EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-PROC-232512

Extending Scalability of the
Community Atmosphere Model

A. Mirin, P. Worley

July 5, 2007

Scidac 07 Conference
Boston, MA, United States
June 25, 2007 through June 28, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Extending Scalability of the Community Atmosphere
Model

A Mirin' and P Worley?

! Lawrence Livermore National Laboratory, Livermore, CA 94551
2 Qak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6016

E-mail: worleyph@ornl.gov

Abstract.

The Community Atmosphere Model (CAM) is the atmospheric component of the
Community Climate System Model (CCSM), and is the largest consumer of computing
resources in typical CCSM simulations. The parallel implementation of the Community
Atmosphere Model (CAM) employs a number of different domain decompositions. Currently,
each decomposition must utilize the same number of MPI processes, limiting the scalability
of CAM to that of the least scalable decomposition. This limitation becomes unacceptably
restrictive when including additional physical processes such as atmospheric chemistry or cloud
resolving physics. This paper reports on current efforts to improve CAM scalability by allowing
the number of active MPI processes to vary between domain decompositions.

1. Introduction

The Community Climate System Model (CCSM) [6, 3] is one of the primary tools for climate
science studies in the United States. The CCSM consists of atmosphere, ocean, land, and sea-
ice components coupled through exchange of mass, momentum, energy, and chemical species.
The components in the CCSM can be run standalone and are often used to examine specific
science issues in runs that utilize high resolution spatial grids for relatively short simulation
times and while making use of thousands of processors. In climate scenarios utilizing the full
CCSM the simulation times range from tens to thousands of years. As the time direction is
not parallelized currently, throughput considerations limit the spatial resolutions that can be
used in most production runs. This spatial resolution limitation itself limits the number of
processors that can be exploited efficiently in the current spatial domain decomposition-based
parallel implementations. Improvements in the parallel scalability of the CCSM components
translate both to higher scientific throughput and to the ability to use (somewhat) larger spatial
resolutions, thus increasing simulation fidelity. Improving parallel scalability in the CCSM is an
important technique for accelerating climate science.

Within the Department of Energy (DOE) Scientific Discovery Through Advanced Computing
(SciDAC) program, the project A Scalable and Extensible Earth System Model for Climate
Change Science (SEESM) is in particular concerned with CCSM development, working to
transform the CCSM into an earth system model that fully simulates the coupling between
the physical, chemical, and biogeochemical processes in the climate system. Associated with
SEESM is the Science Application Partnership project Performance Engineering for the Next
Generation Community Climate System Model (PENG). PENG is tasked with the long-term

Proc. of the 2006 SciDAC Conf., June 26-29, 2006 (J. Phys.: Conf. Ser. 46 356-362)

performance engineering of the CCSM, including taking into account the new physical processes
that CCSM will include in the future. Note that this work is done in collaboration with CCSM
Software Engineering Group [1] at the National Center for Atmospheric Research and with the
CCSM Software Engineering Working Group [2].

Current PENG activities include porting CCSM to the IBM BlueGene/L system, optimizing
CCSM performance on the Cray XT4, introducing parallel 1/O into CCSM, analyzing
and minimizing CCSM memory requirements, evaluating the performance of new numerical
algorithms being proposed to replace those currently used, and analyzing and improving the
scalability of CCSM components.

The sea ice and land components are surface models (essentially two-dimensional spatially),
and have a lower computational complexity than the three-dimensional ocean and atmosphere
models in typical CCSM runs. Moreover, the current parallel implementations of the land and
sea ice components support two-dimensional domain decompositions and have been shown to
scale reasonably well as a function of processor counts. Within the context of the CCSM, neither
the sea ice nor the land represent a performance scalability bottleneck. The atmosphere and
ocean models have roughly similar computational requirements, though the choice of spatial
resolution or physical processes for each component can make one significantly more expensive
than the other. As shown in Figure 1, the ocean component POP (Parallel Ocean Program) can
use over 4000 processes for a small one degree resolution spatial grid, though parallel efficiency
drops off when using more than 512 processes on the Cray XT4, and over 20,000 processes
for a large eddy-resolving tenth degree resolution spatial grid. In contrast, the atmosphere
component CAM (Community Atmosphere Model) has severe algorithmic limitations on the
number of MPI processes that can be used. As shown in Figure 2, for the current production
numerical algorithm and spatial resolution, at most 128 MPI processes can be used. For the
next generation numerical algorithm at a larger than production resolution, at most 960 MPI
processes can be used. OpenMP parallelism can be used to push processor count scalability
beyond these limits, but this is not available on all systems, nor is it efficient to use large
numbers of OpenMP threads per process on most high performance computing systems.

Parallel Ocean Program, version 1.4.3

256 M
Pl

e
/

-
N
®

-3
b

/

Cray XT4 (2.6GHz, dual-core)
—— 320x483x40 (one degree) benchmark
3600)‘(2400x40 (tenlh degree) benqhmark .
16 64 256 1024 4096 16384
Processes

o
i

Simulation Years per Day
W
N

©

4

Figure 1. CCSM ocean component processor count scalability for small and large problem sizes

In this paper, we describe current efforts in improving the scalability of the atmospheric
component of CCSM, the Community Atmosphere Model (CAM).

2. Community Atmosphere Model
CAM is a global atmosphere model developed at the National Science Foundation’s National
Center for Atmospheric Research (NCAR) with contributions from researchers funded by DOE

Performance Engineering in CAM

Community Atmosphere Model, version 3.0 Community Atmosphere Model, version 3.1
35
" Spectral Eulerian Dynamics, 128x256x26 benchmark " Finite Volume Dynamics, 361x576x26 ben K’
Cray X1E —w— 14 Cray X1E —s— |
30 - Cray XT4 (single core) —»— Cray XT4 (single core) —s—
IBM p575 cluster [w/OpenMP] 12 IBM p575 cluster [w/OpenMP] J
- Cray XT4 (dual core) —=— - Cray XT4 (dual core) —=—
s 25 | IBM p690 cluster [w/OpenMP] - © IBM SP [w/OpenMP] —e—
a S 10
g N 5 -
o 20 g L —
© ©
> / > / 7
s 5 s & / Y
s / s N
3 3 "
£ / / £ //’5
» 10 B 4
4 4
5 / 4 2t // — .
P
0 i 0 J’*_M
0 100 200 300 400 500 0 200 400 600 800 1000 1200 1400 1600 1800
Processes x (OpenMP threads per process) Processes x (OpenMP threads per process)

Figure 2. CCSM atmosphere component processor count scalability

and by the National Aeronautics and Space Administration (NASA) [4]. CAM is a mixed-mode
parallel application code, using both the Message Passing Interface (MPI) [8] and OpenMP
protocols [7]. CAM is characterized by two computational phases: the dynamics, which advances
the evolution equations for the atmospheric flow, and the physics, which approximates subgrid
phenomena such as precipitation processes, clouds, long- and short-wave radiation, and turbulent
mixing [5]. The approximations in the physics are referred to as the physical parameterizations.
Control moves between the dynamics and the physics at least once during each model simulation
timestep.

CAM includes multiple options for the dynamics, referred to as dynamical cores or dycores,
one of which is selected at compile-time. Three dycores are currently supported: a spectral
Eulerian (EUL) [10], a spectral semi-Lagrangian (SLD) [12], and a finite volume semi-Lagrangian
(FV) [11]. The spectral and finite volume dycores use different computational grids. An explicit
interface exists between the dynamics and the physics, and the physics data structures and
parallelization strategies are independent from those in the dynamics. A dynamics-physics
coupler moves data between data structures representing the dynamics state and the physics
state.

The spectral Eulerian dycore had been the preferred dycore for CCSM production runs for
the past several years. However, the finite-volume dycore has just recently become the preferred
dycore, due to superior conservation properties that are important for a number of physical
processes that are being introduced into the model. However, all of the dycores will be used for
science studies for the forseeable future.

The parallel implementations of the spectral dycores are based on a one-dimensional latitude
decomposition. Thus, for the standard 128 x 256 x 26 (latitude by longitude by vertical) grid,
at most 128 MPI processes can be used. In contrast, the parallel implementation of the physics
is based on an arbitrary latitude-longitude decomposition, and could use up to 32,768 processes
algorithmically. While two-dimensional decompositions have been developed for the spectral
dycores in the past, significant software re-engineering would be required, and this level of effort
will not be expended on dycores that are otherwise no longer under development.

The parallel implementation of the finite volume dycore is based on two different two-
dimensional decompositions, one over latitude-longitude and one over latitude-vertical. In these
decompositions, each subdomain must contain at least three grid points in each coordinate
direction. The same total number of MPI processes must be used in each decomposition.
For the initial production problem resolution of 96 x 144 x 26, the maximum number of MPI
processes that can be used in the latitude-vertical decomposition is 256. For the the latitude-
longitude decomposition, the limit is 1,536, while for the physics decomposition the limit is

Proc. of the 2006 SciDAC Conf., June 26-29, 2006 (J. Phys.: Conf. Ser. 46 356-362)

Community Atmosphere Model, version 3.0
&

// -
- —

gl

25

20

15

/

Spectral Eulerian Dy ics, 128x256x26 k
XT4 (single-core, load bal.) —+—
XT4 (single-core) 7]
XT4 (dual-core, load bal., stride 2) —=—
XT4 (dual-core, load bal.) —=—
XT4 (dugl-core)

0 100 200 300 400 500
Processes

10

Simulation Years per Day

Figure 3. Performance impact of auxiliary MPI processes on spectral dynamics

13,824. Thus the decomposition over the latitude-vertical severely limits the scalability for this
problem resolution.

3. Auxiliary MPI processes

As indicated in the previous section, the number of MPI processes that can be used varies
between the dynamics and the physics, and between different phases of the dynamics for the
finite volume dycore. Our initial approach to improving the scalability of CAM has been to
support idle, or auziliary, processes. We are now able to allocate enough processes for the most
parallel phases of the code, leaving some number of these idle during the less parallel phases.

Figure 3 shows the performance impact of auxiliary processes for the spectral Eulerian
on the Cray XT4. Physics load balancing is the mechanism used to redistribute work over
a larger number of MPI processes in the physics than in the dynamics. Thus performance
without physics load balancing suffers from both the original limitations on scalability and the
performance impact of load imbalances. The XT4 uses dual-core Opteron processors, and using
both processor cores (“dual-core”) incurs some performance degradation due to contention for
memory and network access. Performance curves are presented for using only one core per
processor (“single-core”), leaving the other idle, and using both cores. The curve labeled dual-
core, load bal., stride 2 uses every other processor core in the dynamics when using more the 128
processors in the physics. In this mode, the dynamics is running “single-core” while the physics
is running “dual-core”, achieving performance between the pure “single-core” and “dual-core”
modes without wasting computer resources as in the “single-core” mode.

The cost of the dynamics does not decrease when using more than 128 processes for this
problem size. The cost of the physics decreases almost linearly out to 1024 processors. As
the physics is twice as expensive as the dynamics when using 128 processes, the physics and
dynamics have comparable cost at 1024 processors, and there is little to be gained by increasing
the processor count further. However, this modification increased throughput by a factor of 1.6,

Tables 1-3 show the performance impact of auxiliary processes for the finite volume dycore
on the Cray XT4. Here the same number of MPI processes are used in the latitude-longitude
decomposition and in the physics, and processes are idle only during the latitude-vertical
decomposition phase. In all examples, the smallest processor count is the maximum for the
latitude-vertical phase. While the cost of the physics shows the expected decrease as a function
of processor count, the cost of the dynamics is increasing. We believe that this is a performance
bug, and we will be addressing this in future work. In particular, the “stride-2” optimization
used in the spectral dycore implementation has not yet been implemented in the finite volume
dycore. The ability to use additional processors increased throughput by a factor of 1.2. In

Performance Engineering in CAM

non-dynamics
processors total dynamics physics communication

256 3.63 1.37 1.61 0.26
512 2.94 1.61 0.83 0.35
1024 3.05 1.88 0.44 0.44

Table 1. Secs/day for phases when using finite volume dycore with 96 x 144 x 26 grid

non-dynamics
processors total dynamics physics communication

512 8.80 4.38 3.00 0.89
1024 6.95 4.54 1.60 0.38
2048 7.45 5.34 0.80 0.63

Table 2. Secs/day for phases when using finite volume dycore with 192 x 288 x 26 grid

non-dynamics
processors total dynamics physics communication
960 24.9 16.5 6.00 1.13
1920 21.0 15.9 3.10 0.85

Table 3. Secs/day for phases when using finite volume dycore with 361 x 576 x 26 grid

the finite volume dynamics, the dynamics is more expensive than the physics for all but the
smallest spatial resolutions in the current version of the model, and there is less to be gained by
exploiting additional parallelism in the physics.

4. Model evolution
There are a number of changes planned for CAM, all of which will increase the computational
complexity. We discuss only two here.

First, the addition of atmospheric chemistry will double or triple the cost of the physics.
Atmospheric chemistry will also require the advection of approximately 100 new tracers,
increasing the cost of the dynamics as well. Figure 4 shows the increase in the runtime of
CAM due solely to the increase in the number of advected tracers (not including the cost of
atmospheric chemistry). This factor of 3.5 may yet be decreased with further optimization of
tracer advection, but it also may be addressed by the use of auxillary processes. For example, the
advection takes places within the latitude-vertical decomposition phase, and different species can
be advected independently, thus increasing the exploitable parallelism. Some of the advection
can also be overlapped with the the rest of the phase.

Second, there is strong interest in resolving cloud processes within CAM. One approach
is to reduce the horizontal grid spacing to 5 kilometers or less, thus increasing the grid size
by a factor of 400 or more compared to current production resolutions, and reworking all of
the subgrid parameterizations. An alternative, referred to as superparameterization, involves
increasing the resolution within each cell of the standard resolution for the cloud processes
only [9]. This increases the computational cost of each grid point in the original grid by a factor
of 100, which makes the use of auxiliary processes in the physics an important performance
enhancement. An experiment with such an approach using the SLD spectral dycore on a
64 x 128 x 26 grid demonstrated that 1024 processes could be used effectively. In fact, this
pure MPI implementation was more efficient than utilizing 64 MPI processes and 16 OpenMP
threads per process on a cluster of IBM SMP nodes.

Proc. of the 2006 SciDAC Conf., June 26-29, 2006 (J. Phys.: Conf. Ser. 46 356-362)

Community Atmosphere Model, version 3.3.35

Finite Volume Dynamics, 288x192x26 k, 16x4 p
Cray X1E
—s=— Cray XT3 (dual core)

35" —=— LLNL Thunder cluster /
3

25

Ratio of Runtime with Zero Tracer Case

0 20 40 60 80 100
Number of Tracers

Figure 4. Performance impact of tracer advection on finite volume dycore

5. Conclusions

The paper describes briefly current efforts to improve the scalability of the Community
Atmosphere Model by adding support for auxiliary MPI processes that are idle during some
phases of the code and active in others. While this does not change the asymptotic scalability,
it has been shown to increase throughput in the current version of CAM, and will be even more
important as new physics is introduced into the model. We are still actively optimizing the
current implementation. We are also investigating alternative numerical methods with improved
scalability compared to the current algorithms. However, support for auxiliary MPI processes
is a technique that we expect to be useful even for more scalable dycores.

Acknowledgments

This research used resources (Cray X1E, Cray XT3, IBM p690 cluster) of the National Center
for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725. It used
resources (IBM SP, IBM p575 cluster) of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

The work of Mirin was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract No. W-7405-
Eng-48, and this paper is LLNL report UCRL-CONF-XXXX. The work of Worley was supported
by the Climate Change Research Division of the Office of Biological and Environmental Research
and by the Office of Mathematical, Information, and Computational Sciences, both in the Office
of Science, U.S. Department of Energy, under Contract No. DE-AC05-000R22725 with UT-
Batelle, LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow others to do so, for U.S.
Government purposes.

References
[1] CCSM SOFTWARE ENGINEERING GROUP. http://www.ccsm.ucar.edu/cseg/.
[2] CCSM SOFTWARE ENGINEERING WORKING GROUP. http://www.ccsm.ucar.edu/working_groups/Software/.
[3] W. D. CoLLins, C. M. Birz, M. L. BLackMoN, G. B. BonaN, C. S. BRETHERTON, J. A. CARTON,
P. CHANG, S. C. DoNEY, J. H. HAck, T. B. HENDERSON, J. T. KieHL, W. G. LARGE, D. S. MCKENNA,
B. D. SANTER, AND R. D. SMITH, The Community Climate System Model Version 8 (CCSMS3), J. Climate,
19 (2006), pp. 2122-2143.

Performance Engineering in CAM

[4] W. D. CoLLiNs, P. J. RascH, B. A. BoviLLE, J. J. Hack, J. R. McCaa, D. L. WILLIAMSON, B. P.
BRIEGLEB, C. M. BiTrz, S.-J. LIN, AND M. ZHANG, The Formulation and Atmospheric Simulation of the
Community Atmosphere Model: CAMS3, Journal of Climate, 19(11) (2006).

[65] W. D. CoLLINS, P. J. RASCH, AND ET AL., Description of the NCAR Community Atmosphere Model (CAM
3.0), NCAR Tech Note NCAR/TN-4644+STR, National Center for Atmospheric Research, Boulder, CO
80307, 2004.

[6] COMMUNITY CLIMATE SYSTEM MODEL. http://www.ccsm.ucar.edu/.

[7] L. DacguM AND R. MENON, OpenMP: an industry-standard API for shared-memory programming, IEEE
Computational Science & Engineering, 5 (1998), pp. 46-55.

[8] W. GrorP, M. SNIR, B. NITZBERG, AND E. Lusk, MPI: The Complete Reference, MIT Press, Boston, 1998.
second edition.

[9] M. KHAIROUTDINOV, D. RANDALL, AND C. DEMOTT, Simulations of the atmospheric general circulation
using a cloud-resolving model as a superparameterization of physical processes, Journal of Atmospheric
Sciences, 62 (2005), pp. 2136-2154.

[10] J. T. KieHL, J. J. HACK, G. BONAN, B. A. BovILLE, D. L. WILLIAMSON, AND P. J. RascH, The National
Center for Atmospheric Research Community Climate Model: CCM3, J. Climate, 11 (1998), pp. 1131—
1149.

[11] S.-J. LIN, A ‘vertically Lagrangian’ finite-volume dynamical core for global models, Mon. Wea. Rev., 132
(2004), pp. 2293-2307.

[12] D. L. WILLIAMSON AND J. G. OLSON, Climate simulations with a semi-lagrangian version of the NCAR
Community Climate Model, Mon. Wea. Rev., 122 (1994), pp. 1594-1610.

