceedings of the 13th International Annual

http://www.libpng.org/pub/png/book/
http://www.libpng.org/pub/png/book/
http://www.cc.gatech.edu/~lindstro/data/spectral/
http://www.cc.gatech.edu/~lindstro/data/spectral/

Symposium on Computational Geometry (SCG-97), 1997, pp.
212–220.

[24] G. M. Nielson and B. Hamanna, “The asymptotic decider:
resolving the ambiguity in marching cubes,” in IEEE Visual-
ization, 1991, pp. 83–91.

[25] C. Andujar, P. Brunet, A. Chica, I. Navazo, J. Rossignac, and
A. Vinacua, “Optimal iso-surfaces,” Computer-Aided Design
and Applications, vol. 1, no. 1–4, pp. 503–511, 2004.

[26] P. Miller, P. Lindstrom, and A. Cook, “Visualizations of the
dynamics of a vortical flow,” Physics of Fluids, vol. 15, no. 9,
p. S13, 2003.

[27] [Online]. Available: http://www.cc.gatech.edu/projects/large
models/ps.html

Lorenzo Ibarria was born in Barcelona, Spain, where he received his
BS in computer science from the Polytechnic University of Catalonia.
He did his graduate studies at the Georgia Institute of Technology,
achieving a MS and PhD in computer science. His areas of interest
are compression and computer graphics. Currently he is working at
NVIDIA.

Peter Lindstrom was born in Sweden and has resided in the U.S.
since 1990. He received a PhD in computer science from Georgia
Institute of Technology in 2000, and holds BS degrees in computer
science, mathematics, and physics from Elon University. He joined
Lawrence Livermore National Laboratory in 2000, where he is a
computer scientist and project leader. His primary research interests
are in scientific visualization, data compression, mesh simplification,
geometric and multiresolution modeling, and out-of-core techniques.

Dr. Lindstrom is a member of ACM and IEEE. He has served
on 15 international program committees, and has published over 30
articles.

Jarek Rossignac was born in Poland and grew up in France. He
received a PhD in electrical engineering from the University of
Rochester, NY, in 1985. Between 1985 and 1996, he worked at the
IBM T.J. Watson Research Center in Yorktown Heights, NY, where
he served as Senior Manager and as Visualization Strategist. In 1996,
he joined the Georgia Institute of Technology, Atlanta, GA, where
he served as Director of the GVU Center and is Full Professor
in the College of Computing. His research focuses on the design,
simplification, compression, and visualization of highly complex 3D
shapes, structures, and animations.

Dr. Rossignac is a member of the ACM and a Fellow of the
Eurographics Association. He authored 20 patents and over 100
articles, for which he received 13 Awards. He chaired the Solid
Modeling Association; created the ACM Solid Modeling Conference
series; chaired 20 conferences and program committees; and served
on the Editorial Boards of 7 professional journals and on 52 Technical
Program committees.

http://www.cc.gatech.edu/projects/large_models/ps.html
http://www.cc.gatech.edu/projects/large_models/ps.html

