
UCRL-PROC-232530

Interoperable mesh and
geometry tools for advanced
petascale simulations

L. Diachin, A. Bauer, B. Fix, J. Kraftcheck, K. Jansen,
X. Luo, M. Miller, C. Ollivier-Gooch, M. Shephard, T.
Tautges, H. Trease

July 6, 2007

SciDAC 2007
Boston, MA, United States
June 24, 2007 through June 28, 2007



This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 

Updated October 14, 2003 



Interoperable mesh and geometry tools for advanced

petascale simulations

L. Diachin1, A. Bauer2, B. Fix3, J. Kraftcheck4, K. Jansen2, X. Luo2,
M. Miller2, C. Ollivier-Gooch5, M. S. Shephard2, T. Tautges6 and H.
Trease7

1 Lawrence Livermore National Lab, Livermore, CA, 2 Rensselaer Polytechnic Institute, Troy,
NY, 3 SUNY Stony Brook, Stony Brook, NY, 4 University of Wisconsin, Madison, WI, 5

University of British Columbia, Vancouver, BC, 6 Argonne National Laboratory, Argonne, IL,
7 Pacific Northwest National Laboratory, Richland, WA

E-mail: diachin2@llnl.gov, acbauer@scorec.rpi.edu, brian@ams.sunysb.edu,

kraftche@cae.wisc.edu, xluo@scorec.rpi.edu,miller86@llnl.gov, cfog@mech.ubc.ca,

shephard@scorec.rpi.edu, tautges@mcs.anl.gov, het@pnl.gov

Abstract. SciDAC applications have a demonstrated need for advanced software tools to
manage the complexities associated with sophisticated geometry, mesh, and field manipulation
tasks, particularly as computer architectures move toward the petascale. The Center
for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver
interoperable and interchangeable mesh, geometry, and field manipulation services that are
of direct use to SciDAC applications. The premise of our technology development goal is to
provide such services as libraries that can be used with minimal intrusion into application
codes. To develop these technologies, we focus on defining a common data model and data-
structure neutral interfaces that unify a number of different services such as mesh generation
and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution
transfer operations. We highlight the use of several ITAPS services in SciDAC applications.

1. Introduction
The advent of petascale computing will enable increasingly complex, realistic simulations of
PDE-based applications. Numerous software tools are available to help manage the complexity
of these simulations, including computer-aided design systems used to represent the geometry of
the computational domain, mesh generation tools to discretize those domains, solution adaptive
methods (AMR) to improve the accuracy and efficiency of simulation techniques, and parallel
tools such as dynamic partitioning to ease implementation on today’s computer architectures.
These tools would be particularly effective if they could be easily integrated and used in concert
in existing simulations or if they could enable integration of existing simulations into multi-
physics, multi-scale codes. At present, however, this type of integration is exceedingly difficult,
due in large part to software compatibility issues.

The goal of the Interoperable Technologies for Advanced Petascale Simulations (ITAPS)
enabling technology center is to address this challenge through the development of interoperable
and interchangeable mesh, geometry, and field manipulation tools that are of direct use to



Mesh Geometry Relations FieldCommon
Interfaces

Component
Tools

Are unified 
by

Petascale
Integrated

Tools

Build on

Mesh
Improve

Front 
tracking

Mesh 
Adapt

Interpolation
KernelsSwapping Dynamic

Services
Geom/Mesh

Services

AMR
Front tracking

Shape
Optimization

Solution
Adaptive

Loop

Solution
Transfer

Petascale
Mesh

Generation

Figure 1. The ITAPS center is developing integrated services that build on multiple component
services and common interfaces for geometry, mesh and field information.

SciDAC applications. The hierarchical approach we take to our technology development goals is
summarized in Figure 1. We start with component services such as mesh quality improvement,
adaptive loops, front tracking at the middle level of the figure. These services are of direct use
to applications as stand-alone tools, and many of them pre-date the ITAPS project. However,
to use these tools in concert to form higher-level integrated services, such as AMR-front tracking
or shape optimization (top row of the figure), application scientists must often provide multiple
interfaces to the same data which is a costly and error prone process. To address this problem, the
ITAPS team is developing common interfaces that provide data-structure and implementation
neutral access to mesh, geometry, and field information. These interfaces provide access to
all ITAPS services in a uniform way and are fundamental to creating interoperability for the
integrated services. Moreover, a uniform interface allows easier experimentation with different,
but functionally similar, technologies to determine which is best suited for a given application.

Figure 2 shows the primary ways that applications can use ITAPS services. In the left figure
(a), the application already has geometry, mesh, and/or field data and implements the ITAPS
interfaces as wrapper functions around their own data structures. Once the necessary interface
functions are implemented and tested, the ITAPS services can easily access the application data
they need through the ITAPS interface. In the right figure (b), the application scientist can take
advantage of data implementations already available from ITAPS for rapid prototyping of new
applications. This mode of access also allows easy access to ITAPS services using a very small
number of function calls to copy the necessary data to a fully compliant implementation of the
interface. In some cases the memory overhead associated with the data copy is relatively small



and this access mode is sufficient for long term use. In other cases, it provides the mechanism for
easy access to and experimentation with ITAPS services; as the benefits of the services become
clear, application scientists can implement the interfaces more efficiently on top of their own
data structures.

ITAPS Interface

ITAPS Component
Service 1

ITAPS High Level
Integrated Service

Application w/
Own Data ITAPS Component

Service 2

ITAPS 
Implementation w/

data copy

(a)

ITAPS Interface

ITAPS Component
Service 1

ITAPS High Level
Integrated Service

Application using
ITAPS Impl ITAPS Component

Service 2

(b)

Figure 2. A schematic showing the use of ITAPS interfaces and services in application codes.
The figure on the left (a) shows the use of the interfaces implemented directly on the application
data structures. The figure on the right (b) shows the use of a reference implementation of the
interfaces to provide immediate access to ITAPS services at the cost of a data copy

In this paper, we describe the framework and philosophy that we have used to create
interoperable mesh, geometry and field tools. In Sections 2 and 3, we discuss the abstract
data model and common interfaces that we have worked as a group to define, as well as the
implementations that provide those interfaces. Use of these interfaces to provide services to
SciDAC applications is described in Section 4.

2. The ITAPS Data Model
We use the information flow through a mesh-based simulation as the framework for developing
interoperable geometry, mesh and solution field components. A simulation’s information flow
begins with a problem definition which consists of a description of the geometric and temporal
domain annotated by attributes designating mathematical model details and parameters. The
geometric domain is then often decomposed into a set of piecewise components, the mesh, and
the continuous PDEs are then approximated on that mesh using, for example, finite difference
or finite element techniques. Simulation automation and reliability often imply feedback of the
PDE discretization information back to the domain discretization (i.e. in adaptive methods) or
even modification of the physical domain or attributes (e.g., for design optimization).

Based on this model of information flow, ITAPS researchers have defined an abstract data
model that supports a wide array of supporting technologies and encompasses a broad spectrum
of usage scenarios. The data model divides the data required by a simulation into three core
data types: the geometric data, the mesh data, and the field data. These core data types are
associated with each other through data relation managers. The data relation managers control
the relationships among two or more of the core data types, resolve cross references between
entities in different groups, and can provide additional functionality that depends on multiple
core data types. The building blocks within these data models are the concepts of entities, entity
sets, and tags.



• Entities are used to represent atomic pieces of information such as a vertices in a mesh or
edges in a geometric model. Entity adjacency relationships define how the entities connect
to each other and both first-order and second-order adjacencies are supported.

• Entity sets are arbitrary collections of entities that may be an ordered list or unordered. The
two primary supported relationships among entity sets are contained in and parent/child
to allow for subsetting and hierarchical applications. In addition, entity sets also have ”set
operation” capabilities such as set subtraction, intersection, or union.

• Tags are used as containers to attach user-defined data to ITAPS entities and entity sets.
Tags can be multi-valued which implies that a given tag handle can be associated with
many different entities. We support specialized tag types for improved performance as well
as the more general opaque case that allows any type of data to be attached.

As a particular example, consider the discrete representation of the computational domain, or
the mesh. ITAPS mesh entities correspond to the individual pieces of the mesh, namely, vertices,
edges, faces, and regions. Specific examples include a hexahedron, edge, triangle or vertex. Mesh
entities are classified by their entity type (topological dimension) and entity topology (shape).
Higher-dimensional entities are defined by lower-dimensional entities using canonical ordering
relationships. To determine which adjacencies are supported by an underlying implementation,
an adjacency table is defined which can be returned by a query through the interface. The
implementation can report that adjacency information is always, sometimes, or never available;
and to be available at a cost that is constant, logarithmic (i.e., tree search), or linear (i.e., search
over all entities) in the size of the mesh. ITAPS mesh entity sets are extensively used to collect
mesh entities together in meaningful ways, for example, to represent the set of all faces classified
on a geometric face or the set of regions in a domain decomposition for parallel computing.

To support many of the services that applications desire, such as adaptive mesh refinement,
it is important that the data model include the concept of modification to allow changes to
geometry, topology, or set structure. In the case of the mesh, capabilities include changing
vertex coordinates and adding or deleting entities. Modification often requires interactions
between the mesh, geometry and field data models and is one of the primary uses for the data
relations manager. For example, when refining a mesh, it is often critical to associate or classify
the mesh entity with one or more specific entities in the underlying geometric model to ensure
accuracy, particularly on curved or complex geometries.

3. The ITAPS Interfaces.
The next step to creating interoperable technologies is to define common interfaces that support
the abstract data model. A key aspect of our approach is that we do not enforce any particular
data structure or implementation with our interfaces, requiring only that certain questions about
the geometry, mesh, or field data can be answered through calls to the interface. One of the
most challenging aspects of this effort remains balancing performance of the interface with the
flexibility needed to support a wide variety of data types. Performance is critical for kernel
computations involving mesh and geometry access, and to address this need, we provide a
number of different access patterns including individual iterator-based and agglomerated array-
based requests. Further challenges arise when considering the support of many different scientific
programming languages which we address using a two-pronged approach. First, we provide a C-
language binding for our interfaces that is compatible with most needs in scientific computing.
Additional flexibility, albeit at a somewhat higher cost, is supported through the use of the
SIDL/Babel technology [1] provided by the Common Component Architecture Forum (CCA).

The ITAPS mesh interface has been under development for several years, and we provide a
simple example of using the C-binding version of the interface in Figure 3. Lines 7-9 show the
creation of a new mesh instance which creates the opaque handle mesh that is used in later calls



1 #include "iMesh.h"
3
4 int main( int argc, char *argv[] )
5 {
6 // create and populate the Mesh instance
7 iMesh_Instance mesh;
8 int geom_dim, ierr;
9 iMesh_newMesh("", &mesh, &ierr, 0);
10 iMesh_load(mesh, 0, "125hex.vtk", "", &ierr, 10, 0);
11
12 // get the geometric dimension of the mesh
13 iMesh_getGeometricDimension(mesh, &geom_dim, &ierr);
14
15 // get all 3d elements
16 iMesh_EntityHandle *ents;
17 int ents_alloc = 0, ents_size;
18 iMesh_getEntities(mesh, 0, iBase_REGION, iMesh_ALL_TOPOLOGIES,
19 &ents, &ents_alloc, ents_size, &ierr);
20 }

Figure 3. Example use of the C-binding of the iMesh interface.

to refer to this instance of the interface. Line 10 shows a the use of the iMesh load function
to populate the mesh interface using a string name identifier. How the data is created is not
specified; for example,it may be loaded from a file or generated on-the-fly. Line 13 shows a simple
query for the geometric dimension of the mesh. Lines 16-19 show another query to retrieve all
of the three-dimensional entities in the mesh, regardless of their particular topology.

Several implementations of the ITAPS mesh interface are well underway and are supported by
mesh management toolkits such as FMDB (RPI) [2], MOAB (ANL) [3], NWGrid (PNL) [4], and
GRUMMP (University of British Columbia) [5]. In addition to the development of underlying
implementations, the ITAPS mesh interface has also been used in a variety of ITAPS services
including the Frontier-Lite front tracking library [6], the Mesquite mesh quality improvement
toolkit [7], the Zoltan partitioning toolkit [8], along with unstructured mesh refinement [9] and
swapping tools [10].

4. Use of ITAPS Software in SciDAC Applications
The ITAPS team works closely with many different application teams to develop and deploy
capabilities critical to their success. Early in SciDAC-1, application impact was made by
applying existing tools to meet the needs of the application scientists. As SciDAC-1 progressed
and new interoperable tools were developed, the impact was achieved with more sophisticated
combinations of tools made possible by the SciDAC collaborative approach. For example, in
the area of accelerator modeling, the ITAPS team is working closely with scientists from the
Stanford Linear Accelerator Center (SLAC), to provide an adaptive simulation capability with
error indicators, field function libraries, and mesh modification procedures based on ITAPS
services and interfaces. To date, this work has enabled an order of magnitude improvement in
the accuracy of predicted field quantities that influence wall losses in the Rare Isotope Accelerator
device [11]. We also working on a collaboration among the TOPS (Toward Optimal Petascale
Simulations) center, ITAPS, and SLAC to develop optimization procedures that allow automatic
tuning of accelerator geometries to significantly increase the speed and decrease the cost by which
new accelerators can be designed [12]. ITAPS researchers provide services for varying design



geometry, smoothing the mesh onto new models, and automatically computing sensitivities
of the mesh with respect to design parameters [12]. In the area of fusion simulations, ITAPS
researchers are contributing to a new effort at Princeton Plasma Physics Lab (PPPL) to develop
an adaptive, high-order finite element discretization for their new M3D-C1 code. Ongoing work
focuses on insertion of adaptive mesh refinement services and error estimators directly into the
new code.

More Information about ITAPS
More information on the ITAPS project including detailed descriptions of the ITAPS services,
interfaces and interactions with SciDAC application teams can be found at http://www.
itaps-scidac.org. In addition, for those interested in ITAPS software, it can be downloaded
from http://www.itaps-scidac.org/software.

Acknowledgments
This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48
(UCRL-CONF-232530); the Canadian Natural Sciences and Engineering Research Council under
Special Research Opportunities Grant SRO-299160; and by Rensselaer Polytechnic Institute
under DOE grant number DE-FC02-01ER25460.

References
[1] Dahlgren T, Epperly T, Kumfert G and Leek J 2005 Babel User‘s Guide CASC, Lawrence Livermore National

Laboratory Livermore, California version 0.10.10
[2] Remacle J F and Shephard M 2003 International Journal for Numerical Methods in Engineering 58 349–374
[3] Tautges T J, Meyers R E, Merkley K, Stimpson C and Ernst C 2004 Sandia report SAND 2004-1592 (Sandia

National Laboratories)
[4] Trease H 2006 The NWGrid mesh generation system Pacific Northwest National Laboratory -

http://www.emsl.pnl.gov/nwgrid
[5] Ollivier-Gooch C F 1998–2005 GRUMMP — Generation and Refinement of Unstructured, Mixed-element

Meshes in Parallel http://tetra.mech.ubc.ca/GRUMMP
[6] Fix B, Glimm J, Li X, Li Y, Liu X, Samulyak R and Xu Z 2005 Journal of Physics: Conf. Series 16 471 –

475
[7] Brewer M, Diachin L, Knupp P, Leurent T and Melander D 2003 Proceedings of the 12th International

Meshing Roundtable pp 239–250
[8] Devine K, Boman E, Heaphy R, Hendrickson B and Vaughan C 2002 Computing in Science and Engineering

4 90–97
[9] Shephard M, Flaherty J, Jansen K, Li X, Luo X J, Chevaugeon N, Remacle J F, Beall M and OBara R 2005

J. for Applied Numerical Mathematics 53 251–271
[10] Ollivier-Gooch C 2006 A mesh-database-independent edge- and face-swapping tool AIAA Paper 2006-0533.

Presented at the 44th AIAA Aerospace Sciences Meeting
[11] Ge L, Lee L, Zenghai L, Ng C, Ko K, Luo Y and Shephard M 2004 IEEE Conference on Electromagnetic

Field Computations
[12] Tautges T J 2005 8th U. S. National Conference on Computational Mechanics


